
1 

Paper FF-06 

 

Merging into Hash: 

Some Practical Examples of Converting MERGE Statements into Hash Objects 

Ying Liu, Toronto, ON, Canada 
 

ABSTRACT 

Merging data from two or more datasets is a common process as we manipulate our data for reporting and analysis. 
Prior to SAS® version 9, the MERGE statement was the most common approach to accomplish this task for a data 
step programmer. Although MERGE is effective and robust, there are some potential downsides; the most common 
is the cost of sorting. To use a MERGE the datasets normally must go through multiple sorts. Each data set has to 
be sorted by the common variables before the merge step occurs; and the results dataset often has to be sorted in 
to its most common access order after the merge. The CPU time can significantly increased because of the sorting 
procedures; in addition, if the datasets are large there is a need for extended disk space to accommodate the sort. 
With the introduction of a memory search method – the SAS HASH object, merging with a HASH look-up table 
method substantially improves the data management process, not only increasing efficiency but also improving code 
transparency. This paper will illustrate some techniques used to convert programmes using a MERGE statement to 
programmes using a HASH Object in the match-merge table relationship. Both one-to-one and one-to-many 
relationships will be covered. 

INTRODUCTION 

For the purposes of the paper match-merging is the process of combining observations from one or more look-up 
tables to one main table to form  a single observation in the new table according to the common variables specified 
in the BY statement that are available for all matching tables. There are two types of relationships between a main 
table and look-up tables. They are as follows: 

- ONE-to-ONE relationship: one observation in a main table matches only one observation in their look-
up tables.  

- ONE-to-MANY relationships: one observation in a main table matches two or more observations in their 
look-up tables. 

This paper will use practical examples to illustrate these two type relationships by converting MERGE statements 
into hash objects.  

IMPLEMENTATION 

ONE-to-ONE relationship implies that there is exactly one observation in a main table that joins exactly one 
observation in a look-up table. This paper will exam two types of common joins between the main table and the look-
up table: inner join, left outer join. SAS® code will be provided for converting MERGE statements into HASH objects 
to describe the inner join and left outer join relationship in the following common practical examples: 

 

- Example1: a main table inner joins a look-up table by common variables 

- Example 2: a main table left outer joins a look-up table by common variables 

- Example 3: special case when a look-up variable returned from a look-up table also exists in a main 
table 

- Example 4: a main table left outer joins more than one look-up tables 

 

 



2 

EXAMPLE1: A MAIN TABLE INNER JOINS A LOOK-UP TABLE BY COMMON VARIABLES 

 

Definition of Inner join: the resulting table has matched observations that join both the main table and the look-up 
table by the common variables. 

 

Requirement:  

Create a transaction report with patient demographic information: sex, age and postal code. In this report, each 
observation in a TRANSACTIONS table joins only one observation from a PATIENTS table by the common variable 
PID. A TRANSACTIONS table has one-to-one inner join relationship with a PATIENTS table. 

The description and the sample data for both TRANSACTIONS and PATIENTS tables can be found in the appendix. 

 

Implementation: 

 

Option1: Inner join with MERGE statement. 

 

SAS® code: 

proc sort data=data.transactions out=transactions; 

  by pid; 

run; 

 

proc sort data=data.patients(drop=studyid) out=patients; 

  by pid; 

run; 

 

data trans_merge_patients; 

  merge transactions (in=inTran) 

        patients (in=inPat); 

  by pid; 

  if inTran and inPat; 

  age = intck("year", dob, visitdate); 

run; 

 

*- sort data by the original access order -*; 

proc sort data=trans_merge_patients; 

  by pid did visitdate feecode; 

run; 

 

Inner join with MERGE statement goes though three sorts. First TRANSACTIONS and PATIENTS are sorted on the 
common variable PID before merging step occurs. After merging, the results table TRANS_MERGE_PATIENTS is 
sorted to match the original access order of TRANSACTIONS by pid, did, visitdate and feecode.  

The statement “if inTran and inPat;” in above SAS® code  forces  the inner join; that is, only observations 
that exist in both TRANSACTIONS table and PATIENTS table are kept in the results table. 

 

Option2: Inner join with a hash table. 

 

SAS® code: 

data trans_hash_patients(drop=rc); 

 

  if 0 then set data.patients(drop=studyid); 

  declare hash hh_pat(dataset:"data.patients(drop=studyid)"); 

  rc=hh_pat.defineKey("pid"); 

  rc=hh_pat.defineData("dob", "sex", "postcode"); 

  rc=hh_pat.defineDone(); 

 

  do until(eof); 

    set data.transactions end=eof;  

 call missing(dob, sex, postcode); 

 rc=hh_pat.find(); 

 age = intck("year", dob, visitdate); 



3 

 if rc=0 then output; 

  end; 

  stop; 

run; 

 

By converting the inner join with a MERGE statement into the inner join with a HASH object, there are two obvious 
advantages: 

1. Inner join with a MERGE statement requires two sorts prior to MERGE and one sorting after. Inner join 
with a hash table has no sorting required. By converting MERGE statement into a HASH object, the 
CPU processing time will be significantly reduced. Users will receive huge time efficiency 
improvements especially in the large data processing. 

