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ABSTRACT  
Measures of effect size are recommended to communicate information on the strength of relationships. Such 
information supplements the reject/fail-to-reject decision obtained in statistical hypothesis testing. Because sample 
effect sizes are subject to sampling error, as is any sample statistic, computing confidence intervals for these 
statistics is a useful strategy to represent the magnitude of uncertainty about the corresponding population effect 
sizes. This paper provides a SAS macro for computing common effect sizes associated with analysis of variance 
models. By utilizing data from PROC GLM ODS tables, the macro produces point and interval estimates of eta-
squared, partial eta-squared, omega-squared, and partial omega-squared. This paper provides the macro 
programming language, as well as results from an executed example of the macro.  
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INTRODUCTION  
Long gone are the days when social and behavioral science researchers should simply report obtained test statistics 
(e.g., 2, ,t F χ ) and their corresponding p-values. Over the years, interpreting the importance of scientific research 
based on the dichotomous reject or fail-to-reject decision has become less popular among some disciplines such as 
psychology and education. Instead, researchers are encouraged to supplement hypothesis test results with measures 
of effect magnitude. In fact, according to Thompson (2007), 24 peer-reviewed journals had explicit editorial policies 
that required authors to include effect sizes or other measures of effect magnitude. A large part of this “cultural 
change” began over a decade ago when the APA Task Force on Statistical Inference issued their statement that 
researchers should regularly report effect sizes, calculate confidence intervals, and use graphics to better 
communicate the nature of their findings for all primary outcomes (Wilkinson & APA Task Force on Statistical 
Inference, 1999). Unlike p-values that are used to determine if an observed effect or relationship is real or due to 
chance or sampling variability, effect sizes are used to estimate how large the effect or relationship is. Thus, when 
used together, not only can researchers make statements about the statistical significance of their findings, they can 
also report on the practical significance of their findings.  
 
More recently, the scholarly discussion around effect sizes has evolved to also include recommendations and 
formulas for calculating and reporting confidence intervals around effect sizes (Cumming & Finch, 2001; Fidler & 
Thompson, 2001; Finch & French, 2010; Smithson, 2001; Thompson, 2002). The use of confidence intervals around 
effect sizes is particularly fruitful for meta-analytic research. For example, just as a confidence interval calculated 
around a sample mean can generate plausible values for the population mean, a confidence interval calculated 
around a sample effect size such as Cohen’s d, r, or 2η  can describe plausible values for the population effect size.  
 
Most researchers recognize the value in calculating confidence intervals around effect sizes. However, the difficulty 
lies in how these confidence intervals must be calculated. Unlike calculating a confidence interval around some 
parameter estimate such as the sample mean that relies on a standard formula based on either the standard normal 
distribution or the central t-distribution, the calculation of confidence intervals around effect sizes relies on non-central 
distributions, thus, making the calculations less straightforward for many applied researchers. Fortunately, functions 
available in the SAS language make calculations using non-central distributions painless. 

EFFECT SIZES COMMONLY USED WITH ANALYSIS OF VARIANCE MODELS 
Commonly reported effect sizes for ANOVA models include eta-squared ( )2η , partial 2η , omega-squared ( )2ω , and 

partial 2ω . In general, all four of these effect sizes represent measures of association. However, there are important 
differences among them. First, both 2η and partial 2η are sample effect size estimates, representing the proportion of 
sample variability in the dependent variable that is associated with variability in an independent variable. These 
statistics, however, are positively biased as point estimates of the population effect size.  The effect sizes 2ω , and 
partial 2ω , are adjusted to provide better population estimates.  
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Second, partial and non-partial estimates represent different measures of association. For example, consider a two-
way, balanced factorial ANOVA with independent variables of student gender and grade level, and a dependent 
variable of mathematics achievement. The analysis of variance will provide sums-of-squares (and mean squares) for 
each of the two main effects (main effects for gender and grade level), the interaction effect, and the within-cell 
residual or error. F tests are formed from ratios of the mean squares to test null hypotheses about main effects and 
the interaction effect. The total sums-of-squares, representing all of the sample variability in mathematics 
achievement, is simply the sum of these four components. The formula for 2η associated with the gender main effect 
is 
 

2 gender
gender

total

SS
SS

η =  

 
In contrast, the formula for partial 2η for this effect is 
 

2 gender
gender

gender error

SS
partial

SS SS
η =

+
 

 
As is evident in the first formula, 2

genderη  represents the proportion of the total sample variance in mathematics 
achievement that is associated with gender. The total sample variance (SStotal) includes variability associated with 
gender, grade level, the interaction between gender and grade level, and the within-cell variability. In contrast, partial 

2
genderη  represents the proportion of variance in mathematics achievement associated with gender, after the effects of 

grade level and the interaction between gender and grade level have been removed (note the different denominators 
for 2

genderη  and partial 2
genderη ).  Analogous formulas are used to calculate sample effect sizes for the other two 

sources of systematic variance in this design – grade level and the interaction between gender and grade level.  
 
