
1

Paper PO-23

Using Dictionary Tables to Explore SAS® Datasets

Phillip Julian, Bank of America, Charlotte, NC

ABSTRACT
To create a report, you need requirements and data. Your hardest task may be finding the data and learning how to
use it properly. Two programs are presented here to aid your quest. One finds all of your SAS datasets, and the
other shows you what your datasets look like on the inside. SAS dictionary tables provide basic information about
the structure and contents of your data. The MEANS and SQL procedures profile the dataset, and show values and
statistics for any reporting column.

INTRODUCTION
I was writing a report on a specific column that belonged to several SAS datasets. To find the reporting datasets, I
searched the columns dictionary table in SAS. Then I generalized that solution because we may need to answer
similar requests for finding data and producing reports. We had no useful metadata documents, and no profiling
tools like SAS® Data Integration, Dataflux® dfPower® software, or JMP® software. So I created a profiling tool that
used only the Base SAS® language.

There are many good papers that cover all the basic facts about SAS dictionary tables. But few papers describe
sophisticated uses of SAS meta-information to solve tough problems like data discovery. This paper describes a
practical SAS solution that may guide your deeper dive into the data repository.

USES OF DATASET PROFILE INFORMATION
If you have any doubts about the correctness of your data, then you need to profile the data, learn its quirks, and
decide how you should use it. You may want to save that knowledge to help others understand how to use the data.
Knowledge about data is imperfect under these conditions:

 Datasets may exist outside of the data warehouse.

 Metadata documents may be missing, invalid, or incomplete.

 Dataset owners may not be available to provide advice on proper usage of the data.

 Keys may be unknown, and dataset joins may require guesswork and experimentation.

 Internal reorganizations, mergers, and acquisitions may create gaps in your data knowledge.

PRACTICAL APPLICATIONS OF DATASET PROFILE INFORMATION

These are actual applications of dataset profile information in my work:

 You want to analyze all the datasets that contain a particular column. Use the Columns spreadsheet from the
first program, Dataset_Explorer.sas, and find all SAS datasets that have that column. See Figure 2.

 You have an address column, but you want additional information from a foreign key in the dataset. Use the
Columns spreadsheet to find datasets with column names similar to any column in the dataset. See Figure 3.

 You want to update the data repository and add a column to all campaign datasets. Use the Libnames file,
created by Dataset_Explorer.sas, and make SAS libnames for all your datasets. Then use SAS dictionary
tables to create the SAS statements that will add a new column to the datasets.

 You need to plan some data analysis, but you don’t know which columns have a a sufficient number of non-
missing analysis variables. Create a dataset profile using the second program, Dataset_Profiler.sas, which
counts non-missing and unique values for every column. See Figure 4.

Here are some other possible uses of dataset profiles:

 Profile datasets over time, and compare profiles to find added, deleted, or changed columns.

 Compare detailed column profiles to see whether variables in different datasets may contain similar data.

 Use dataset ownership from Dataset_Explorer.sas to assign responsibility, and ask dataset owners to
document the proper usage of the data.

 Use owner information and LDAP to assign responsibility to the department of the dataset owner. Then
create and publish departmental measures for active ownership and proper dataset documentation.

 Use the dataset documentation to create meaningful labels for all variables. In that way, the SAS dataset
documents itself and describes how to use its data. Good examples of this practice are the datasets supplied
by SAS Institute. You can learn how to use the data by reading the column labels.

 With good SAS labels, you can use Proc Print to create an excellent data dictionary. This was done at
GlaxoSmithKline for their PRx data warehouse, and a documentation specialist maintained the labels. Note
that label maintenance is quick and easy to do using PROC DATASETS with the MODIFY statement.

2

THE SAS DICTIONARY DEFINES THE ARCHITECTURE
The SAS dictionary contains a wealth of information about SAS itself and about every customization or definition that
you have created. The SAS System has a self-defining data architecture like a relational database. One table
defines all of the dictionary tables, and each of those tables defines all of the SAS objects and their current
instances. The master table in SAS is the Dictionary.Dictionaries table.

This master dictionary defines the dictionary tables for each SAS object, such as options, formats, ODS styles,
macros, catalogs, libnames, and datasets. All such information is metadata, or data about the data.

To view the definitions of all of your SAS dictionary tables, you can submit this code:
proc sql noprint;

 %*-- Create Describe commands for each table in the Master Dictionary. --;

 select distinct 'describe table ' || compress('DICTIONARY.' || memname)

 into :Desc_Dictionary_Tables

 separated by "; "

 from Dictionary.Dictionaries

 order by memname;

 %*-- Print the description for each table in the Master Dictionary. --;

 &Desc_Dictionary_Tables;

quit;

For example, these are some well-labeled dictionary tables in my local SAS System:

Member Name Dataset Label

CATALOGS Catalogs and catalog-specific information

CHECK_CONSTRAINTS Check constraints

COLUMNS Columns from every table

CONSTRAINT_COLUMN_USAGE Constraint column usage

CONSTRAINT_TABLE_USAGE Constraint table usage

DICTIONARIES DICTIONARY tables and their columns

ENGINES Available engines

EXTFILES Files defined in FILENAME statements, or implicitly

FORMATS Available formats

GOPTIONS SAS/Graph options

 Figure 1. Some Dictionary Tables in the SAS System

EXAMPLE USES OF THE COLUMNS SPREADSHEET
The Columns spreadsheet looks like a stripped down PROC CONTENTS listing. It contains information on all
columns of all SAS datasets in your system. After you open the CSV file, and save the data as an Excel 2007+
workbook, you can filter the columns to find your analysis datasets. This example shows the results of Excel filtering
on name to show any column that contains the string, curr_rate. The Directory column shows the location of the
dataset, and memname shows the SAS dataset name. See Figure 2.

The next example demonstrates looking for a foreign key to get more information about your data. The name
column was filtered for any string that contained LPO. The SAS dataset, WFF_75MR, was eventually used for the
analysis, after looking up the dataset owner and confirming proper usage of the data. See Figure 3.

