
1

Paper BB-01

%whatChanged: A Tool for the Well-Behaved Macro

Frank DiIorio, CodeCrafters, Inc., Philadelphia PA

The power and usefulness of macros is undeniable. Also above dispute is the ability of a poorly constructed macro to
introduce chaos in programs that use it. Many of these undesirable side effects can be prevented by following some
simple design and coding practices.

One of these practices, and the focus of this paper, is that the macro should produce only what is described in its
documentation. If, for example, it is supposed to create a dataset and a macro variable, then these items should be
the only changes to the SAS

®
 environment once the macro terminates. There are no built-in SAS tools that compare

“snapshots” of resources and settings. Not surprisingly, %whatChanged, the macro described in this paper,

addresses this need.

This paper very briefly discusses some principles of good macro design. It then describes the design, coding, and
use of %whatChanged. While discussion of the macro is useful in and of itself, the other goal of the paper is to give

the reader some insight and motivation to develop similar tools.

The paper is appropriate for anyone charged with developing, debugging or enhancing macros. A basic knowledge
of the macro language is assumed.

Introduction

Consider the following scenario. You want to identify variables in a dataset that have no non-missing values. You

review the tools in your company’s macro library and find %missVars. Its header documentation describes input and

output-related parameters. It also identifies the lone item that it creates: a SAS dataset specified by the macro’s OUT

parameter. After reading the documentation, you run the macro and print its output dataset.

%missVars(data=clin.ae, out=ae_miss, keep=usubjid)

proc print data=ae_miss;

 id usubjid;

 title "Variables in CLIN.AE that had all missing values";

run;

As expected, %missVars created dataset AE_MISS. You later discover that %missVars also created several

temporary datasets and created several global macro variables. In this program these artifacts were not problematic
(they didn’t throw off dataset counts or overwrite like-named variables). It is easy to see, though, that they could

easily have negative consequences. If, however, %missVars was a utility that was deeply nested in an application,

the potential for disruption and subsequent tedious debugging would increase dramatically.

Even this simple scenario suggests that any macro should adhere to a set of design, programming, and validation
best practices. This is vital to ensure that the tool is solid and reliable by design and not simply by chance. The best
practice that we focus on in this paper is that validation of a widely used, production-quality macro should test for the
presence of what was documented and for the absence of unintended outputs.

Keys to Good Design

While macro design is not the focus of this paper, it is both an important topic and relevant to the creation of

%whatChanged. The following items are taken from Building the Better Macro: Best Practices for the Design of

Reliable, Effective Tools (see “Contact,” below, for location).

 Know when a macro is and is not necessary. Code written as a macro can sometimes be replaced by CALL

EXECUTE, open-code use of %SYSFUNC, SQL-generated macro variables, BY-group processing or similar, more

transparent and easily maintained constructs.

 Use keyword parameters and values consistently. Parameter naming and values should be consistent within

a system of macros. Parameter values should be standardized (e.g., upper-cased) early in the program to

facilitate evaluation in %IF and similar statements.

 Use consistent program structure. Predictable program structure brings new (non-developer) programmers

up to speed more quickly than idiosyncratic construction. This consistency is particularly important during
debugging, when the speed of problem isolation is critical.

2

 Know when to redesign. If a macro becomes extremely large, filled with complex coding constructs and

numerous indirect variable references (the dread &&var, &&&var, etc.) consider taking a different, possibly

simpler approach.

 Emphasize user and between-program communication. Control of messages relevant for both the end user

and debugging programmer is essential. This can take various forms, among these: routine and error/warning
text written to the SAS Log, status variables and error logs.

 Take control of macro variable scope. Use of %LOCAL and %GLOBAL statements is simple, and removes any

ambiguity about which values are known to which macros. This is especially critical when macros use
specialized, single-purpose utilities.

 Implement diagnostic and debugging code. At any point in the life cycle, but especially during development,

it is helpful to have a means to control the amount of debugging and diagnostic output produced by the macro.

 Use built-in macro tools. Be aware of what built-in tools SAS has to offer, and be prepared to build the tools

you need.

Finally, we have the design features most relevant to this paper:

 Clearly document the macro. Headers and other comments are the programmer’s and user’s key to

understanding program logic. The header block should: describe the macro’s purpose; identify parameters;
present examples; note naming conventions; present examples of use; describe complex program logic; and
document revisions. Most relevant to this paper, the header should identify macro output: macro variables,
datasets, text files in varying, and the like.