Next, to obtain a relatively unbiased estimate of the variance explained in the population by an independent variable, 
omega-squared can be calculated. Using the same example as above, the formula for 2ω is presented below.   
 

( )2 1gender error
gender

total error

SS k MS
SS MS

ω
− −

=
+

 
 

where k – 1 = the degrees of freedom for the independent variable. 
 

In this formula, 2
genderω estimates the proportion of the population variance in mathematics achievement associated 

with gender. However, unlike eta-squared, omega-squared takes random error (MSerror) into account. Through this 
process, omega-squared values will be smaller than eta-squared values, with more noticeable differences occurring 
with smaller samples and/or research designs that include more independent variables.  
 
Similarly, partial omega-squared represents an unbiased estimate of the population proportion of variance in 
mathematics achievement associated with gender, after the effects of grade level and the interaction between gender 
and grade level have been removed (note the different denominators for 2

genderω  and partial 2
genderω ). 
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CONFIDENCE INTERVALS AROUND COMMONLY USED EFFECT SIZES WITH ANALYSIS OF VARIANCE MODELS 
Confidence intervals around simple statistics such as the sample mean can be constructed by adding to and 
subtracting from the sample mean some number of standard errors. For example, a 95% confidence interval for a 
mean is estimated as 
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1.96 XX σ±  
 
The value 1.96 in this formula is obtained from the standard normal distribution and is the number of standard errors 
that delineates the top and bottom 2.5% of the distribution (hence, the 95% level of confidence).  
 
This approach to confidence interval construction is appropriate for statistics, such as the sample mean, that follow a 
symmetric sampling distribution. Effect size statistics such as 2η  and 2ω do not follow a symmetric sampling 
distribution, necessitating a different approach to confidence interval construction. The interval inversion approach 
(Steiger, 2004; Steiger & Fouladi, 1997) provides an elegant method that is easily implemented with SAS probability 
functions. Other approaches to confidence interval construction, such as bootstrap methods, have been proposed. 
However, empirical investigations of these approaches suggest that they provide few, if any, advantages to the 
interval inversion approach (see, for example, Finch & French, 2010). 
 
Understanding the interval inversion approach requires a consideration of non-central sampling distributions (i.e., the 
sampling distributions of t or F when the null hypothesis is false). Figure 1 presents the sampling distributions of the F 
statistic under four levels of non-centrality (the degrees of freedom for the F statistic were arbitrarily set to 5 and 39 
for this illustration). Note that as non-centrality increases, the sampling distribution changes in location, dispersion, 
and shape. Most importantly, the relative frequencies of the values of F change with changes in non-centrality. As an 
illustration, a vertical line has been drawn in Figure 1 at the value of 4.46 for obtained F. For the distribution with non-
centrality = 0 (i.e., the central F distribution), just less than three-tenths of 1% of the sampling distribution is larger 
than this value of F. Because this value of non-centrality represents the distribution of F when the null hypothesis is 
true, obtaining a value of 4.46 is a very rare event if the null hypothesis is true (i.e., when the population means are 
identical). When the non-centrality value is 5, approximately 6% of the distribution is greater than 4.46; at non-
centrality of 10, 19% of the distribution is greater; and at non-centrality of 20, 58% of the distribution is greater. That 
is, as non-centrality increases this obtained value of F becomes less rare. 
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Figure 1. Central and non-central F distributions with df = 5, 39 

F = 4.46 
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These areas under the F distribution (or probabilities) can be obtained with the PROBF function in SAS. This function 
uses four arguments in the following order: the obtained value of F, the degrees of freedom for the numerator of F, 
the degrees of freedom for the denominator of F, and the non-centrality parameter for the F distribution. The last 
argument is optional if the central F distribution (non-centrality = 0) is being evaluated. For example, the statement  
 

Prob = 1 - PROBF(4.46,5,39,20); 
 

provides the area under the curve that is greater than 4.46 when the non-centrality is 20 (that is, Prob = .57748). 
 