3

Figure 2. The Columns Spreadsheet – Filtered on name contains curr_rate

Figure 3. The Columns Spreadsheet – Filtered on name contains LPO

4

THE DATASET EXPLORER PROGRAM
Dataset_Explorer.sas provides information about all SAS datasets in a directory tree. The SAS program performs
these tasks:

1. Find all SAS datasets in the directory tree, and also get the dataset ownership and permissions.

2. Create SAS libnames for every directory that contains any SAS datasets.

3. Query the SAS dictionary tables for information on all tables and all columns, using these tables:

a. Dictionary.Tables, which contains information on all SAS datasets.

b. Dictionary.Columns, which contains information on all SAS variables.

4. Create Excel and CVS reports that can be filtered and searched for relevant SAS datasets and variables.

The reports are automatically date tagged. If today is June 30, 2010, then the two reports would be:

1. Dataset_Explorer_20100630.xls – an Excel workbook with information on all SAS datasets and their file
permissions.

2. Dataset_Explorer Columns_20100630.xls – a CSV file with information on all SAS variables. Figures 2
and 3 show what the CSV file looks like after being converted to Excel.

CAVEATS ABOUT THE SAS PROGRAM ENVIRONMENT

The SAS program was written for PC SAS. The SAS data repository is on UNIX, and remote access is by
SAS/CONNECT®. The code for remote UNIX is between the RSUBMIT and ENDRSUBMIT statements.

If you are not using SAS/CONNECT, then you would omit the RSUBMIT and ENDRSUBMIT statements, as well as
the %syslput macros. If your SAS repository is not on UNIX, then you would need an equivalent command to search
a directory for all SAS datasets.

HOW THE PROGRAM WORKS

At the top of the program, two definitions control how the program works. Set these to appropriate values for your
system:

/*-- Start at this UNIX tree --*/

%let UNIX_Tree = /cart/dart;

filename DSNs PIPE

 "cd &UNIX_Tree; /usr/bin/find &My_Dirs -name ""*.sas7bdat"" -exec ls -l {} \;" ;

The %let defines the directory tree to search. The DSNs filename opens a UNIX pipe that searches for any SAS
dataseet (*.sas7bdat) in the directories (&My_Dirs, which is a subset of all directories). For every SAS dataset that

is found, a full listing (ls –l) is produced, so that ownership and permissions can be captured. The result of those
commands go to a PIPE, which is read by a SAS data step. If you need further details, the complete program is well
commented and available for download.

THE DATASET PROFILER PROGRAM
Dataset_Profiler.sas is a much more complex program than the previous one. It was developed for the same SAS
environment, and uses more tricks to process the data. The Excel spreadsheet is tagged by a constant inside the
program, and its name is Dataset Profiler_CH.xls.

The following explanations may be easier to follow if you see the final results of a heavily filtered excerpt in Figure 4.

This program profiles any SAS dataset, and shows values and statistics for all the report columns in the dataset. A
report column is defined as any column that has fewer than 300 unique values, but you may want to adjust that
number for your own work. The profile analysis is performed using only 2 passes of the dataset:

1. PROC SQL counts the number of rows, the number of missing values per column, and the number of
unique values per column.

2. PROC MEANS summarizes the reporting columns, and produces a wide range of statistics for each unique
value of each reporting column.

3. Figure 4 shows an excerpt from a dataset profile report. Column A has the name of the column, column B
has the values for that column, and the other columns are statistics from the PROC MEANS output dataset.
Note that all the possible column values are shown for the offer_type and offer_pct columns, along with
statistics on each value of those columns. The autolabel option names the columns based upon the
statistic, which is N, a count of non-missing values. For example, refi_payment_ben_flag has non-missing
values only when offer_type equals “ “ or “P”, in which case it has 55,876 and 55,295 respectively.

5

Figure 4. The Dataset Profiler Spreadsheet – a Heavily Filtered excerpt

HOW THE PROGRAM WORKS

Several programming tricks are used in this program, and they will be covered from top to bottom. Please ignore the
references to REFI; the program was originally developed for that type of analysis.

The first pass of the data uses SQL in a two-step process. In the first step, the count variable query is created from
the dictionary table for the analysis dataset:

/*--*/

/*-- Look for various possible key columns -----------------------------------*/

/*--*/

%let Count_All_Vars =;

proc sql noprint stimer;

 %*-- Count non-missing and unique rows in the dataset. --------------------;

 %*-- Prepare the SQL statements to perform the counts. --------------------;

 %*-- Handle issue where SAS variable name would be longer than 32 chars ---;

 select "count(" || strip(Name) || ") as N_" ||

 substr(left(Name),1,min(29, length(strip(Name)))) ||

 ", count(distinct " || strip(Name) || ") as ND_" ||

 substr(left(Name),1,min(29, length(strip(Name))))

 into :Count_All_Vars separated by ", "

 from dictionary.columns

 where libname = upcase("&Refi_Libname") and memname = upcase("&Refi_DSN");

 %put Count_All_Vars has &sqlobs rows;

quit;

In the second step, the query selection is executed by PROC SQL:
/*--*

 * Run this on the remote because lots of network traffic occurs here.

 --/

%syslput Check_Keys = &Check_Keys;

%syslput Count_All_Vars = &Count_All_Vars;

%syslput Means_DSN = &Refi_Libname2..&Refi_DSN;

rsubmit; /*$$$*/

proc sql noprint stimer;

 %*-- Perform the dataset counts prepared above. --;

 create table key_values_0 as

 select count(*) as All_Rows, &Count_All_Vars

 from &Means_DSN;

 %put Dataset has &sqlobs rows;

quit;

endrsubmit; /*$$$*/

6

You should know one SAS paradigm when reading my code. I use CARDS4 as a SAS comment statement because
it skips over everything but 4 semi-columns in a row. In the code below, &Check_Keys skips SAS code up to the
semi-colon line when it equals CARDS4, but executes the SAS code when &Check_Keys is blank:

/*-- If &Check_Keys ^= cards4, then the next SQL query runs --*/

data _null_;

 &Check_Keys;

run;

/* … … … whatever code you like to be here … … … */

;;

The previous SQL query returns a single row of data about missing and unique counts. That data is transposed and
used to create all the other basic counts for each column. Then a determination is made whether a column is a
reporting column by this code:

 /*--*

 * This criteria decides which variables get detailed statistics.

 * The threshholds of 0.1 and 300 may need tweaking, depending on

 * your data.