 Produce only what was promised. Amplifying the previous point, the header contains the complete
enumeration of all items created by the macro. These items should be the only legacy of the macro’s execution.
Creating anything else gives the perception of sloppy coding, and raises the possibility of contamination of the
program that called the macro.

Why the Macro Is Needed

There are numerous macro-related functions, statements, and autocall macros available in the out-of-the-box version
of SAS software. In complex applications, however, these features are usually just the building blocks for
specialized, home-grown diagnostic tools. The macro developer must devote some time to creating utilities that help
ensure that the macro is performing correctly. With “only produce what was promised” in mind, let’s turn our attention
to the development of %whatChanged.

Consider this excerpt from the header of macro %AEsummary:

Output: Datasets AE_SUMM and AE_DETAIL

 Global macro variables NPAT, NPAT_NOAE, NPAT_AE

The macro programmer is promising – and the user is expecting – that when the macro terminates, the SAS session
will be changed by the addition of two datasets and three global macro variables. It is relatively easy for the
programmer to produce what was expected. What is also needed is a programmatic approach to verifying results, a
way to compare before and after “snapshots” of the SAS session.

In our example, the developer needs to ask several questions. What datasets and global macro variables were
defined before and after the macro was called? If the dataset existed prior to the macro call, was there a change in
the number of observations or variables? Most importantly, did these snapshots of the SAS session differ only by the
datasets and macro variables that were expected?

Let’s turn our attention to the macro’s design.

What Needs to be Done? Logic and Structure

Multiple Calls

Our before-and-after comparison requirement makes the macro’s coding and execution a bit different from most other
utilities. Rather than a single invocation, %whatChanged needs to be invoked twice:

%whatChanged Take “before” snapshot of SAS session

%macroToTest Run the macro being tested

%whatChanged Take “after” snapshot of SAS session, then compare to “before” snapshot

The first call to %whatChanged takes the “before” picture of the SAS session’s datasets and global macro variables.

The macro being tested executes, then %whatChanged is called again. This time it takes the “after” picture and

compares datasets and global macro variables. Let’s take a high-level look at what the macro processes and what is
required by each call.

3

First Call

Calling %whatChanged before the macro being tested places the following requirements on the developer:

 The macro should execute in open code. Test for this, and write a message and terminate if the user invoked it
incorrectly.

 Evaluate parameter ACTION. If upper-cased values is not START or END, write a message to the Log and

terminate.

 If ACTION=START, allocate LIBNAME _DELTA_.

 Create _DELTA_.DATASETS_PRE and _DELTA_.MACROVARS_PRE from DICTIONARY.TABLES and

DICTIONARY.MACROS, respectively.

Second Call

Calling %whatChanged after the macro being tested is a bit more involved:

 Repeat the open code test and ACTION evaluation described in “First Call,” above.

 If ACTION=END and LIBNAME _DELTA_ exists, then create _DELTA_.DATASETS_POST and

DELTA.MACROVARS_POST from DICTIONARY.TABLES and DICTIONARY.MACROS, respectively.

 In separate DATA steps, one for macros, another for datasets, merge the xxx_PRE and xxx_POST datasets.

 Report differences between the datasets. The report identifies new, deleted, or modified datasets and macro

variables. This requires a combination of using IN dataset options and, for observations in both pre and post,

variable-by-variable comparisons (comparing, for example, the Dictionary Table abstract’s NOBS variable in the

pre and post abstracts to see of the number of observations has changed).

 Clear LIBNAME _DELTA_.

This is a quick overview of the macro’s structure. The next section describes the “film” for the pre and post session
“snapshots.”

What Tools Are Required?

A Quick Review of Dictionary Tables

The Big Picture. With the simplified design of the previous section in mind, attention naturally turns to what, exactly,

is being used for the comparisons. How do you capture dataset names and characteristics, macro variables, and
other items of interest. You might, for example, want to search for TITLE, FOOTNOTE, and LIBNAME differences.
This, and much more information about the SAS session, is automatically stored and maintained in the SAS
Dictionary Tables. Here are some key features of the Tables:

 The Tables and a set of views in the SASHELP library are automatically created and populated whenever you

start an interactive or batch SAS program. No setting of system options or initialization is required.

 They are protected and read-only. You can’t deallocate them or change their structure.

 The contents of the Tables are influenced by what occurs in the SAS session. If you create an indexed dataset
with 20 variables, for example, one or more rows are added to the INDEXES table, a row is added to the TABLES

table, and 20 rows are added to the COLUMNS table.