Figure 1 provides only four values of non-centrality, but non-centrality parameters have an infinite number of potential 
values. If we consider a very large number of non-centrality values and compute the proportion of the curve greater 
than 4.46, we can plot these proportions in reference to the non-centrality values. Such a graph is provided in Figure 
2. The horizontal axis provides values of non-centrality and the vertical axis provides the proportion of the F 
distribution that is greater than 4.46 (the probability of obtaining an F statistic larger than that obtained, given the non-
centrality value).  
 
The interval inversion approach seeks the values of non-centrality that delineate (for example) the top 2.5% and the 
bottom 2.5% (noted by dotted lines in Figure 2). That is, the value of non-centrality for which 2.5% of the sampling 
distribution is greater than 4.46 and the value of non-centrality for which 97.5% of the sampling distribution is greater 
than 4.46 represent the endpoints of a 95% confidence interval around the non-centrality. These non-centrality values 
are easily transformed into values of 2η  and 2.ω  
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Figure 2. Proportion of the F distribution that is greater than 4.46 by non-centrality value 
 
These values of non-centrality (NC) for the F distribution can be obtained directly with the FNONCT function in SAS. 
This function uses four arguments in the following order: the obtained value of F, the degrees of freedom for the 
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numerator of F, the degrees of freedom for the denominator of F, and the desired proportion of the F distribution 
smaller than the obtained value of F. For example, the statement  
 

NC = FNONCT(4.46,5,39,.025); 
 

provides the non-centrality parameter for which 2.5% of the sampling distribution is less than 4.46 and 97.5% is 
greater than 4.46 (that is, NC = 43.2386). Similarly, the statement 
 

NC = FNONCT(4.46,5,39,.975); 
 

provides the non-centrality parameter for which 97.5% of the sampling distribution is less than 4.46 and 2.5% is 
greater than 4.46 (that is, NC = 3.07142).  These values are the endpoints of a 95% confidence interval for the non-
centrality parameter. 
 
Converting the endpoints of the interval for non-centrality to the endpoints of the interval for 2η  requires a simple 
transformation (Cohen, 1988): 
 

2

1 2 1df df
λη

λ
=

+ + +
 

 
where λ is the non-centrality parameter and df1 and df2 are the numerator and denominator degrees of freedom for 
the F distribution. For this example, the transformation yields endpoints for the 2η  confidence interval of .06389 and 
.49002, reflecting a relatively large amount of uncertainty about the corresponding parameter. 
 
Although this section has focused on the probability and non-centrality functions for the F distribution (because the F 
distribution is used in the macro), analogous functions are available in SAS for other sampling distributions. For 
example, the functions PROBT and PROBCHI provide areas under the curve (i.e., probabilities) for the t distribution 
and the chi-square distribution, respectively. Similarly, the functions TNONCT and CNONCT provide non-centrality 
parameters for these distributions. Examples of these non-central distributions applied to interval estimation are 
provided by Fiddler and Thompson (2001), Reiser (2001), Smithson (2001), Steiger (2004), and Venables (1975). 

SOFTWARE LIMITATIONS 
Although 2η and partial- 2η are automated options available in some statistical software packages, SAS does not 
provide them in either PROC ANOVA or PROC GLM (with the exception of single factor models). Thus, in order for 
SAS users to follow the APA Task Force recommendations for reporting effect sizes, extra work is required. For 
example, using the output from PROC ANOVA or PROC GLM, researchers can calculate these values either by hand 
or by outputting the ModelANOVA and OverallANOVA ODS tables and calculating the effect sizes through a data 
step. Thus, in an effort to reduce the burden of calculating commonly reported effect sizes to accompany analysis of 
variance hypothesis test results, this paper provides a SAS macro to calculate 2η , partial 2η , 2ω , and partial 2ω  for 
n-way between-subjects ANOVA models. The macro also calculates confidence limits for each effect size and only 
requires users to have BASE SAS and SAS/STAT.  