2. The code for a MERGE statement only tells SAS® to return data from a look-up table, but is not clear 
about what these data elements are. The code for using a HASH table is more transparent. The HASH 
object not only explicitly defines the key (PID) that is used to match, but also explicitly defines the data 
- dob, sex, postcode - that will be returned from a look-up table (data.patients). 

 

EXAMPLE2: A MAIN TABLE LEFT OUTER JOINS A LOOK-UP TABLE BY COMMON VARIABLES 

 

Definition of left outer join: the resulting table has all observations from a main table and the matched 
observations from a look-up table.   

 

Requirement:  

Create a transaction report with all transactions from a TRANSACTION table and will attach patient demographic 
information - sex, age and postal code if a patient is found is a PATIENTS table. In this report, each observation in a 
TRANSACTIONS table may or may not match an observation from a PATIENTS table. If matched, there is only one 
observation from a PATIENTS table retrieved.  A TRANSACTIONS table has one-to-one left outer join relationship 
with a PATIENTS table. 

 

The description and the sample of the data of both TRANSACTIONS and PATIENTS table can be found in the 
appendix. 

 

Implementation:  

 

Option1: Left outer join with MERGE statement. 

 

SAS® code: 

proc sort data=data.transactions out=transactions; 

  by pid; 

run; 

 

proc sort data=data.patients(drop=studyid) out=patients; 

  by pid; 

run; 

 

data trans_outJoin_merge_patients; 

  merge transactions (in=inTran) 

        patients (in=inPat); 

  by pid; 

  if inTran; 

  age = intck("year", dob, visitdate); 

run; 

 

*- sort data by the original access order -*; 

proc sort data=trans_outJoin_merge_patients; 

  by pid did visitdate feecode; 

run; 

 



4 

Left outer join with MERGE statement has similar structure to the inner join with MERGE statement. The difference is 
in the MERGE step. The left outer join uses statement “if inTran;” which means all observations from the main table 
TRANSACTIONS need to be returned regardless of whether or not they will be matched in the look-up table. 
However, the inner join uses the statement “if inTran and inPat;, which enforces that only matched observations from 
both the main table and the look-up table will be retrieved. 

 

 

 

Options2: Left outer join with a HASH table. 

 

SAS® code: 
data trans_outJoin_hash_patients(drop=rc); 

 

  if 0 then set data.patients(drop=studyid); 

 

  declare hash hh_pat(dataset:"data.patients(drop=studyid)"); 

  rc=hh_pat.defineKey("pid"); 

  rc=hh_pat.defineData("dob", "sex", "postcode"); 

  rc=hh_pat.defineDone(); 

 

  do until(eof); 

    set data.transactions end=eof;  

 call missing(dob, sex, postcode); 

 rc=hh_pat.find(); 

 age = intck("year", dob, visitdate); 

 output; 

  end; 

  stop; 

run; 

 

Left outer join with a HSAH object has similar structure to the inner join with a HSAH object as well. The coding 
difference is that the subsetting statement “if rc=0 then output;” Is removed in the left outer join codes. It 
means that all observations get returned regardless of whether or not they will be found in the look-up table. 

 

Again by converting left outer join with MERGE statement into a HASH object, users will receive the same 
advantages as converting inner join with MERGE statement into a HASH object. The advantages are the significant 
CPU time reduced and more transparency in code. 

 

 

EXAMPLE3: SPECIAL CASE WHEN A LOOK-UP VARIABLE RETURNED FROM A LOOK-UP TABLE ALSO EXISTS IN A MAIN 

TABLE 

 

Requirement:  

Create a report with all transactions from a TRANSACTIONS_W_PCODE left outer join PARTIAL_PATIENTS table. 

The TRANSACTIONS_W_PCODE  table has the similar structure to the TRANSACTIONS table, but it includes a 
variable postcode for the postal code. PARTIAL_PATIENTS table has the same data layout as PATIENTS table, but 
it does not include patients with PID less than 200. 

 

In this report, each record in a TRANSACTIONS_W_PCODE table may or may not match a record in a 
PARTIAL_PATIENTS table. If there is a match, allow the value of postcode from a PARTIAL_PATIENTS table to 
overwrite the value of postcode in the main table.  If there is no match, use the value of postcode from the 
TRANSACTIONS_W_PCODE table. 

The description and the sample of the data of TRANSACTIONS_W_PCODE and PARTIAL_PATIENTS table can be 
found in the appendix. 

 

Implementation:  

 

Option1: with a MERGE statement. 

 



5 

SAS® code: 
proc sort data=data.transactions_w_pcode out=transactions_w_pcode; 

  by pid; 

run; 

 

proc sort data=data.partial_patients out=partial_patients; 

  by pid; 

run; 

 

data trans_wPcode_merge_patients; 

  merge transactions_w_pcode (in=inTran) 

        partial_patients (in=inPat); 

  by pid; 

  if inTran; 

run; 

 

data test_merge(keep=pid postcode dob sex); 

  set trans_wPcode_merge_patients; 

  if pid <200; 

run; 

 

proc sort data=test_merge nodupkey; 

  by pid; 

run; 

 

The results of TEST_MERGE table for the patients with the missing PID (if pid <200) show that these patients 
keep their original value of postcode from the TRANSACTIONS_W_PCODE  table. Please see the results in the 
below table. 