 The Tables are accessible only from PROC SQL, using the LIBNAME DICTIONARY (yes, that’s a 10-character

LIBNAME). To access the Tables’ contents outside SQL, use a set of Views that are allocated in SASHELP. With

few exceptions (none of which are relevant for the purposes of this paper), there is a one-to-one correspondence
between Tables and Views.

 Discovering what, exactly, is in the Tables and Views is not a straightforward process, but is simplified somewhat
by SAS online help, and SAS conference papers. Also see the reference to the CodeCrafters, Inc. website in
“Contacts,” below.

 The Tables and Views are updated whenever a part of the SAS environment changes: if a dataset is created, a
row is added to the TABLES table, a row is added to the COLUMNS table for each variable in the datasets, and if

the dataset is indexed, the INDEXES table is updated.

The Focused Picture. Since %whatChanged tracks changes to macro variables and datasets, we will limit the

discussion to Tables and Views that contain information about these items.

4

The “Output” section of our test case macro said it would produce three global macro variables. In order to create
lists of what was present before and after a call to the macro, we need to capture rows from the MACROS table. Its

contents are described in Figure 1, below.

Figure 1: DICTIONARY.MACROS, SASHELP.VMACRO

Variable Type/Length Description

scope $9 Macro scope [GLOBAL|AUTOMATIC|macro name (if local)]

name $32 Macro variable name (upper-cased)

offset num Offset into macro variable value [0, 200, …]. Note that the beginning of a
value spanning observations may not always be stored with OFFSET=0.

value $200 Macro variable value (case and spacing are preserved)

Note the following about MACROS:

 Variable SCOPE can be used to select Global macro variables (value “GLOBAL”)

 The name of the variable is always upper-cased.

 Since the value of each macro variable is broken into 200-character pieces, variables whose values are longer
than 200 characters will be stored in more than one row. This is where the OFFSET variable comes into play.

Selecting OFFSET values of 0 ensures that the list of macro variables will be unique.

Next, let’s consider the dataset that was other item in the “Output” section of our test case macro. To create lists of
datasets present before and after a call to the macro, we need to capture rows from the TABLES table (Figure 2,

below). This is a considerably richer table than MACROS. As is the case with any of the Tables, it’s possible to go for

years without using a particular column. What is important here, as you are becoming familiar with this resource, is
simply to know that these items exist. That way, if there is occasion for their use you will be able to quickly identify
the table and column you need and put this session metadata to use.

Figure 2: DICTIONARY.TABLES, SASHELP.VTABLE

Variable

Type/
length

Description

Value for non-
native engine

libname $8 Library name (upper case)

memname $32 Member name (may be case-sensitive and include embedded
blanks for non-native engines).

memtype $8 Member type [DATA|VIEW]

memlabel $256 Dataset label blank

typemem $8 Dataset type (upper case) [blank|MSGFILE|ATTLIST|…]

crdate num Date created. Uses DATETIME format and informat. .

modate num Date modified. Uses DATETIME format and informat. .

nobs num Number of observations .

obslen num Observation length 0

nvar num Number of variables

protect $3 Password protection. Position 1: -|R, Position 2: -|W, Position 3: -
|A.

compress $8 Compression routine [NO|CHAR|BINARY] NO

encrypt $8 Encryption used? YES|NO NO

filesize num File size [>= 0] 0

npage num Number of allocated pages (>= 0) 0

pcompress num Percent compression (integer. Can be negative) .

reuse $3 Reuse space? [no|yes] no

bufsize num Buffer size 0

delobs num Number of deleted observations (>= 0) 0

indxtype $9 Type of indexes [blank|SIMPLE|COMPOSITE|BOTH]

datarep $32 Data representation

reqvector $24 Requirements vector. Uses $HEX format and informat.

nlobs num Number of logical observations [. if view, else >= 0] .

maxvar num Length of longest variable name 0

maxlabel num Length of longest variable label 0

maxgen num Maximum number of generations 0

gen num Generation number [., 0, 1, 2, …] .

attr $3 Dataset attributes

sortname $8 Name of collating sequence

sorttype $4 Sorting type S:sort verified, SR:sort used NODUPREC, SK: sort
used NODUPKEY

5

sortchar $8 Character set used in sort [ANSI ASCII]

datarepname $170 Data representation name

encoding $256 Data encoding (blank if view)

dbms_memtype $8 DBMS member type [VIEW|TABLE] Blank if not using DBMS
engine such as MDB, XLS.