MACRO ES_ANOVA   
ES_ANOVA works with balanced and unbalanced n-way between subjects ANOVA models and contains three 
arguments: Model, Overall, and Confid.  Specifically, the ES_ANOVA user defined macro inputs for the three 
arguments consist of two ODS table names generated from the PROC GLM procedure (a) ModelANOVA and (b) 
OverallANOVA, as well as the user’s desired level of confidence to be used in calculating the confidence intervals for 

2η , partial 2η , 2ω , and partial 2ω . From this information, by default, ES_ANOVA produces two succinct summary 
tables - one based on Type I sums-of-squares and the other based on Type III sums-of-squares. However, if the user 
requests Type II and/or Type IV sums-of-squares in PROC GLM, summary tables will also be produced for these 
sums-of-squares. For each effect included in the ANOVA model, the ES_ANOVA summary tables include the name 
of the effect along with its corresponding F and p-values, 2η , partial 2η , 2ω , and partial 2ω effect size estimates, and 
lower and upper confidence limits for each of the effect size estimates. Because these effect sizes represent 
proportions of variance, negative values which may occur for lower endpoints of the 2ω  and partial 2ω confidence 
intervals are set to zero during the calculation. 
 
The macro ES_ANOVA SAS code is below, followed by an example. ES_ANOVA can also be downloaded from the 
second author’s website (http://www.ed.sc.edu/bell/).   
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%macro ES_ANOVA (Model = model_stats, Overall = total_stats, Confid = .95); 
filename junk dummy;  
proc printto log=junk; 
run; 
options ls = 148 ps = 47;   
OPTIONS FORMCHAR="|----|+|---+=|-/\<>*"; 
proc format; 

value HT_FMT 1='Type 1' 2 = 'Type 2' 3 = 'Type 3' 4 = 'Type 4'; 
 

data total_stats2;  
set &overall (keep=source dependent ss df); 
if source='Corrected Total'; 
rename ss=ss_total df = df_total; 
 

data total_error; set &overall (keep=source dependent ss df MS); 
if source='Error'; 
rename ss=ss_error df = df_error MS = MS_error; 
 

data model_stats2;  
  set &model (keep=ss MS dependent source HypothesisType FValue df ProbF); 
 
proc sort data=total_stats2; 

by dependent; 
proc sort data=total_error; 

by dependent; 
proc sort data=model_stats2; 

by dependent; 
 

data both;  
 merge total_stats2 total_error model_stats2; 
by dependent; 
prob_L = 1-(1-&confid)/2; 
prob_U = (1-&confid)/2; 
conf_pct = 100*&confid;  

 
* +-------------------------------------------------------------------+ 
   Calculating eta-squared and confidence interval around eta-squared 
* +-------------------------------------------------------------------+;  
 
eta2=ss/ss_total; 
dfw_Adj = df_total - df; 
MS_E_Adj = (ss_total - SS)/dfw_Adj; 
F_Adj = MS/MS_E_Adj; 
ncp_eta_L = MAX(0,fnonct(F_Adj,df,dfw_Adj,prob_L)); 
ncp_eta_U = MAX(0,fnonct(F_Adj,df,dfw_Adj,prob_U));  
eta2_L = ncp_eta_L / (ncp_eta_L + df + dfw_Adj + 1); 
eta2_U = ncp_eta_U / (ncp_eta_U + df + dfw_Adj + 1); 
 
 
* +----------------------------------------------------------------------+          
   Calculating partial eta-squared and confidence interval around partial  
   eta-squared 
* +----------------------------------------------------------------------+;  
 
partial_eta2 = ss / (ss + ss_error); 
ncp_peta_L = MAX(0,fnonct(FValue,df,df_error,prob_L)); 
ncp_peta_U = MAX(0,fnonct(FValue,df,df_error,prob_U)); 
partial_eta2_L = ncp_peta_L / (ncp_peta_L + df + df_error + 1); 
partial_eta2_U = ncp_peta_U / (ncp_peta_U + df + df_error + 1); 
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* +-----------------------------------------------------------------------+ 
   Calculating omega-squared and confidence interval around omega-squared 
* +-----------------------------------------------------------------------+; 
 
Omega2 = (ss - (df*MS_E_Adj)) / (ss_total + MS_E_Adj); 
SSB_L=ss_total * eta2_L; 
MSW_L=(ss_total - SSB_L) / dfw_Adj; 
omega2_L=(SSB_L - (df * MSW_L)) / (ss_total + MSW_L); 
   if omega2_L < 0 then omega2_L = 0;  
SSB_U=ss_total * eta2_U; 
MSW_U=(ss_total - SSB_U) / dfw_Adj; 
omega2_U=(SSB_U - (df * MSW_U)) / (ss_total + MSW_U); 
 