 --/

 if (Unique_Pct_All <= 0.1 and Unique < 300 and Count ^= 0) then

 Stats = "Y";

 output;

Further manipulation is performed on the list of reporting variables. The only important criteria for selection should
be the code above, since both alpha and non-continuous numeric variables can be used as class variables for
PROC MEANS. The variables lists for MEANS are produced by SQL, and these are the PROC statements:

rsubmit; /*$$$*/

/*-- Date formats cause some issues with some stats: TBF later --*/

proc means data=&Means_DSN &Mean_Drop_Num_Stmt missing noprint;

 class &CH_Vars;

 types &CH_Vars;

 output out=&Means_Output N= NMiss= max= min= mean= std= / autoname;

run;

proc download data=&Means_Output; run;

endrsubmit; /*$$$*/

The output data from the MEANS procedure is a sparse matrix because of the types clause, which limits the output
to summary statistics on the variables by themselves. The statistic columns are to the right of the _type_ column,
and all the columns before _type_ have only one column with non-missing data.

We want something like Figure 4, where the column name is on the left, then a specific value for that column, and
finally all the statistics for that column value. Lots of computations are done to process the dataset so we can use
the coalesce SQL function to get the desired results:

/*-- Process the Means dataset, and produce the final statistics add ------*/

proc sql noprint;

 %*-- Squish the leading columns that occur before the _type_ column --;

 create table Refi_DSN_Anly3 as

 select coalesce(&Coalesce_List) as Values format=$62.,

 &Coalesce_After, Column_Number

 from Refi_DSN_Anly2;

 %put Dataset has &sqlobs rows;

quit;

The %put in the SQL code is a useful diagnostic to count the rows you select and make sure that you get correct
results. There is a bit more processing and merging before the Excel reports are produced.

You will need some creativity when using the Excel reports. You should hide and filter columns to display what you
looks interesting. You may want to print the results to guide your report development. I found these methods useful
in creating or enhancing reports. Time was saved because I could see the data and the range of values for each
column. I used the statistics to evaluate whether I had good enough data to create a report. Instead of spending my
time running custom queries, I just browsed and selected what I liked.

7

CONCLUSION
These two SAS programs provided a great starting point for analytical reporting. They have been used in a real work
environment to solve real problems. I believe this tool has many other uses in data quality, data audits, and data
governance. The results give you a window into your datasets, and use minimal system resources.

Like any new program, a lot will be learned as these programs get into the field and solve real business problems. I
am interested in your results and your suggestions. Please let me know what you think.

ACKNOWLEDGMENTS
Thanks to Brent and Jessy for letting me spend a little time on this project.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Phillip Julian

Bank of America

101 S. Tryon St.

Charlotte, NC 28255

(980) 387-0507

julianp@acm.org

www.acm.org/~julianp

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.acm.org/~julianp

/*--*
 * Find all SAS table names on the UNIX remote host
 --
 *
 * See my paper, "Using Dictionary Tables to Explore SAS Datasets", given at
 * the Charlotte SAS Users Group on February 26, 2010.
 *
 * All rights reserved by the author, Phillip Julian.
 *
 * Phillip Julian
 * Certified SAS Advanced Programmer for SAS 9
 * February 26, 2010
 * julianp@acm.org
 --/

/*-- Define the program and its location -------------------------------------*/
%let Pgm_Path = c:\Documents and Settings\x820700\My Documents\SAS - TMT;
%let Pgm = Dataset_Explorer;

/*-- Create a date tag for the data and output files --*/
data _null_;
 call symput ('Date_Tag', put(today(), yymmddn8.));
run;
%put Date Tag is &Date_Tag;
%let XLS_File = &Pgm_Path\&Pgm._&Date_Tag..xls;
%syslput Date_Tag = &Date_Tag;

options noxwait; /*-- For DOS to move on!! --*/

/*--*/
rsubmit; /*---*/
/*--*/

/*-- Various listings of directories under /cart/dart ------------------------*/

%let All_Dirs=2008 2009 FDM IXI MAP_Maint PA PD PortSummary SJB adhoc analysis
 bank_refi_lead bova campaigns2010 contact_hist cosi cpidata data_repository
 deb gm hamp ldg_tw_home loan_mod lost+found mod_time_analysis
 modeling_files mortxs non_resp non_responder pension pge refi report
 reporting ricktemp short_sale targ_mkt_files temp waterfall;

/*-- These 2 defines add up to the defininition above. -----------------------*/
/*-- These directories were LEFT OUT of the analysis list. -------------------*/
%let All_Dirs_Left_Out = 2008 2009 DIRT FDM PortSummary adhoc bova bpowell deb
 lost+found ricktemp temp;
/*-- These directories were INCLUDED in the analysis list. -------------------*/
%let My_Dirs=FDM IXI MAP_Maint PA PD SJB analysis bank_refi_lead campaigns2009
 campaigns2010 contact_hist cosi cpidata data_repository gm hamp ldg_tw_home
 loan_mod mod_time_analysis modeling_files mortxs non_resp non_responder
 pension pge phase refi report reporting short_sale targ_mkt_files tmt
 waterfall;

/*--*
 * Note that you Should check whether new directories were added to this list,
 * because directory contents change over time. This task can be accomplished
 * easily:
 *
 * 1. Use UNIX pipes that create a SAS dataset of the current directories
 * 2. Use Proc SQL to find the set difference between the current
 * directories and SAS_Directories, matching on this:
 * compress(&UNIX_Tree/Current_Directory) = Directory
 *
 --/

/*-- Start at this UNIX tree --*/
%let UNIX_Tree = /cart/dart;

/*-- Check the directory list for any updates --*/
x "cd &UNIX_Tree; ls -l | grep ^d";

/*-- PIPE to find all SAS datasets in the directory trees in the list --------*/

/*-- Note that the long character string "&My_Dirs" may cause a SAS Warning --*/
/*-- A better pipe would be this:
 find . -name "*.sas7bdat" -exec ls -l {} \;

 Output looks like this:

-rwxrwxrwx 1 a506570 cart 1011294208 Oct 21 2008 ./cpidata/cpi_082008.sas7bdat
-rwxrwxrwx 1 a506570 cart 1010442240 Oct 21 2008 ./cpidata/cpi_072008.sas7bdat
 --/
filename DSNs PIPE
 "cd &UNIX_Tree; /usr/bin/find &My_Dirs -name ""*.sas7bdat"" -exec ls -l {} \;" ;
/* "cd &UNIX_Tree; /usr/bin/find &My_Dirs -name ""*.sas7bdat"" -print"; */