For use with %whatChanged, note the following about TABLES:

 Variables LIBNAME, MEMNAME, and MEMTYPE uniquely identify a table. These are, in effect, the BY variables

that will be used when we compare our pre- and post-snapshot files.

 There are many attributes that %whatChanged could compare. Some of the more common ones are

modification date (MODATE), number of variables (NVAR) and number of observations (NOBS).

Other Tools

Dictionary Tables and Views are essential tools for %whatChanged and many other utility macros. Some familiarity

with other, less arcane and better-publicized features of the macro language is also helpful. The following table
identifies macro language features that are relevant for adhering to the “create only what was promised” theme being
developed in this paper. The table is brief, emphasizing how the macro feature can be applied rather than delving
into syntax specifics.

Feature Description Example
%local

%global

Control the scope of a macro variable Create output macro variables
%global freqs freqsN;

%let freqsN = -1;

Declare %DO loop index and other temporary

variables:
%local i j token;

%symdel Delete a macro variable, optionally
specifying the variable’s scope.

Delete a global macro variable created during
execution:
%symdel TMPn TMPlist;

%goto

%label

Branch to a labeled location in a
program.

Branch to common termination location if error
arises:
%if %sysfunc(exist(summary)) = 0 %then

%do;

 %put ERROR: can’t locate SUMMARY;

 %goto bottom;

... other statements …

%bottom: end of macro cleanup, messages

proc delete

proc datasets

Delete one or more datasets. proc delete data=SUMM1 TRANSPOSE;

run;

%sysfunc

%qSysfunc

Use system functions in %IF-%THEN-

%ELSE and assignment statements.

Save, reset, then restore an option:
%local obs;

%let obs = %sysfunc(getoption(obs));

options obs=max;

... other statements …

Restore OBS value in common termination
section
%bottom: options &obs.;

Coding the Macro

A look at the development process for tools like %whatChanged can be as interesting at the tool itself. Rather than

present the final (or, at least, Version 1) program, instead it is presented in the same steps that the macro developer
might follow. This may give the reader some insight into what tasks need to be addressed first. Program source for
all versions of the macro is available at the CodeCrafters, Inc. web site (see “Contacts,” below, for location).

Version 0.1: Bare Bones, Assume the Best

The simplest description of the macro is that it builds and compares lists of macro variables and datasets. The first
version is limited to this functionality. We assume that parameter ACTION had a valid value and that the temporary

library will be successfully allocated. Comments about the coding are in shaded text.

%macro whatChanged(action=);

 %let action = %upcase(&action.);

6

 %if &action. = START %then %do;

 Create a separate directory to use for storing datasets needed by the macro.

 %let path = %sysfunc(pathname(work))_&sysIndex._;

 We set the XWAIT option without considering its value prior to the macro.

 options noxwait;

 The MD command is Windows/DOS-specific.

 x "md ""&path.""";

 libname _delta_ "&path.";

 %end;

 Create suffix for non-merge/BY variable names.

 %if &action. = START %then %let suffix = pre;

 %else %let suffix = post;

 This section is run regardless of ACTION value.

 proc sql noprint;

 Simplified coding here for sake of brevity. It ignores the possibility that

 a macro variable’s change may occur after position 200, in an observation

 with OFFSET > 0.

 create table _delta_.macVars&suffix. as

 select name, value as value&suffix.

 from dictionary.macros

 where scope="GLOBAL" & offset=0

 order by name

 ;

 create table _delta_.dataSets&suffix. as

 Select items to compare that are important to you. Here, we chose # obs,

 # variables, and modification date.

 select libname, memname, memType,

 nobs as nobs&suffix., nVar as nvar&suffix.,

 modate as modate&suffix.

 from dictionary.tables

 Exclude the macro’s temporary directory (_DELTA_) and SASHELP.

 where libname notin ("SASHELP", "_DELTA_")

 order by libname, memname, memType

 ;

 quit;

 %if &action. = END %then %do;

 Merge the PRE/POST macro variable datasets and report differences.

 data _null_;

 merge _delta_.macvarsPre(in=_pre)

 delta.macvarsPost(in=_post)

 ;

 by name;

 length comment $20;

 if _pre & _post then do;

 if valuePre ^= valuePost then do;

 comment = 'Value changed';

 link print;

 end;

 end;

 if _pre & ^_post then do;

 comment = "Deleted";

 link print;

 end;

 if ^_pre & _post then do;

 comment = "Added";

 link print;

 end;

 return;

 print: put name comment;

 return;

 run;

 Merge the PRE/POST dataset extracts and report differences.

 data _null_;