 
* +------------------------------------------------------------------------+ 

Calculating partial omega-squared and confidence interval around partial 
omega-squared 

* +------------------------------------------------------------------------+; 
 
Partial_omega2 = (ss - (df*MS_error)) / (ss_total + MS_error); 
SSB_L=ss_total * partial_eta2_L; 
MSW_L=(ss_total - SSB_L) / df_error; 
P_omega2_L=(SSB_L - (df * MSW_L)) / (ss_total + MSW_L); 
if P_omega2_L < 0 then P_omega2_L = 0; 
SSB_U=ss_total * partial_eta2_U; 
MSW_U=(ss_total - SSB_U) / df_error; 
P_omega2_U=(SSB_U - (df * MSW_U)) / (ss_total + MSW_U); 
 
proc sort data = both; 

by dependent HypothesisType; 
 

data both2; 
 set both; 
 by dependent HypothesisType; 
 format HypothesisType HT_FMT.; 
 FullLine = repeat('-',144); 

   if ProbF >= .0001 then ProbFA = PUT(ProbF,6.4); 
   if ProbF < .0001 then ProbFA = '<.0001'; 

 
 

*+------------------------------------------------------------------------+ 
         Printed output using FILE PRINT 
*+------------------------------------------------------------------------+; 
 
file print header = H notitles; 
if first.dependent|first.HypothesisType then put _page_; 
put  @1 Source 20. @22 FValue Best6. @31 ProbFA @40 eta2 Best6.  

@49 eta2_L Best6. @58 eta2_U Best6.  
@67 partial_eta2 Best6. @76 partial_eta2_L Best6.  
@85 partial_eta2_U Best6. @94 omega2 Best6. @103 omega2_L Best6.  
@112 omega2_U Best6. @121 Partial_Omega2 Best6. @130 P_Omega2_L Best6. 
@139 P_Omega2_U Best6.; 

return; 
 
H: Put @1 'ANOVA Effect Sizes and Confidence Intervals Produced Using ES_ANOVA 
Macro' / 
@1 'Dependent Variable:' @30 dependent / 
@1 'SS Type:' @30 HypothesisType / 
@1 'Confidence Level:' @30 conf_pct 2. @32 '%' // 
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@1 FullLine / 
@46 'Eta-Squared     Partial Eta-Squared          Omega-Squared     Partial 
Omega-Sq.' / 
@40 '------------------------   ------------------------   -------------------
-----   -------------------------'/ 
@1 'Source' @22 'FValue' @31 'Prob>F' @40 'Sample' @49 'Lower' @58 'Upper' @67 
'Sample' @76 'Lower' @85 'Upper'@94 'Sample' @103 'Lower' @112 'Upper' @121 
'Sample' @130 'Lower' @139 'Upper' / 
@1 FullLine; 
run; 
proc printto log=log; 
run; 
%mend ES_ANOVA; 
 
EXAMPLE OF MACRO ES_ANOVA 
Below is an example of PROC GLM code used in conjunction with the macro ES_ANOVA. In this example, the 
ANOVA model contained one dependent variable (score) and two independent variables (lesson and test). The 
ANOVA model specified the main effects for lesson and test and the interaction between lesson and test. Thus, the 
summary tables generated from ES_ANOVA will contain three rows of output – one for each of the effects. The 
summary tables generated from this example are provided in Figure 3. Separate tables are generated  for the Type I 
and Type III sums-of-squares, which are the default sums-of-squares in GLM (note that the macro provides these 
tables on two different pages in the output).   
 
proc glm; 

ods output ModelANOVA=model_stuff OverallANOVA=total_stuff; 
class Lesson Test; 
model Score = Lesson Test Lesson*Test; 

run; 
 
%es_anova (Model=model_stuff, Overall=total_stuff, Confid = .95); 
run; 
 
In terms of the macro language, in this example, the three user specified inputs for the three macro arguments, 
Model, Overall, and Confid ,were ‘model_stuff’, ‘total_stuff’, and ‘.95’, respectively. These inputs correspond to the 
names used in the PROC GLM code when creating the ModelANOVA ODS output data file, the OverallANOVA ODS 
output data file, and our desire to obtain 95% confidence intervals for each of the four effect sizes. The ODS names 
can be any name that conforms to the SAS syntax requirements and the confidence level can be any value greater 
than zero and less than 1.00. These three simple elements are the only inputs that a user needs to specify when 
using ES_ANOVA (note that the macro provides default values of the arguments).  
 