 

PID postcode dob sex 

30 M4S 3H2     

52 M4Y 1N3     

88 M4J 1S6     

119 M4C 4K3     

142 M4L 2T9     

189 M4T 1G6     

 

 

Option2: with a HASH object. 

 

SAS® code: 
 

   *- hash option with missing value assigned to postcode-*; 

data trans_wPcode_hash_patients(drop=rc); 

 

  if 0 then set data.partial_patients(drop=studyid); 

 

  declare hash hh_pat(dataset:"data.partial_patients(drop=studyid)"); 

  rc=hh_pat.defineKey("pid"); 

  rc=hh_pat.defineData("dob", "sex", "postcode"); 

  rc=hh_pat.defineDone(); 

 

  do until(eof); 

    set data.transactions_w_pcode end=eof;  

 call missing(dob, sex, postcode); 

 rc=hh_pat.find(); 

 output; 



6 

  end; 

  stop; 

run; 

 

data test_hash(keep=pid postcode dob sex); 

  set trans_wPcode_hash_patients; 

  if pid <200; 

run; 

 

proc sort data=test_hash nodupkey; 

  by pid; 

run; 

 

The results of test_hash for the patients with missing PID (if pid <200) show that these patients do not have 
value assigned to postcode. Please see the results in the below table: 

 
PID postcode dob sex 

30    

52    

88    

119    

142    

189    

 

Why does the result come out differently? Because the statement “call missing(dob, sex, postcode);” 
sets all the variables dob, sex and postcode to missing. Therefore if the key is found in a hash look-up table 
(hh_pat.find()=0), the missing values are overwritten by the values returned from the hash look-up table; 
however, if the key is not found, all values will remain missing. Since the observations with pid <200 are not found in 
the hash look-up table PARTIAL_PATIENTS, these observations will have missing value for postcode.  To fix the 
problem, a user needs to rename the postcode variable in the main table. During the data step process, if a patient 
is not found in the hash look-up table, reassign the original value of postcode to the postcode. 

 

Revised Option2: Fixed codes with a HASH object. 

 

SAS® code: 

    *- hash option with keeping value of postcode in the main table when not found in a lookup table-*; 

data trans_wPcode_hash_patients(drop=rc origPcode); 

 

  if 0 then set data.partial_patients(drop=studyid); 

 

  declare hash hh_pat(dataset:"data.partial_patients(drop=studyid)"); 

  rc=hh_pat.defineKey("pid"); 

  rc=hh_pat.defineData("dob", "sex", "postcode"); 

  rc=hh_pat.defineDone(); 

 

  do until(eof); 

    set data.transactions_w_pcode (rename=postcode=origPcode)end=eof;  

 call missing(dob, sex, postcode); 

 rc=hh_pat.find(); 

 if rc ne 0 then postcode=origPcode; 

 output; 

  end; 

  stop; 

run; 

 

data test_hash(keep=pid postcode dob sex); 

  set trans_wPcode_hash_patients; 

  if pid <200; 



7 

run; 

 

proc sort data=test_hash nodupkey; 

  by pid; 

run; 

 
 
 

The following is the results for the observations with patient ID not found in a look-up table using revised option2: 

 

PID postcode dob sex 

30 M4S 3H2     

52 M4Y 1N3     

88 M4J 1S6     

119 M4C 4K3     

142 M4L 2T9     

189 M4T 1G6     

 

With the fixed codes, the results show the same from the results using a MERGE statement. 

 

 

EXAMPLE 4: A MAIN TABLE LEFT OUTER JOINS MORE THAN ONE LOOK-UP TABLES 

 

Requirement:  

Create a transaction report with all patient information and doctor information. In this report, each observation in a 
TRANSACTIONS table will match an observation in a PATIENTS table and an observation in a DOCTORS table. 
TRANSACTIONS table has one-to-one left outer join relationship with a PATIENTS and a DOCTORS tables. 

 

The description and the sample of the data of TRANSACTIONS, PATIENTS and DOCTORS table can be found in 
the appendix. 

 

 

Implementation:  

 

Option1: Left outer join with MERGE statements in multiple look-up tables. 

 

SAS® code: 
 

proc sort data=data.transactions out=transactions; 

  by pid; 

run; 

 

proc sort data=data.patients(drop=studyid 

                             rename=(dob=patBirthDate 

                                     sex=patSex                          

                                     postcode=patPcode) 

                             )  

  out=patients; 

  by pid; 

run; 

 

data trans_merge_patients; 

  merge transactions (in=inTran) 

        patients (in=inPat); 

  by pid; 

  if inTran and inPat; 



8 

run; 

 

proc sort data=trans_merge_patients;   

  by did; 

run; 

 

proc sort data=data.doctors (rename=(dob=docBirthDate 

                                     sex=docSex    

                                     postcode=docPcode)     
       

       ) 

  out=doctors; 

  by did; 

run; 

 

*- retain statement keeps the order of variables in the output -*; 

data trans_merge_patients_doctors; 

  retain pid did visitdate feecode patPcode patBirthDate patSex docPcode 
docBirthDate docSex; 

 

  merge trans_merge_patients (in=inTrPat) 

        doctors (in=inDoc); 

  by did; 

  if inTrPat; 

run; 

 

proc sort data=trans_merge_patients_doctors; 

  by pid did visitdate feecode patPcode patBirthDate patSex docPcode docBirthDate 
docSex; 

run; 