7

 merge _delta_.datasetsPre(in=_pre)

 delta.datasetsPost(in=_post)

 ;

 by libname memname memType;

 length comment $40;

 if _pre & _post then do;

 if nVarPre ^= nVarPost then do;

 comment = '# of vars changed';

 link print;

 end;

 if nObsPre ^= nObsPost then do;

 comment = '# of obs changed';

 link print;

 end;

 if modatePre ^= modatePost then do;

 comment = 'Mod date changed';

 link print;

 end;

 end;

 if _pre & ^_post then do;

 comment = "Deleted";

 link print;

 end;

 if ^_pre & _post then do;

 comment = "Added";

 link print;

 end;

 return;

 print: put libname memname memType comment;

 return;

 run;

 Clean up after ourselves: clear the LIBNAME.

 libname _delta_ clear;

 %end;

%mend whatChanged;

Version 0.2: Trap Errors, Improve Output, Assume the Worst.

A macro that doesn’t check parameter values, leaves variable scope to chance, and ignores other good design
principles brings to mind is, as Samuel Johnson said, “the triumph of hope over experience.” In this version of the
macro, we make minor changes to functionality and add a significant amount of error trapping and messages. Again,
comments about the code are in shaded text.

%macro whatChanged(action=);

 If not called in open code, write a message and terminate.

 %if &sysprocname. NE %then %do;

 %put Must run in open code. Execution terminating.;

 %goto lastStmt;

 %end;

 Provide some user feedback.

 %put Begin WHATCHANGED. ACTION=&action.;

 %let action = %upcase(&action.);

 Ensure variables are local to the macro and thus will not overwrite like-named

 and un-scoped variables in the calling environment.

 %local bad i dataset;

 Initialization error trapping.

 Test for valid values of ACTION.

 %if %sysfunc(indexW(START END, &action.)) = 0 %then %do;

 %let bad = t; %put ACTION [&action.] must be START or END;

 %end;

 Call sequence error: ACTION is START but _DELTA_ already allocated.

 %if &action. = START & %sysfunc(libref(_DELTA_)) = 0 %then %do;

 %let bad = t; %put ACTION=START, but temporary library was already allocated;

 %end;

8

 Call sequence error: ACTION is END but _DELTA_ was not allocated.

 %if &action. = END & %sysfunc(libref(_DELTA_)) ^= 0 %then %do;

 %let bad = t; %put ACTION=END, but temporary library was not allocated;

 %end;

 If BAD was set to t by any test, write message and terminate.

 %if &bad. = t %then %do;

 %put Execution terminating for reason(s) noted above.;

 %goto bottom;

 %end;

 %if &action. = START %then %do;

 %let path = %sysfunc(pathname(work))_&sysIndex._;

 Rather than overwrite XWAIT setting, capture it, set to NOXWAIT, then restore the

 original value.

 %local xw;

 %let xw = %sysfunc(getoption(xwait));

 options noxwait;

 x "md ""&path.""";

 libname _delta_ "&path.";

 options &xw.;

 Don’t assume that the allocation was successful. If not, write message and terminate.

 %if %sysfunc(libref(_DELTA_)) ^= 0 %then %do;

 %put Could not create temporary library. Execution terminating.;

 %goto bottom;

 %end;

 %end;

 %local suffix;

 %if &action. = START %then %let suffix = pre;

 %else %let suffix = post;

 proc sql noprint;

 create table _delta_.macVars&suffix. as

 select name, value as value&suffix.

 from dictionary.macros

 where scope="GLOBAL" & offset=0

 order by name

 ;

 create table _delta_.dataSets&suffix. as

 select libname, memname, memType,

 nobs as nobs&suffix., nVar as nvar&suffix.,

 modate as modate&suffix.

 from dictionary.tables

 where libname notin ("SASHELP", "_DELTA_")

 order by libname, memname, memType

 ;

 quit;

 %if &action. = END %then %do;

 See if we have all the datasets needed for the reports. If not, write a message

 and terminate.