In Figure 3, one can easily review the effect sizes and corresponding confidence intervals, thus, allowing the 
researcher to make statements about each effect’s association with the dependent variable, score. For example, 
using data from the second table in Figure 3, based on the Type III sums-of-squares, roughly 21% of the total sample 
variance in the variable score is associated with the main effect of test ( 2

testη = .2118, 95% CI: 0.0755, 0.3513). When 
adjusted for sampling variability, the main effect of test accounts for roughly 20% of the variability in the outcome 
( 2

testω =0.2005, 95% CI: 0.0638, 0.341). Each of the aforementioned values appear in the Type III sums-of-squares 
summary table, under the headings labeled Eta-Square: Sample, Lower, Upper and Omega-Squared: Sample, Lower, 
Upper, respectively.  
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ANOVA Effect Sizes and Confidence Intervals Produced Using ES_ANOVA Macro 
Dependent Variable:          Score 
SS Type:                     Type 1 
Confidence Level:            95% 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
                                      Eta-Squared            Partial Eta-Squared            Omega-Squared            Partial Omega-Sq. 
                                ------------------------   ------------------------   ------------------------   ------------------------- 
Source        FValue   Prob>F   Sample   Lower    Upper    Sample   Lower    Upper    Sample   Lower    Upper    Sample   Lower    Upper 
------------------------------------------------------------------------------------------------------------------------------------------ 
Lesson        10.709   <.0001   0.1346   0.0197   0.2607   0.2112   0.0635   0.3451   0.1126        0   0.2408   0.1213   0.0397   0.3261 
Test          34.518   <.0001    0.217   0.0793   0.3565   0.3014    0.143   0.4396   0.2057   0.0676   0.3462   0.2094   0.1309   0.4296 
Lesson*Test   11.578   <.0001   0.1455   0.0252   0.2731   0.2245   0.0729   0.3585   0.1237   0.0017   0.2534   0.1321   0.0492   0.3397 
 
 
 
 
ANOVA Effect Sizes and Confidence Intervals Produced Using ES_ANOVA Macro 
Dependent Variable:          Score 
SS Type:                     Type 3 
Confidence Level:            95% 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
                                      Eta-Squared            Partial Eta-Squared            Omega-Squared            Partial Omega-Sq. 
                                ------------------------   ------------------------   ------------------------   ------------------------- 
Source        FValue   Prob>F   Sample   Lower    Upper    Sample   Lower    Upper    Sample   Lower    Upper    Sample   Lower    Upper 
------------------------------------------------------------------------------------------------------------------------------------------ 
Lesson         11.46   <.0001   0.1441   0.0244   0.2715   0.2227   0.0716   0.3567   0.1222   0.0009   0.2517   0.1307   0.0479   0.3379 
Test          33.688   <.0001   0.2118   0.0755   0.3513   0.2963   0.1387    0.435   0.2005   0.0638    0.341   0.2042   0.1265   0.4249 
Lesson*Test   11.578   <.0001   0.1455   0.0252   0.2731   0.2245   0.0729   0.3585   0.1237   0.0017   0.2534   0.1321   0.0492   0.3397 

 
 
Figure 3. Type I and Type III sums-of-squares summary tables generated from ES_ANOVA for a 2-way between subjects ANOVA model 



10 

CONCLUSION 
The macro ES_ANOVA is provided to facilitate the use of effect sizes associated with between-subjects analysis of 
variance models. Specifically, this macro computes point estimates and confidence intervals for eta-squared, partial 
eta-squared, omega-squared, and partial omega-squared. Confidence intervals for effect sizes are useful for the 
interpretation of sample estimates of effect size by providing information about the amount of sampling error expected 
in the obtained value of the effect size. The macro is easy to use, requiring only the specification of two ODS tables 
from PROC GLM and the desired level of confidence (by default, 95% confidence intervals are produced). Because 
the macro is written in Base SAS, it can be modified easily for other applications. For example, graphical displays of 
both the point and interval estimates of the effect sizes may be added or one-sided confidence intervals may be 
calculated. 
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