/*--*/
/*-- Read the raw file ---*/
/*--*/

/*--*/
/*-- Read and disect the list of SAS datasets --------------------------------*/
/*--*/
data SAS_Datasets;
 /*-- Input the UNIX pipe command, defined above --*/
 infile DSNs end=done;
 /*-- At first, use an arbitrarily long Path name to get ALL the data --*/
 length Path_Name $ 1500 Permissions $ 10 Owner Group $ 12;
 /*-- This next variable determines the maximum length of Path_Name --*/
 retain maxlen 0;
 drop maxlen Overall_Len;

 /*-- Read the PIPE --*/
 input;
 Path_Name = _infile_;

 /*-- Delete names with errors ... error cause is unknown --*/
 if ((scan(Path_Name, 1, ' ') = "find:") or
 (scan(Path_Name, 1, ' ') = ":"))
 then delete;
 else do;
 /*-- Get the other variables from the "ls -1" command --*/
 Permissions = scan(_infile_, 1, ' ');
 Owner = scan(_infile_, 3, ' ');
 Group = scan(_infile_, 4, ' ');
 Path_Name = scan(_infile_, 9, ' ');
 end;

 /*-- Check whether the current Path_Name is the longest one --*/
 if (maxlen < length(strip(Path_Name))) then
 maxlen = length(strip(Path_Name));
 /*-- When the PIPE is finished ... --*/
 if done then do;
 /*-- Add the length of the TREE name to the Path length --*/
 Overall_Len = maxlen + length("&UNIX_tree");
 /*-- Save the maximum length in a global MACRO variable --*/
 call symput('MAX_Path_Len', put(Overall_Len,4.));
 end;
run;
/*-- SAS trick to left justify the macro variable --*/
%let MAX_Path_Len = &MAX_Path_Len;
%put Maximum Path Length is &MAX_Path_Len;

/*--*/
/*-- Process the results of the UNIX find command --*/
/*--*/
data SAS_Datasets;
 /*-- Shorten the Path length BEFORE doing the SET --*/
 attrib Path_Name length=$&MAX_Path_Len format=$&MAX_Path_Len..
 informat=$&MAX_Path_Len..;
 set SAS_Datasets end=done;
 /*-- For now, use an arbitrarily long SAS dataset name for MemName --*/
 length Directory $ &MAX_Path_Len MemName $ 500;

 /*-- Determine the maximum length of MemName --*/
 retain maxlen 0;
 drop i j maxlen;

 /*-- Process each word of the pathname until you reach the SAS dataset --*/
 i = 1;
 MemName = scan(Path_Name, i, '/');
 do while(index(lowcase(MemName), 'sas7bdat') = 0);
 i = i + 1;
 MemName = scan(Path_Name, i, '/');
 /*-- Some names are blank for some reason: exit if that occurs. --*/
 if (MemName = " ") then leave;
 /*-- Some names have other problems ... print them to the LOG. --*/
 if i > 10 then do;
 put "Loop > 10: " Path_Name= MemName= ;
 leave;
 end;
 end;

 /*--*
 * At this point, MemName should contain the SAS dataset name.
 *
 * The Directory name should be everything before MemName, in this form:
 * Directory/MemName.sas7bdat
 * The UNIX pathname -- used in 'find' -- completes the actual pathname:
 * UNIX_Tree/Directory/MemName.sas7bdat
 *
 * Note that MemName must be STRIPPED for Index to get the proper Length.
 --/
 j = index(Path_Name, strip(MemName)) - 2;
 /*-- Some names have problems, like internal spaces. Just print to LOG. --*/
 if (j < 0) then do;
 put "Tricky name: " Path_Name= MemName= _N_= i= j= ;
 delete;
 end;
 /*-- The other names are OK --*/
 else do;
 /*-- Inline DEBUG code --> put _N_= i= j= MemName=; --*/
 Directory = "&UNIX_Tree./" || substr(Path_Name, 1, j);
 end;

 /*-- Check whether the current Path_Name is the longest one --*/
 if (maxlen < length(strip(MemName))) then
 maxlen = length(strip(MemName));
 /*-- When finished reading the SAS dataset ... --*/
 if done then do;
 /*-- Save the maximum length in a global MACRO variable --*/
 call symput('MAX_Path_Len2', put(maxlen,4.));
 /*-- Write the current observation to the SAS dataset --*/
 if not (MemName = " " and Path_Name = " ") then output;
 /*-- Add a new observation to get SAS datasets in the UNIX Tree --*/
 Directory = "&UNIX_Tree.";
 Path_Name = " ";
 MemName = " ";
 end;
 /*-- "output" is required here, because of the above "output" statement --*/
 if not (MemName = " " and Path_Name = " ") then output;
run;
/*-- SAS trick to left justify the macro variable --*/
%let MAX_Path_Len2 = &MAX_Path_Len2;
%put Max Length2 is &MAX_Path_Len2;

/*--*/
/*-- Set the path length, and order the variables --*/
/*-- This finishes processing of SAS_Datasets ------*/
/*--*/
data SAS_Datasets;
 /*-- Order the variables --*/
 label MemName= Directory= Path_Name=;
 /*-- Shorten the SAS dataset length BEFORE doing the SET --*/
 attrib MemName length=$&MAX_Path_Len2 format=$&MAX_Path_Len2..

 informat=$&MAX_Path_Len2..;
 set SAS_Datasets;
run;

proc sort data=SAS_Datasets;
 by Directory MemName;
run;

/*--*/
/*-- Unique directories become libnames to search in the SAS Dictionary ------*/
/*--*/

/*-- Get the unique list of Directories --*/
proc sort data=SAS_Datasets (drop=MemName Path_Name Owner Group Permissions)
 out=SAS_Directories nodupkey;
 by Directory;
run;
/*-- Get the unique list of SAS Dataset information --*/
proc sort data=SAS_Datasets (drop=Path_Name)
 out=SAS_Directories_Mem_1 nodupkey;
 by Directory Memname;
run;

/*-- Use the list of directories to create SAS libname's --*/
data SAS_Directories;
 set SAS_Directories;
 length Libref $ 200 Library $ 20;
 file "All_Libnames_&Date_Tag..sas";