 %do i = 1 %to 4;

 %let dataset = %scan(MACVARSPRE MACVARSPOST

 DATASETSPRE DATASETSPOST, &i.);

 %if %sysfunc(exist(_delta_.&dataset.)) = 0 %then %do;

 %let bad = t; %put Could not locate dataset _DELTA_.&dataset.;

 %end;

 %end;

 %if &bad. = t %then %do;

 %put Execution terminating for reason(s) noted above.;

 %goto bottom;

 %end;

 data _null_;

 Make the Log messages a bit more informative. Write a header line, and if there

 are no discrepancies, say so.

 if _n_ = 1 then put "Compare Macro Variables" / ;

 if eof & _changed = 0 then put "*** No changes detected ***";

 merge _delta_.macvarsPre(in=_pre)

 delta.macvarsPost(in=_post)

9

 end=eof;

 by name;

 length comment $20;

 if _pre & _post then do;

 if valuePre ^= valuePost then do;

 comment = 'Value changed';

 link print;

 end;

 end;

 if _pre & ^_post then do;

 comment = "Deleted";

 link print;

 end;

 if ^_pre & _post then do;

 comment = "Added";

 link print;

 end;

 return;

 _changed is flag used by end of file processing.

 print: _changed + 1;

 put name comment;

 return;

 run;

 data _null_;

 Make the Log messages a bit more informative. Write a header line, and if there

 are no discrepancies, say so.

 if _n_ = 1 then put "Compare Datasets" / ;

 if eof & _changed = 0 then put "*** No changes detected ***";

 merge _delta_.datasetsPre(in=_pre)

 delta.datasetsPost(in=_post)

 end=eof;

 by libname memname memType;

 length comment $100;

 if _pre & _post then do;

 Improve on previous version’s messages. Rather than report “Value changed”,

 display the actual pre/post values.

 if nVarPre ^= nVarPost then do;

 comment = catX(' ', "# vars changed from",

 put(nVarPre,5.), "to",

 put(nVarPost, 5.)) ;

 link print;

 end;

 if nObsPre ^= nObsPost then do;

 comment = catX(' ', "# observations changed from",

 put(nObsPre,5.), "to",

 put(nObsPost, 5.)) ;

 link print;

 end;

 if modatePre ^= modatePost then do;

 comment = catX(' ', "Mod datechanged from",

 put(modatePre,dateTime16.), "to",

 put(modatePost, dateTime16.)) ;

 link print;

 end;

 end;

 if _pre & ^_post then do;

 comment = "Deleted";

 link print;

 end;

 if ^_pre & _post then do;

 comment = "Added";

 link print;

 end;

 return;

 print: _changed + 1;

 put libname memname memType comment;

 return;

 run;

10

 libname _delta_ clear;

 %end;

 %bottom is the termination point for both successful and problematic execution (note

 the use of %goto bottom when error condition was raised.

 All termination did here was provide some user feedback. In more complex applications,

 this section could include deletion of temporary datasets, resetting system options,

 clearing filenames, deleting macro variables, etc.

 %bottom: %put End WHATCHANGED;

%lastStmt is branched to if not run in open code.

%lastStmt: %mend whatChanged;

Version 1.0: It’s Not Ready Until You Have Documentation.

The previous version, while robust and functional, is conspicuously devoid of documentation. Since we placed so
much emphasis throughout the paper on the importance of documenting expected output, it is reasonable to say that
until %whatChanged itself has documentation, it isn’t complete. The complete program is shown below. Note that

while no run-time functionality has been added, the program does benefit from being well-documented. This
facilitates tasks such as debugging and making enhancements.

/*

 Name: whatChanged

Description: Identify changes to macro variables and datasets that

 occured between invocations of the macro

 Type: Support

 Inputs: Parameter (not case-sensitive)

 ACTION START (collect "before" information) or

 END (collect "after" information).

 REQUIRED. No default.

 Outputs: Messages to location identified as SAS Log

 Execution: Execute in open code

 Notes: Fail if any of the following are true:

 [1] ACTION is not START or END

 [2] ACTION=START but temporary library is already

 allocated.

 [3] ACTION=END but temporary library is not

 allocated.

 [4] Could not allocate temporary library

 [5] ACTION=END but one or more datasets required

 for report writing could not be located.

 History: Programmer Date Brief Description

 Frank DiIorio 2010-03-02 Initial program

*/

%macro whatChanged(action=);

 /*** If not running in open code write message and terminate ***/

 %if &sysprocname. NE %then %do;

 %put Must run in open code. Execution terminating.;

 %goto lastStmt;

 %end;

 %put Begin WHATCHANGED. ACTION=&action.;

 %local suffix bad i dataset xw;

 %let action = %upcase(&action.);

 /*** Error trapping ***/

 %if %sysfunc(indexW(START END, &action.)) = 0 %then %do;

 %let bad = t; %put ACTION [&action.] must be START or END;

 %end;

 %if &action. = START & %sysfunc(libref(_DELTA_)) = 0 %then %do;