 

 

The sample of results from using MERGE statements is listed in the below: 

 

PID DID visitdate feecode patPcode patBirthDate patSex docPcode docBirthDate docSex 

30 3540 03/06/2008 G310 M4S 3H2 24/08/1949 M M5B1W8 01/01/1945 M 

30 3540 03/06/2008 G700 M4S 3H2 24/08/1949 M M5B1W8 01/01/1945 M 

30 11367 08/12/2008 A903 M4S 3H2 24/08/1949 M L3T4A3 23/05/1933 M 

30 11367 08/12/2008 G310 M4S 3H2 24/08/1949 M L3T4A3 23/05/1933 M 

30 11367 08/12/2008 G489 M4S 3H2 24/08/1949 M L3T4A3 23/05/1933 M 

30 13197 28/08/2008 G313 M4S 3H2 24/08/1949 M M2J1V1 07/07/1942 M 

30 13197 08/12/2008 G313 M4S 3H2 24/08/1949 M M2J1V1 07/07/1942 M 

30 16125 03/06/2008 G313 M4S 3H2 24/08/1949 M M2J1V1 07/07/1939 M 

30 17768 04/04/2008 A001 M4S 3H2 24/08/1949 M M5N1N2 07/07/1930 M 

30 17768 15/07/2008 A007 M4S 3H2 24/08/1949 M M5N1N2 07/07/1930 M 

30 17768 26/08/2008 A003 M4S 3H2 24/08/1949 M M5N1N2 07/07/1930 M 

30 17985 09/12/2008 S323 M4S 3H2 24/08/1949 M L6H6K7 15/03/1952 M 

30 18644 19/01/2009 A007 M4S 3H2 24/08/1949 M M6H3L8 02/01/1949 M 

30 18799 28/08/2008 A035 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 28/08/2008 G310 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 28/08/2008 G489 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 09/12/2008 G224 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 09/12/2008 S323 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 10/12/2008 C032 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

 

Each observation combines patient information and doctor information into an observation from the TRANSACTION 
table to form a new table TRANS_MERGE_PATIENTS_DOCTORS.  

Merging with multiple look-up tables repeats the same process twice as merging with single look-up table. In this 
example, TRANSACTIONS table and PATIENTS table require being sorted by PID before merged together. Then 



9 

the merged table TRANS_MERGE_PATIENTS and DOCTORS table need to be sorted by DID before next merging 
step. The sorting procedures and merging procedures require each observation from each table being processed 
four times: two times in sorting procedures and two times in merging procedures. 

 

Option2: Left outer join with HASH objects in multiple look-up tables 

 

SAS® code: 

 

*- retain statement keeps the order of variables in the output -*; 

data trans_hash_patients_doctors (drop=rc_pat rc_doc); 

  retain pid did visitdate feecode patPcode patBirthDate patSex docPcode 
docBirthDate docSex; 

  if 0 then do; 

    set data.patients(drop=studyid 

                      rename=(dob=patBirthDate 

                              sex=patSex 

         postcode=patPcode)) 

         data.doctors(rename=(dob=docBirthDate 

                              sex=docSex    

                              postcode=docPcode)); 

  end; 

 

  declare hash hh_pat(dataset:"data.patients(rename=(dob=patBirthDate 

                              sex=patSex 

         postcode=patPcode))"); 

  rc_pat=hh_pat.defineKey("pid"); 

  rc_pat=hh_pat.defineData("patBirthDate", "patSex", "patPcode"); 

  rc_pat=hh_pat.defineDone(); 

 

   declare hash hh_doc(dataset:"data.doctors(rename=(dob=docBirthDate 

                              sex=docSex    

                              postcode=docPcode))"); 

  rc_doc=hh_doc.defineKey("did"); 

  rc_doc=hh_doc.defineData("docBirthDate", "docSex", "docPcode"); 

  rc_doc=hh_doc.defineDone(); 

 

 

  do until(eof); 

    set data.transactions end=eof;  

    call missing(patBirthDate, patSex, patPcode, docBirthDate, docSex, docPcode); 

 rc_pat=hh_pat.find(); 

 rc_doc=hh_doc.find(); 

 output; 

  end; 

  stop; 

run; 

 
 

The following table lists the sample results from using HASH objects: 
 
 

pid did visitdate feecode patPcode patBirthDate patSex docPcode docBirthDate docSex 