 Library = compress("Dir" || put(_N_, 5.));
 Libref = "libname " || trim(Library) || ' "' || strip(Directory) || '";';
 put libref ;
 output SAS_Directories;

 file "All_Libnames_Clear_&Date_Tag..sas";
 Libref = "libname " || trim(Library) || ' clear;';
 put libref ;
run;

/*-- Get the libname for each directory, for use later in a join --*/
proc sql noprint;
 create table SAS_Directories_Mem as
 select b.Library, a.*
 from SAS_Directories_Mem_1 a, SAS_Directories b
 where a.Directory = b.Directory;
quit;

/*--*
 * Assign Libnames to all directories that have SAS datasets.
 *
 * Once SAS libnames are assigned, the SAS Dictionary tables can be queried
 * for information about the SAS datasets and SAS libraries.
 --/
%include "All_Libnames_&Date_Tag..sas";

/*--*
 * The following SQL queries may cause I/O errors from damaged SAS datasets.
 * Such errors will not affect the results, but you may want to notify your
 * system administrator about the problem.
 *
 * Dictionary.Columns contains information about variables in SAS datasets.
 * Dictionary.Tables contains information about the SAS datasets themselves.
 *
 * Note that all SAS datasets are scanned, and not just those with type=DATA.
 --/

proc sql stimer noprint;
 %*-- Get information about the variables in each SAS dataset --------------;
 %*-- For true alpha sorting, the character case must be specified ---------;
 %*-- 'Order by Name' gives different results than 'propcase(Name)' --------;
 create table All_UNIX_Contents as

 select a.libname, b.Directory, a.MemName,
 Name, Type, Length, Format, Informat, Label, VarNum
 from dictionary.columns a, SAS_Directories b
 where libname = upcase(b.Library)
 order by a.libname, a.MemName, propcase(Name);

 %*-- Needed to create two SQL steps to make this work, since --------------;
 %*-- system errors occured, ---;

 %*-- Get date stamps and sizes, etc., for each SAS dataset ----------------;
 create table All_UNIX_Libnames_1 as
 select libname, memname, CrDate, MoDate, nobs, nvar, filesize
 from dictionary.tables
 order by libname, memname;

 %*-- Get date stamps and sizes, etc., for each SAS dataset ----------------;
 create table All_UNIX_Libnames as
 select a.libname, b.Directory, a.memname,
 a.CrDate, a.MoDate, a.nobs, a.nvar, a.filesize,
 b.Owner, b.Group, b.Permissions
 from All_UNIX_Libnames_1 a, SAS_Directories_Mem b
 where upcase(a.libname) = upcase(b.Library) and
 upcase(a.memname) = upcase(scan(b.memname, 1, '.'))
 order by a.libname, a.memname;
quit;

/*-- In this case, the SAS merge is much easier to write than SQL code --*/
data All_UNIX_Contents2;
 merge All_UNIX_Contents (in=OK)
 All_UNIX_Libnames (keep=LibName MemName MoDate);
 by LibName MemName;
 if OK;
run;

/*-- Reorder datasets for greater usability --*/
proc sort data=All_UNIX_Contents;
 by Directory MemName Name;
run;
proc sort data=All_UNIX_Libnames;
 by LibName MemName;
run;

/*-- Clear the Libnames, since we have the information we need --*/
%include "All_Libnames_Clear_&Date_Tag..sas";

/*-- Save som ien e datasets on the cl t host --*/
proc download data=SAS_Datasets; run;
proc download data=SAS_Directories; run;
proc download data=All_UNIX_Contents; run;
proc download data=All_UNIX_Libnames; run;
proc download data=All_UNIX_Contents2; run;

/*--*/
endrsubmit; /*--*/
/*--*/

/*-- Unique directories, which will become libnames to search ----------------*/

/*-- Get the SAS?CONNECT server name to setup remote libnames ----------------*/
proc sql noprint;
 %*-- SETTING has a length of 1024, so we need to set it shorter in SAS ----;
 select trim(setting) length=80 into :Conn_Server
 from dictionary.options
 where optname = "CONNECTREMOTE";
quit;
%let Conn_Server = &Conn_Server;
%put SAS/CONNECT server = &Conn_Server;

/*-- Create a list of remote and local libnames ... for easier browsing ------*/
data SAS_Directories_Rem;

 set SAS_Directories;
 drop Libref;
 length Rem_Libref $ 200;

 file "&Pgm_Path\All_Libnames_&Date_Tag..sas";
 put Libref;

 file "&Pgm_Path\All_&Conn_Server._Libnames_&Date_Tag..sas";
 Rem_Libref = "libname " || compress("RDir" || put(_N_, 5.)) || ' "' ||
 strip(Directory) || """ server=&Conn_Server;" ;
 put Rem_Libref;
 output SAS_Directories_Rem;

 file "&Pgm_Path\All_&Conn_Server._Libnames_Clear_&Date_Tag..sas";
 Rem_Libref = "libname " || compress("RDir" || put(_N_, 5.)) || ' clear;' ;
 put Rem_Libref;
run;

/*-- Save datasets for offline analysis --------------------------------------*/
PROC EXPORT DATA=All_UNIX_Libnames
 OUTFILE= "&XLS_File"
 DBMS=EXCEL2000 REPLACE;
 SHEET="Datasets";
RUN;
PROC EXPORT DATA=SAS_Directories
 OUTFILE= "&XLS_File"
 DBMS=EXCEL2000 REPLACE;
 SHEET="Libname Paths";
RUN;

/*-- All of the data is output to CSV, which can be read directy with --*/
/*-- by MS Access and MS Excel 2007 -------------------------------------*/
PROC EXPORT DATA=All_UNIX_Contents2
 OUTFILE= "&Pgm_Path\&Pgm. Columns &Date_Tag..csv"
 DBMS=CSV REPLACE;
RUN;

/*--*/
/*-- I N I T I A L I Z E ---*/
/*--*/

/*-- I N I T I A L I Z E --------- The CHOSEN option from the list above -----*/
/*-- Contact History ---*/
%let Refi_Libname = R_ch;
%let Refi_Libname2 = ch;
%let Lib2_Path = /cart/dart/contact_hist;
%let Refi_DSN = Map_Chist;
%let Tag = _CH;