 %let bad = t; %put ACTION=START, but temporary library was already allocated;

 %end;

11

 %if &action. = END & %sysfunc(libref(_DELTA_)) ^= 0 %then %do;

 %let bad = t; %put ACTION=END, but temporary library was not allocated;

 %end;

 %if &bad. = t %then %do;

 %put Execution terminating for reason(s) noted above.;

 %goto bottom;

 %end;

 /*** START-specific activity ***/

 %if &action. = START %then %do;

 /* Put temporary library in a location where we know user

 will have write access */

 %let path = %sysfunc(pathname(work))_&sysIndex._;

 /* Capture current value of XWAIT */

 %let xw = %sysfunc(getoption(xwait));

 options noxwait;

 x "md ""&path.""";

 options &xw.; /* Set to XWAIT to original value */

 libname _delta_ "&path.";

 %if %sysfunc(libref(_DELTA_)) ^= 0 %then %do;

 %put Could not create temporary library. Execution terminating.;

 %goto bottom;

 %end;

 %end;

 /*** This section done regardless of ACTION value ***/

 %if &action. = START %then %let suffix = pre;

 %else %let suffix = post;

 proc sql noprint;

 create table _delta_.macVars&suffix. as

 select name, value as value&suffix.

 from dictionary.macros

 where scope="GLOBAL" & offset=0

 order by name

 ;

 create table _delta_.dataSets&suffix. as

 select libname, memname, memType,

 nobs as nobs&suffix., nVar as nvar&suffix.,

 modate as modate&suffix.

 from dictionary.tables

 where libname notin ("SASHELP", "_DELTA_")

 order by libname, memname, memType

 ;

 quit;

 /*** END-specific activity ***/

 %if &action. = END %then %do;

 /* First, make sure we have all required datasets */

 %do i = 1 %to 4;

 %let dataset = %scan(MACVARSPRE MACVARSPOST

 DATASETSPRE DATASETSPOST, &i.);

 %if %sysfunc(exist(_delta_.&dataset.)) = 0 %then %do;

 %let bad = t;

 %put Could not locate dataset _DELTA_.&dataset.;

 %end;

 %end;

 %if &bad. = t %then %do;

 %put Execution terminating for reason(s) noted above.;

 %goto bottom;

 %end;

 /* Macro variable merge and report */

 data _null_;

 if _n_ = 1 then put "Compare Macro Variables" / ;

 if eof & _changed = 0 then put "*** No changes detected ***";

 merge _delta_.macvarsPre(in=_pre)

12

 delta.macvarsPost(in=_post)

 end=eof;

 by name;

 length comment $20;

 if _pre & _post then do;

 if valuePre ^= valuePost then do;

 comment = 'Value changed';

 link print;

 end;

 end;

 if _pre & ^_post then do;

 comment = "Deleted";

 link print;

 end;

 if ^_pre & _post then do;

 comment = "Added";

 link print;

 end;

 return;

 print: _changed + 1;

 put name comment;

 return;

 run;

 /* Datasets merge and report */

 data _null_;

 if _n_ = 1 then put "Compare Datasets" / ;

 if eof & _changed = 0 then put "*** No changes detected ***";

 merge _delta_.datasetsPre(in=_pre)

 delta.datasetsPost(in=_post)

 end=eof;

 by libname memname memType;

 length comment $100;

 if _pre & _post then do;

 if nVarPre ^= nVarPost then do;

 comment = catX(' ', "# vars changed from",

 put(nVarPre,5.), "to",

 put(nVarPost, 5.)) ;

 link print;

 end;

 if nObsPre ^= nObsPost then do;

 comment = catX(' ', "# observations changed from",

 put(nObsPre,5.), "to",

 put(nObsPost, 5.)) ;

 link print;

 end;

 if modatePre ^= modatePost then do;

 comment = catX(' ', "Mod datechanged from",

 put(modatePre,dateTime16.), "to",

 put(modatePost, dateTime16.)) ;

 link print;

 end;

 end;

 if _pre & ^_post then do;

 comment = "Deleted";

 link print;

 end;

 if ^_pre & _post then do;

 comment = "Added";

 link print;

 end;

 return;

 print: _changed + 1;

 put libname memname memType comment;

 return;

 run;

 /* Clean up after ourselves: deallocate temporary directory */

 libname _delta_ clear;

 %end;

13

 %bottom: %put End WHATCHANGED;

%lastStmt: %mend whatChanged;

Examples of Use

Recall the output description of %AEsummary from “Why the Macro Is Needed,” above:

Output: Datasets AE_SUMM and AE_DETAIL

 Global macro variables NPAT, NPAT_NOAE, NPAT_AE

If the header contains this documentation, then we can use %whatChanged to ensure that the only differences in the

global macro variable table and the list of datasets are, in fact, the creation of these dataset and macro variables.