30 3540 03/06/2008 G310 M4S 3H2 24/08/1949 M M5B1W8 01/01/1945 M 

30 3540 03/06/2008 G700 M4S 3H2 24/08/1949 M M5B1W8 01/01/1945 M 

30 11367 08/12/2008 A903 M4S 3H2 24/08/1949 M L3T4A3 23/05/1933 M 

30 11367 08/12/2008 G310 M4S 3H2 24/08/1949 M L3T4A3 23/05/1933 M 

30 11367 08/12/2008 G489 M4S 3H2 24/08/1949 M L3T4A3 23/05/1933 M 

30 13197 28/08/2008 G313 M4S 3H2 24/08/1949 M M2J1V1 07/07/1942 M 



10 

30 13197 08/12/2008 G313 M4S 3H2 24/08/1949 M M2J1V1 07/07/1942 M 

30 16125 03/06/2008 G313 M4S 3H2 24/08/1949 M M2J1V1 07/07/1939 M 

30 17768 04/04/2008 A001 M4S 3H2 24/08/1949 M M5N1N2 07/07/1930 M 

30 17768 15/07/2008 A007 M4S 3H2 24/08/1949 M M5N1N2 07/07/1930 M 

30 17768 26/08/2008 A003 M4S 3H2 24/08/1949 M M5N1N2 07/07/1930 M 

30 17985 09/12/2008 S323 M4S 3H2 24/08/1949 M L6H6K7 15/03/1952 M 

30 18644 19/01/2009 A007 M4S 3H2 24/08/1949 M M6H3L8 02/01/1949 M 

30 18799 28/08/2008 A035 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 28/08/2008 G310 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 28/08/2008 G489 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 09/12/2008 G224 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 09/12/2008 S323 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

30 18799 10/12/2008 C032 M4S 3H2 24/08/1949 M L3T4A3 18/05/1947 M 

 
 

 

By using hash objects, the two look-up tables PATIENTS and DOCTORS table are read into the memory as two 
hash objects. Each observation in the main table TRANSACTIONS only needs to be accessed once. The whole 
matching process is completed in one data step. By converting MERGE statements into HASH objects, users will get 
two benefits that are as follows: 

- From the coding perspective, the program using HASH objects in matching multiple look-up tables is 
more concise and transparent than the program using MERGE statements.  

- From the CPU process, the program using HASH objects will be executed at least four times faster 
than the program using MERGE statements. 

 

 

ONE-to- MANY relationships: One observation in a main table may match one or many observations in a look-up 
table based on the common variables. 

 

Example 5: a main table inner joins a look-up table with duplicate observations in the key 

 

Requirement: 

 

The FEESCHEDULE table has duplicate feeCode. For example, feecode A201 has two fees: one charges $1.55 for 
a service that occurs on and after 2008-04-01, but before 2008-10-01; and the other fee charges $5.5 for any service 
that occurs on and after 2008-10-01. Please see the data layout of the FEESCHEDULE in the below table: 

 

 

FeeCode EffectiveDate EndDate ProviderFee 

A201 2008-04-01 99999999 1.55 

A201 2008-10-01 99999999 5.5 

A202 2008-04-01 99999999 18.1 

A203 2008-04-01 99999999 12 

A203 2008-10-01 99999999 16.54 

A203 2009-01-01 99999999 20.68 

A204 2008-04-01 99999999 1.55 

A205 2007-04-01 99999999 10 

A205 2008-04-01 99999999 14 

A205 2008-10-01 99999999 23.27 

A205 2009-01-01 99999999 30 

A206 2008-04-01 99999999 15.51 

A207 2008-04-01 99999999 62.04 

A208 2008-04-01 99999999 7.76 

A303 2008-04-01 99999999 11.45 

A304 2008-04-01 99999999 7 



11 

A305 2008-04-01 99999999 16.4 

A310 2008-04-01 99999999 11 

A310 2009-01-01 99999999 28.44 

 

 

The main table TRANSAMPLE has 60 observations. The data layout of TRANSAMPLE can be found in the 
appendix.  Each observation from TRANSAMPLE table will be matched with one or more observations in the 
FEESCHEDULE table by the common variable feecode. The report requires assigning the correct fee to each 
feecode in the TRANSAMPLE table. 

 

 

Implementation: 

 

Option1: match duplicates using a MERGE statement. 

 

The following SAS® code merges the main table TRANSAMPLE with the above look-up table FEESCHEDULE by 
the common variable feecode. 

 

SAS® code: 
data trans_merge_feeS; 
  merge tranSample (in=inTran) 
        feeSchedule(in=inFeeS) 
  ; 
  by feecode; 
  if inTran and inFees; 
run; 

 

The following table lists the sample results of TRANS_EMRGE_FEES table: 

 

 

PID DID visitdate feecode EffectiveDate EndDate ProviderFee 

402 7343 07/01/2009 A203 01/04/2008 99999999 12 

4707 4371 30/04/2008 A203 01/10/2008 99999999 16.54 

5172 19967 25/09/2008 A203 01/01/2009 99999999 20.68 

5650 15900 17/12/2008 A203 01/01/2009 99999999 20.68 

5690 9218 19/11/2008 A203 01/01/2009 99999999 20.68 

5690 9218 09/01/2009 A203 01/01/2009 99999999 20.68 

5798 17855 11/03/2009 A203 01/01/2009 99999999 20.68 

7401 3631 25/02/2009 A203 01/01/2009 99999999 20.68 

8548 5974 14/06/2008 A203 01/01/2009 99999999 20.68 

9185 8271 11/02/2009 A203 01/01/2009 99999999 20.68 

9691 18246 09/12/2008 A206 01/04/2008 99999999 15.51 

9691 18246 16/01/2009 A206 01/04/2008 99999999 15.51 

1516 12631 31/07/2008 A310 01/04/2008 99999999 11 

7792 12747 23/12/2008 A310 01/01/2009 99999999 28.44 

7792 12747 27/01/2009 A310 01/01/2009 99999999 28.44 

 

From the above table, it shows that a user does not retrieve the correct fee from FEESCHEDULE table to the 
corresponding service code. 