%syslput Refi_Libname2 = &Refi_Libname2;
%syslput Lib2_Path = %bquote(&Lib2_Path);
rsubmit; /*$$$*/
libname ds_Prd "/cart/dart/mod_time_analysis";
libname ds "/cart/dart/mod_time_analysis/dev";
libname &Refi_Libname2 "&Lib2_Path";
endrsubmit; /*$$*/
libname &Refi_Libname slibref=&Refi_Libname2 server=sigma;
libname R_ds_Prd slibref=ds_Prd server=sigma;

/*-- Special check for keys Loan_No and Contact_Date --*/
%let Check_Keys = cards4; /*-- No check --*/
%let Check_Keys = ; /*-- Check --*/

/*--*/
/*-- Define where the program is located -------------------------------------*/
/*--*/
%let Pgm_Dir = v:\TMT\Phillip\REFI Analysis;
/*-- TAG is used to define output files --*/
%let Pgm = Dataset_Profiler&Tag;
%let RTF_File = &Pgm_Dir\&Pgm..rtf;
%let XLS_File = &Pgm_Dir\&Pgm..xls;

options fullstimer;

ods rtf file="&RTF_File";
ods listing close;

/*--*/
/*-- Contents of the REFI metadata and dataset -------------------------------*/
/*-- ---- --*/
proc sql noprint;
 %*-- List the SAS Metadata for this dataset --;
 create table Contents_Listing as
 select Name, Type, Length, strip(Format) as Format,
 strip(Informat) as InFormat, strip(Label) as Label, varnum
 from dictionary.columns
 where libname = upcase("&Refi_Libname") and memname = upcase("&Refi_DSN")
 order by upcase(Name);
 %put Dataset has &sqlobs rows;
quit;

/*-- Custom dataset contents --*/
proc print data=Contents_Listing label uniform width=minimum noobs;
 title "Contents of &Refi_DSN";
run;

/*--*/
/*-- Look for various possible key columns -----------------------------------*/
/*--*/

%let Count_All_Vars =;
proc sql noprint stimer;
 %*-- Count non-missing and unique rows in the dataset. --------------------;
 %*-- Prepare the SQL statements to perform the counts. --------------------;
 %*-- Handle issue where SAS variable name would be longer than 32 chars ---;
 select "count(" || strip(Name) || ") as N_" ||
 substr(left(Name),1,min(29, length(strip(Name)))) ||
 ", count(distinct " || strip(Name) || ") as ND_" ||

 substr(left(Name),1,min(29, length(strip(Name))))
 into :Count_All_Vars separated by ", "
 from dictionary.columns
 where libname = upcase("&Refi_Libname") and memname = upcase("&Refi_DSN");
 %put Count_All_Vars has &sqlobs rows;
quit;

/*--*
 * Run this on the remote because lots of network traffic occurs here.
 --/
%syslput Check_Keys = &Check_Keys;
%syslput Count_All_Vars = &Count_All_Vars;
%syslput Means_DSN = &Refi_Libname2..&Refi_DSN;
rsubmit; /*$$$*/
proc sql noprint stimer;
 %*-- Perform the dataset counts prepared above. --;
 create table key_values_0 as
 select count(*) as All_Rows, &Count_All_Vars
 from &Means_DSN;
 %put Dataset has &sqlobs rows;
quit;

/*-- If &Check_Keys ^= cards4, then the next SQL query runs --*/
data _null_;
 &Check_Keys;
run;
proc sql noprint stimer;
 %*-- The following two columns should be a compound key ... check it. --;
 create table key_values2 as
 select a.*
 from &Means_DSN a,
 (select Loan_No, Contact_Date, count(*) as Count
 from &Means_DSN
 group by Loan_No, Contact_Date
 having count(*) > 1) b
 where a.Loan_No = b.Loan_No and a.Contact_Date = b.Contact_Date
 order by Loan_No, Contact_Date;
 %put Dataset has &sqlobs rows;
quit;
proc download data=key_values2; run;
;;

proc download data=key_values_0; run;
endrsubmit; /*$$$*/

/*--*/
/*-- Create a more useable dataset for Key Column analysis -------------------*/
/*--*/

/*-- Exchange rows and columns --*/
proc transpose data=key_values_0 out=key_values_0_T;
run;

/*-- Derive other column counts from the transposed SQL results --*/
data key_values;
 /*-- Order the variables --*/
 label
 Variable=
 Count="Rows"
 Filled="Percent of Rows Filled"
 NMiss="Number of Missing Values"
 Miss_Pct="Percent of Rows Missing"
 Unique="Number of Distinct Values"
 Unique_Pct="Percent Unique for Filled Rows"
 Unique_Pct_All="Percent Unique for All Rows"
 Stats="Stats"
 ;
 set key_values_0_T (rename=(_name_=Varname col1=Num));
 length Variable $ 40 Stats $ 1;
 retain Row_Count Variable Count NMiss;

 drop Row_Count Varname Num;
 format Filled Unique_Pct Miss_Pct Unique_Pct_All percent9.2;

 /*-- Default value is N = No Statistics --*/
 Stats = "N";

 /*-- The first OBS contains the overall totals --*/
 if _N_=1 then do;
 Variable = Varname;
 Count = Num;
 Filled = 1;
 Unique = Num;
 Unique_Pct = 1;
 Unique_Pct_All = 1;
 NMiss = 0;
 Miss_Pct = 0;
 Row_Count = Num;
 output;
 end;

 /*--*
 * Besides the first row, other rows contain, in order, records with the
 * non-missing count, followed by another with the unique count.
 * Other measures are derived from this data.
 --/

 /*-- Got a new Variable ... Set the non-missing counts --*/
 if (substr(Varname, 1, 2) = "N_") then do;
 Variable = substr(Varname, 3);
 Count = Num;
 NMiss = Row_Count - Count;
 end;
 /*-- This row has unique counts, and most measures are computed here --*/
 if (substr(Varname, 1, 3) = "ND_") then do;
 Filled = Count / Row_Count;;
 Unique = Num;
 /*-- This data is NOT all Missing values --*/
 if (Count ^= 0) then do;
 Unique_Pct = Num / Count;
 Unique_Pct_All = Num / Row_Count;
 Miss_Pct = NMiss / Row_Count;
 end;
 /*-- This data IS all Missing values, and cannot be summarized --*/
 else do;
 Unique_Pct = 0;
 Unique_Pct_All = 0;
 Miss_Pct = 1;
 end;
 /*--*
 * This criteria decides which variables get detailed statistics.
 * The threshholds of 0.1 and 300 may need tweaking, depending on
 * your data.
 --/
 if (Unique_Pct_All <= 0.1 and Unique < 300 and Count ^= 0) then
 Stats = "Y";
 output;
 end;
run;
proc sort data=key_values;
 by descending Count descending NMiss descending Unique Variable;
run;