Test Program 1: Identify Unwanted Items

During development of %AESUMMARY, attention was focused on the correct formation of output datasets and macro

variables. Once development nears completion, %whatChanged can confirm that %AESUMMARY did not produce any

“bonus” artifacts. The calling sequence is shown below:

%whatChanged(action=start)

%AEsummary(data=ae1, threshold=2, print=yes, obs=max)

%whatChanged(action=end)

An excerpt, below, from the SAS Log tells the developer that there is still some cleanup work to do. Macro variables

IDN and DSETCOUNT and dataset TRANSPOSE may have been needed for producing the expected items. Once

%AESUMMARY terminates, however, IDN, DSETCOUNT and TRANSPOSE represent problematic “leakage” that needs to

be addressed.

Compare Macro Variables

IDN Added

DSETCOUNT Added

NPAT Added

NPAT_NOAE Added

NPAT_AE Added

Compare Datasets

WORK AE_DETAIL DATA Added

WORK AE_SUMM DATA Added

WORK TRANSPOSE DATA Added

Test Program 2: Confirm Output is Correct

A variety of tools, some of which were described in “Other Tools,” above, can be used to eliminate the excess items
produced by %AESUMMARY:

 %SYMDEL can be used to delete global macro variables IDN and DSETCOUNT

 The scope of IDN and DSETCOUNT could be made local

 PROC DELETE could delete dataset TRANSPOSE

 %AESUMMARY could store datasets in a subdirectory below WORK, using a separate LIBNAME. This is similar to

the allocation method used by %whatChanged when ACTION=START.

Assuming these or other techniques were used to modify %AESUMMARY, we rerun the test case of the macro using

the same calling sequence as before:

%whatChanged(action=start)

%AEsummary(data=ae1, threshold=2, print=yes, obs=max)

%whatChanged(action=end)

To no one’s surprise, the Log messages reveal the addition of exactly what was expected:

Compare Macro Variables

NPAT Added

NPAT_NOAE Added

NPAT_AE Added

Compare Datasets

14

WORK AE_DETAIL DATA Added

WORK AE_SUMM DATA Added

Test Program 3: Get Unexpected Results

%whatChanged can also identify the lack of production of expected outputs. Suppose we run %AESUMMARY, this

time changing the THRESHOLD parameter value from 2 to 0:

%whatChanged(action=start)

%AEsummary(data=ae1, threshold=0, print=yes, obs=max)

%whatChanged(action=end)

The Log messages, shown below, don’t tell the developer “you’re missing dataset AE_DETAIL.” While it’s likely that

the omission was caught internally by %AESUMMARY diagnostics, the listing created by %whatChanged subtly notes

the problem as well.

Compare Macro Variables

NPAT Added

NPAT_NOAE Added

NPAT_AE Added

Compare Datasets

WORK AE_SUMM DATA Added

Comments

The purposes of this paper were to both describe a home-grown tool that supports good macro design and to
encourage the reader to think of similar tools that he/she might need. %whatChanged was motivated by a macro

“leakage” issue defeating the author’s debugging efforts for hours. Here, as with any well-used tool, usage suggests
enhancements for “Version Next.” Among these:

 Compare more items (titles/footnotes, dataset variable attributes, system options)

 Give the user control over what’s compared (any combination of macro variables, datasets, etc.)

 Clean up the output, maybe presenting results in a well-formatted PDF

 Save results in an output dataset.

Ways that %whatChanged can be enhanced are secondary to the more general theme of this paper: programmers

who want to create reliable tools should always consider the need for utilities that extend what SAS offers and be
willing to take the time to add to their developer toolbox. The toolbox has an indefinable “cool factor” and results in
more macros that are reliable, robust, and have a professional look and feel.

Contact

Contact the author if you have questions or comments: Frank@CodeCraftersInc.com

The CodeCrafters, Inc. web site has this paper, the PowerPoint slides used for the presentation, and all versions of

%whatChanged available for download. The site also has other articles and resources related to macro best

practices and using dictionary tables. Go to http://www.CodeCraftersInc.com.

Fine Print

And lest we forget: SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and
product names are trademarks of their respective companies.

mailto:Frank@CodeCraftersInc.com
http://www.codecraftersinc.com/