 

For example, feecode A203 has three fees:  

- $12 for the service time from the 1
st
 of April in 2008 to the 30

th
 of September in 2008;  

- $16.54 for the service time from the 1
st
 of October in 2008 to 31

st
 of December in 2008;  

- $20.68 for the service starting from the 1
st
 of January in 2009. 

 

However this merging process does not take visitdate into consideration. The fees for feecode A203 are retrieved in 
sequence from FEESCHEDULE table: the first matched observation from the main table will be assigned to $12. The 
second matched observation will get $16.54. The third matched observation will be given to $20.68. Since $20.68 is 



12 

the last fee for feecode A203 in the FEESCHEDULE table, all the other matched observations with A203 feecode in 
the main table will be assigned to $20.68.   This process will be applied to the same for all the duplicate feecode 
such as A201, A203, A205, A310 highlighted in yellow in the FEESCHEDULE table. 

 

For the single feecode such as feecode A206 in the FEESCHEDULE table, since there is only one fee associated 
with the feecode, the single fee will be retrieved each time when an observation in the main table has a feecode 
matched with them.  

 

In order to assign the correct fee for the service that a patient receives, a user needs to take an extra step to create 
a unique key - feecode before performing merging. A new look-up table needs to be created with the unique key 
from the original look-up table FEESCHEDULE.  This process requires creating two arrays FeeAmt and feeEffDate 
to hold fee - providerFee and the corresponding fee effective date - effectiveDate. 

 

 

The SAS® code to create a look-up table is as follows: 

 

data data.feeCodes (keep=feecode feeAmt1-feeAmt4 effDate1-effDate4); 

  set data.feeSchedule(keep=feecode effectiveDate providerFee); 

  by feecode ; 

 

  array feeAmt(4) feeAmt1 - feeAmt4; 

  array feeEffDate(4)  effDate1 - effDate4; 

  format effDate1-effDate4 yymmdd10.; 

   

  retain feeAmt1-feeAmt4; 

  retain effDate1 - effDate4; 

  retain cnt; 

 

  if first.feecode then do; 

    do i = 1 to 4; 

      feeAmt(i) = .; 

   feeEffDate(i) = .; 

 end; 

 cnt=0; 

  end; 

 

  cnt=cnt + 1; 

  feeAmt(cnt) = providerFee; 

  feeEffDate(cnt) = EffectiveDate; 

 

  if last.feecode then output; 

 

run; 

 

The results for the new look-up table FEECODES are listed in the below table: 

 

FeeCode feeAmt1 feeAmt2 feeAmt3 feeAmt4 effDate1 effDate2 effDate3 effDate4 

A201 1.55 5.5     01/04/2008 01/10/2008     

A202 18.1       01/04/2008       

A203 12 16.54 20.68   01/04/2008 01/10/2008 01/01/2009   

A204 1.55       01/04/2008       

A205 10 14 23.27 30 01/04/2007 01/04/2008 01/10/2008 01/01/2009 

A206 15.51       01/04/2008       

A207 62.04       01/04/2008       

A208 7.76       01/04/2008       

A303 11.45       01/04/2008       

A304 7       01/04/2008       

A305 16.4       01/04/2008       

A310 11 28.44     01/04/2008 01/01/2009     



13 

 

After the new look-up table FEECODES is created, the main table TRANSAMPLE merges with the FEECODES by 
the unique key feeCode. During the merging process, a patient’s visiting date (visitdate) is checked against fee 
effective dates -  feeEffDate in order to retrieve the correct fee. 

 

The following is the SAS® code using a MERGE statement: 

 

proc sort data=data.tranSample out=tranSample; 

  by feecode; 

run; 

 

proc sort data=data.feecodes out=feecodes; 

  by feecode; 

run; 

 

 

data tran_merge_fee (keep=pid did visitdate feecode baseFeeDate baseFee); 

  *- keep variables in a specific order -*; 

  retain pid did visitdate feecode baseFeeDate baseFee; 

  merge tranSample (in=inTrs) 

        feecodes (in=inFee) 

  ; 

  array feeAmt(4) feeAmt1 - feeAmt4; 

  array feeEffDate(4) effDate1 - effDate4; 

  format baseFeeDate yymmdd10.; 

 

  by feecode; 

  if inTrs and inFee; 

  i = 1; 

  do until (feeEffDate(i) = . ); 

    

    if visitdate < feeEffDate(i) then leave; 

 i=i + 1; 

 if i = 5 then leave; 

  end; 

  baseFee=feeAmt(i-1); 

  baseFeeDate=feeEffDate(i-1); 

run; 

 

 

 

Option2: match duplicates using a HASH object. 