/*-- The a nalysis so far, before the merge with the Contents dataset --*/
proc print data=key_values label uniform width=minimum noobs;
 title "Counts and Uniqueness for Variables in &Refi_DSN";
run;

/*-- Combine the Contents dataset with the Key Values analysis above ---------*/
%let Mean_Drop_Num =;
%let N_Mean_Drop_Num = 0;
%let Mean_Drop_Num_Stmt =;

proc sql noprint;
 create table Key_Values_Contents as
 select b.*, a.type, a.length, a.Format, a.InFormat, a.Label,
 a.varnum
 from Contents_Listing a, key_values b
 where upcase(a.name) = upcase(b.Variable);
 %put Dataset has &sqlobs rows;

 %*-- WARNINGS will occur when all-missing numeric variables do NOT EXIST --;
 %*-- Create the list of numeric variables whose values are all missing ----;
 %*-- These variables will be removed from Proc Means analysis -------------;
 select Variable into :Mean_Drop_Num
 separated by " "
 from Key_Values_Contents
 where Count = 0 and type = "num";
 %put Mean_Drop_Num has &sqlobs rows;
 %*-- Need a count of these variables to decide whether to run Proc Means --;
 select count(*) into :N_Mean_Drop_Num
 from Key_Values_Contents
 where Count = 0 and type = "num";
 %put N_Mean_Drop_Num has &sqlobs rows;
quit;

/*-- Create the drop statment for any all-missing numeric values --*/
data _null_;
 if (&N_Mean_Drop_Num > 0) then
 call symput('Mean_Drop_Num_Stmt', "(drop=" || strip("&Mean_Drop_Num")
 || ")");
run;

proc print data=Key_Values_Contents
 (drop=Unique Unique_Pct length Format InFormat Label)
 label uniform width=minimum noobs;
 title "All-missing numeric variables will not be analyzed by Proc Means";
 where Count = 0 and type = "num";
run;

/*--*/
/*-- Create a list of variables to remove from the categorical analysis ------*/
/*--*/
data _null_;
 set key_values end=done;
 length line OK_List OK_List2 Remove_List $ 2000;
 retain line OK_List OK_List2 Remove_List;

 if (Stats = "N" or Variable = "All_Rows") then do;
 /*-- Used to remove columns (in SQL) that should not be in the Proc --*/
 /*-- Means CLASS and TYPES statements. -------------------------------*/
 line = strip(line) || ", '" || strip(upcase(Variable)) || "'";
 /*-- Not used --*/
 Remove_List = strip(Remove_List) || " " || strip(Variable);
 end;
 else do;
 /*-- Not used: replaced by CH_Vars below --*/
 OK_List = strip(OK_List) || " " || strip(Variable);
 /*-- Not used --*/
 OK_List2 = strip(OK_List2) || ", " || quote(strip(upcase(Variable)));
 end;

 if done then do;
 /*-- Fix the leading comma --*/
 if (index(line, ',') > 0) then
 line = "and upcase(name) not in (" || trim(substr(line, 3)) || ")";
 if (index(OK_List2, ',') > 0) then
 OK_List2 = "and upcase(name) in (" || trim(substr(OK_List2, 3)) || ")";
 call symput('CH_Vars_Missing', strip(line));
 call symput('CH_VarsList', strip(Remove_List)); /*-- Not used --*/
 call symput('Class_List', strip(OK_List)); /*-- Not used --*/
 call symput('OK_SQL_List', strip(OK_List2));
 end;
run;

%put Missing Character variables are: &CH_VarsList;

%let CH_Vars =;
%let N_Num_vars = 0;
proc sql noprint;
 %*-- For Means, create a list of variables for the Class statement --;
 select Name into :CH_Vars
 separated by " "
 from dictionary.columns
 where libname = upcase("&Refi_Libname") and
 memname = upcase("&Refi_DSN") and type = "char"
 &CH_Vars_Missing;

 %*-- If a dataset only has character values, then skip the Proc Means ----;
 select (count(name) - &N_Mean_Drop_Num) into :N_Num_vars
 from dictionary.columns
 where libname = upcase("&Refi_Libname") and
 memname = upcase("&Refi_DSN") and type ^= "char";
quit;

/*--*/
/*-- Perform the categorical analysis --*/
/*--*/

/*-- See whether to run or skip this analysis --*/
data _null_;
 /*-- The criteria to perform the analysis is determined here. --*/
 if (&N_Num_vars = 0) then
 call symput('Skip_Means', "cards4");
 else call symput('Skip_Means', " ");
run;

/*-- RUN it if Skip_Means = " ", or SKIP it until the line of ;'s ------------*/
data _null_;
 &Skip_Means;
run;

/*--*
 * Run this on the remote because lots of network traffic occurs here.
 * It also runs much faster on the server.
 *
 * Several problems occurred when this job was run locally on the PC: (1) many
 * SAS warnings occured in Proc Means, and (2) the Means output dataset
 * produced unexpected results where the column order did not match the CLASS
 * statement. I was surprised when this issue was fixed by running the job on
 * the server. There is possibly a difference in physical memory and in SAS
 * options that affect Proc Means. Memory Max options should be compared
 * between the PC and the server.
 --/

%put OK Character variables are: &CH_Vars;
%syslput CH_Vars = &CH_Vars;
%syslput Means_Output = Refi_DSN_Anly;
%syslput Mean_Drop_Num_Stmt = &Mean_Drop_Num_Stmt;
rsubmit; /*$$$*/
/*-- Date formats cause some issues with some stats: TBF later --*/
proc means data=&Means_DSN &Mean_Drop_Num_Stmt missing noprint;
 class &CH_Vars;
 types &CH_Vars;
 output out=&Means_Output N= NMiss= max= min= mean= std= / autoname;
 /* output out=Refi_DSN_Anly sum= qrange= std= / autoname */;
run ;
proc download data=&Means_Output; run;
endrsubmit; /*$$$*/
;;