 

The SAS® code using a HASH object is as follows: 

data tran_hash_fee(keep=pid did visitdate feecode baseFeeDate baseFee); 

 

  *- keep variables in a specific order -*; 

  retain pid did visitdate feecode baseFeeDate baseFee; 

 

  if 0 then set data.feeschedule(keep=feecode effectiveDate providerFee); 

  length r 8; 

  declare hash h_fee(dataset:"data.feeschedule(keep=feecode effectiveDate 
providerFee)",  

                     multidata:"Y"); 

  rc=h_fee.defineKey("feecode"); 

  rc=h_fee.defineData("effectiveDate", "providerFee"); 

  rc=h_fee.defineDone(); 

 

  format effectiveDate baseFeeDate yymmdd10.; 



14 

 

  do until(eof); 

    set tranSample  end=eof; 

 call missing(effectiveDate, providerFee); 

 

 rc=h_fee.find(); 

 

 

 if rc = 0 then do; 

   baseFee=providerFee; 

   baseFeeDate=effectiveDate; 

 

        h_fee.has_next(result:r); 

   do while (r ne 0); 

  rc=h_fee.find_next(); 

            if visitdate < effectiveDate then leave; 

  else do; 

    baseFee=providerFee; 

         baseFeeDate=effectiveDate; 

              h_fee.has_next(result:r);   

  end; 

   end; 

 end; 

 

 output; 

  end; 

  stop; 

run; 

 

 

 

 

SAS®9.2 allows creating a hash object with multiple data items for each key by indicating “Y” to the hash component 
“multidata” in the hash declare statement. The hash object h_fee is loaded with data from original look-up table 
FEESCHEDULE.  

 

The data step uses the following hash methods to perform the matching process: 

 

- h_fee.find() determines if the key feecode exists in the hash object. If the key is found, h_fee.find() 
returns 0 to rc. 

 

- h_fee.has_next(result:r) determines whether there is a next item in the current key’s multiple data item 
list. If r ne 0, it implies there is another data item in the data item list.  

 

- H_fee.find_next(): retrieves the data items(effectiveDate and providerFee) from the hash 
object(h_fee()). 

 

The patient’s visitdate is checked against effectiveDate in the do while loop until the appropriate fee is found. 

 

 

In order to verify the conversion from a MERGE statement into a HASH object, the user needs to sort variables in 
both data sets with the same variable order before executing PROC COMPARE procedure. 

 

The SAS® codes for PROC COMPARE procedure are as follows: 

 

proc sort data=tran_merge_fee; 

  by pid did visitdate feecode baseFeeDate baseFee ; 

run; 

 



15 

proc sort data=tran_hash_fee; 

  by pid did visitdate feecode  baseFeeDate baseFee; 

run; 

 

proc compare base=tran_hash_fee compare=tran_merge_fee; 

run; 

 

 

The comparing results are as follows: 
 

                                       Observation Summary 

 

                                 Observation      Base  Compare 

 

                                 First Obs           1        1 

                                 Last  Obs          60       60 

 

                 Number of Observations in Common: 60. 

                 Total Number of Observations Read from WORK.TRAN_HASH_FEE: 60. 

                 Total Number of Observations Read from WORK.TRAN_MERGE_FEE: 60. 

 

                 Number of Observations with Some Compared Variables Unequal: 0. 

                 Number of Observations with All Compared Variables Equal: 60. 

 

                 NOTE: No unequal values were found. All values compared are exactly equal. 

 

The following is the sample results from either TRAN_MERGE_FEE or TRAN_HASH_FEE for the feecode - A203, 
A206 and A310. Data shows that each observation from TRANSAMPLE is assigned the correct fee. 

 

 

pid did visitdate feecode baseFeeDate baseFee 

4707 4371 30/04/2008 A203 01/04/2008 12 

5172 19967 25/09/2008 A203 01/04/2008 12 

8548 5974 14/06/2008 A203 01/04/2008 12 

5650 15900 17/12/2008 A203 01/10/2008 16.54 

5690 9218 19/11/2008 A203 01/10/2008 16.54 

402 7343 07/01/2009 A203 01/01/2009 20.68 

5690 9218 09/01/2009 A203 01/01/2009 20.68 

5798 17855 11/03/2009 A203 01/01/2009 20.68 

7401 3631 25/02/2009 A203 01/01/2009 20.68 

9185 8271 11/02/2009 A203 01/01/2009 20.68 

9691 18246 09/12/2008 A206 01/04/2008 15.51 

9691 18246 16/01/2009 A206 01/04/2008 15.51 

1516 12631 31/07/2008 A310 01/04/2008 11 

7792 12747 23/12/2008 A310 01/04/2008 11 

7792 12747 27/01/2009 A310 01/01/2009 28.44 

Note: baseFeeDate: effectiveDate; 

          baseFee: ProviderFee. 

 

CONCLUSION 
 

This paper demonstrates five practical examples by converting MERGE statements into HASH objects.   

 

In a program with MERGE statements, the common variables in BY statement for both tables must be sorted or 
indexed prior to merging. When merging with multiple tables or a table with duplicate keys, the match-merge process 
requires several data steps to complete. 

 



16 

On the other hand, a program with HASH objects loads all look-up tables into memory and no sorting or processing 
of these tables is required. The search is a memory-index search. In addition, the main table can be processed in its 
natural order; since the main table is often a very large table the ability to process this table only one time in its 
natural order will usually result in considerable savings in time and CPU usage. In the end, the whole match-merge 
process can be completed in one data step. 

 

By converting a program with MERGE statements into a program with HASH objects, a user will benefit the following 
advantages: 

 

- Less coding.  A program with HASH objects has more concise and transparent SAS® code. 

- More efficiency. A program with HASH objects is executed significantly faster.  

- Less memory and less amounts disk space required.  