/*--*/
/*-- Squish and process the data to create a better summary ------------------*/
/*--*/
proc sql noprint;
 %*-- Get the POSITION of the _type_ variable in the Means output dataset --;

 select varnum into :Type_Column
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY" and
 upcase(name) = "_TYPE_";
 %*-- Get the LENGTH for the _type_ variable in the Means output dataset --;
 select Length into :Type_Column_Len
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY" and
 upcase(name) = "_TYPE_";
 %*-- Get the TYPE for the _type_ variable in the Means output dataset --;
 %*-- See next datastep for usage ... value is Char or Num --------------;
 select type into :Type_Column_Type
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY" and
 upcase(name) = "_TYPE_";

 %*-- Tag the dataset with column numbers, so we can look up names later --;
 create table Columns_Number as
 select name, varnum
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY" and
 varnum < &Type_Column;
 %put Dataset has &sqlobs rows;

 %*-- Create the DROP list for columns before _type_ --;
 select name into :Drop_List
 separated by " "
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY" and
 varnum < &Type_Column
 order by name;
 %put Drop_List has &sqlobs rows;

 %*-- Create the COALESCE list for columns before _type_ --;
 select name as Coal_Name into :Coalesce_List
 separated by ", "
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY" and
 varnum < &Type_Column
 order by name;
 %put Coalesce_List has &sqlobs rows;

 %*-- Create the list of columns AFTER _type_ --;
 select name as Coal_Name_After into :Coalesce_After
 separated by ", "
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY" and
 varnum >= &Type_Column
 order by name;
 %put Coalesce_After has &sqlobs rows;
quit;
%put Start processing at varnum &Type_Column;
%put Drop List = &Drop_List;

/*-- Define the statements to setup Last_Type, depending on the _type_ var ---*/
%let Last_Type_DCL = ; /*-- Declare Last_Type as a character --*/
%let Last_Type_Retain = ; /*-- Retain and initialize Last_Type --*/
data _null_;
 /*-- _type_ is a CHARACTER variable --*/
 if ("&Type_Column_Type" = "char") then do;
 /*-- length Last_Type $ &Type_Column_Len; --*/
 call symput('Last_Type_DCL', "length Last_Type $ &Type_Column_Len");
 /*-- retain Last_Type " "; --*/
 call symput('Last_Type_Retain', 'retain Last_Type " "');
 end;
 /*-- _type_ is a NUMERIC variable --*/
 else do;
 /*-- retain Last_Type 0; --*/
 call symput('Last_Type_Retain', 'retain Last_Type 0');
 end;
run;

%put Last_Type_DCL = &Last_Type_DCL;
%put Last_Type_Retain = &Last_Type_Retain;

/*-- Process the Means dataset, and add the column number that has data ------*/
data Refi_DSN_Anly2;
 set Refi_DSN_Anly;
 /*-- The character length is got form the Means output dataset (above) --*/
 &Last_Type_DCL; /*-- Set the length of Last_Type, if necessary ------*/
 &Last_Type_Retain; /*-- Retain and initialize Last_Type ----------------*/
 retain Column_Number;
 drop Last_Type;
 ** drop &Drop_List;

 /*-- Initialize the counters --*/
 if _N_ = 1 then do;
 Last_Type = _type_;
 Column_Number = &Type_Column - 1;
 end;

 /*-- The relevant column number is based upon _type_, which is ordered --*/
 if (Last_Type ^= _type_) then do;
 Last_Type = _type_;
 Column_Number = Column_Number - 1;
 end;
run;

/*-- Pro cess the Means dataset, and produce the final statistics add ------*/
proc sql noprint;
 %*-- Squish the leading columns that occur before the _type_ column --;
 create table Refi_DSN_Anly3 as
 select coalesce(&Coalesce_List) as Values format=$62.,
 &Coalesce_After, Column_Number
 from Refi_DSN_Anly2;
 %put Dataset has &sqlobs rows;

 %*-- Add back the column name from Refi_DSN_Anly2, using Col# as key --;
 create table Refi_DSN_Anly4 as
 select b.name as Variable, a.*
 from Refi_DSN_Anly3 (drop=_type_ rename=(_freq_=Count)) a,
 (select name, varnum
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY2" and
 varnum < &Type_Column) b
 where a.Column_Number = b.varnum;
 %put Dataset has &sqlobs rows;

 %*-- Create LABEL list for the first 3 variables --;
 select compress(name || "=") into :Label_1
 separated by " "
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY4" and
 varnum <= 3 and upcase(name) ^= "COLUMN_NUMBER";
 %put Label_1 has &sqlobs rows;

 %*-- Create LABEL list to order columns by varname and statistic --;
 select compress(name || "=") into :Label_2
 separated by " "
 from dictionary.columns
 where libname = "WORK" and memname = "REFI_DSN_ANLY4" and
 varnum > 3 and upcase(name) ^= "COLUMN_NUMBER"
 order by upcase(name);
 %put Label_2 has &sqlobs rows;
quit;

/*-- Create the new dataset with re-ordered columns --*/
data Refi_DSN_Anly5;
 label &Label_1 &Label_2 Column_Number=;
 set Refi_DSN_Anly4;
run;

/*--*/

/*-- R E P O R T S ---*/
/*--*/

PROC EXPORT DATA=Key_Values_Contents
 OUTFILE= "&XLS_File"
 DBMS=EXCEL REPLACE;
 sheet="Contents of &Refi_DSN";
RUN;
PROC EXPORT DATA=Refi_DSN_Anly5
 OUTFILE= "&XLS_File"
 DBMS=EXCEL REPLACE;
 sheet="Stats on &Refi_DSN";
RUN;

/*-- If &Check_Keys ^= cards4, then the next PROC EXPORT runs --*/
data _null_;
 &Check_Keys;
run;
PROC EXPORT DATA=key_values2
 OUTFILE= "&XLS_File"
 DBMS=EXCEL REPLACE;
 sheet="Dupe Keys on &Refi_DSN";
RUN;
;;

ods rtf close;
ods listing;

/*--*/
/*-- E N D ---*/
/*--*/