 

REFERENCES 
 

Eberhardt, Peter “The SAS Hash Object: It's Time to .find() Your Way Around". Proceedings of annual 
Pharmaceutical Industry SAS® Users Group Conference, 2010 

 

Liu, Ying “SAS® Hash Objects: An Efficient Table Look-Up in the Decision Tree”. Proceedings of sixteenth Annual 
Southeast SAS® Users Group Conference, 2008 

 

ACKNOWLEDGMENTS 
 

First and foremost, I would like to thank Mr. Peter Eberhardt for his valuable advice. He has greatly inspired me to 
work on writing SAS papers with years of working experience using SAS. His support has motivated me and has 
contributed tremendously to this paper. 

 

CONTACT INFORMATION 
 

Your comments and questions are valued and encouraged.  Contact the author at: 

Ying Liu 

              12 Lisa Cres. 

Richmond Hill, ON  

L4B 3J4 Canada 

Phone: (416) 897-7551 

E-mail: y22liu@yahoo.com 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   

Other brand and product names are trademarks of their respective companies.  

 



17 

APPENDIX 
 

The following tables are used in this paper: 

 

Table: Transactions 

 

Table attributes:  

- PID: patient’s identification # 

- DID: doctor’s identification # 

- Visitdate: the date when a patient visits a doctor 

- Feecode: the code that a doctor uses to charge the service provided to a patient 

 

Key: a combination of PID, DID and visitdate. 

 

Sample data of transactions table: 

 

PID DID visitdate feecode 

903 22006 01/04/2008 A034 

3318 3646 01/04/2008 A003 

3318 3646 01/04/2008 E430 

3318 3646 01/04/2008 G010 

3318 3646 01/04/2008 G310 

3318 3646 01/04/2008 G313 

3318 3646 01/04/2008 G489 

3758 2662 01/04/2008 P007 

3773 5070 01/04/2008 W003 

4384 8975 01/04/2008 A007 

5690 18789 01/04/2008 A244 

5690 18789 01/04/2008 Z296 

5737 21005 01/04/2008 A025 

7037 20743 01/04/2008 C124 

7574 13267 01/04/2008 X091 

7574 13267 01/04/2008 X091 

8363 9314 01/04/2008 G441 

8363 9314 01/04/2008 G442 

8363 9314 01/04/2008 G526 



18 

Table: Doctors 

 

Table attributes: 

- DID: doctor’s identification # 

- Postcode: post code of the clinic where a doctor practises 

- Dob: doctor’s birth date 

- Sex: doctor’s gender (M-Male; F-Female) 

 

Key: DID. 

 

Sample data of doctors table: 

 

DID postcode dob sex 

1088 61761 03/03/1947 M 

17036 75093 05/11/1969 M 

2 K0A1A0 10/02/1942 M 

338 K0A1A0 20/12/1970 M 

717 K0A1A0 01/02/1963 M 

4126 K0A1A0 11/04/1952 F 

4816 K0A1A0 29/11/1969 F 

6821 K0A1A0 08/03/1966 F 

7927 K0A1A0 11/04/1951 M 

10012 K0A1A0 29/01/1952 M 

10388 K0A1A0 15/08/1950 M 

13847 K0A1A0 17/07/1967 F 

15026 K0A1A0 28/01/1948 M 

15209 K0A1A0 03/04/1956 F 

20843 K0A1A0 20/03/1956 M 

7104 K0A1B0 01/10/1956 F 

69 K0A1L0 02/11/1972 F 

615 K0A1L0 21/06/1980 F 

1531 K0A1L0 05/10/1969 F 

 

 



19 

Table: Patients 

 

Table attributes: 

- PID: patient’s identification # 

- Postcode: post code of a patient’s residence 

- Dob: patient’s birth date 

- Sex: patient’s gender (M-Male; F-Female) 

 

Key: PID 

 

Sample data of patients table: 

 

PID postcode dob sex 

148975 K0K 1C0 07/06/1953 M 

193575 L0N 1S4 12/09/1927 M 

275667 N0G 2W0 08/04/1970 F 

278728 K0A 1T0 21/04/1966 F 

296583 P0T 2P0 25/10/1997 F 

305558 P0H 1Z0 16/03/1987 F 

405856 L0M 1S0 20/03/1996 F 

408678 L0N 1S1 26/07/1964 F 

424492 K0L 1C0 16/11/1938 F 

495503 K0J 2J0 26/12/2007 F 

524858 K0K 1C0 29/03/1954 M 

698672 K0L 1C0 10/09/1962 F 

870433 N0H 2L0 06/01/1956 M 

898724 N0R 1G0 15/03/1946 M 

1052342 L0S 1N0 22/07/1975 F 

1078899 L0M 1A0 25/05/1927 F 

1121035 K0M 1S0 18/07/1939 F 

1156741 K0A 1L0 16/03/1960 M 

1185735 K0A 1R0 21/01/1955 F 

 



20 

 

Table: transactions_w_pcode 

 

Table attributes:  

- PID: patient’s identification # 

- Postcode: post code of a patient’s residence 

- DID: doctor’s identification # 

- Visitdate: the date when a patient visits a doctor 

- Feecode: the code that a doctor uses to charge the service provided to a patient 

 

Key: a combination of PID, DID and visitdate. 

 

Sample data of transactions table: 

 

PID postcode DID visitdate feecode 

30 M4S 3H2 3540 03/06/2008 G310 

30 M4S 3H2 3540 03/06/2008 G700 

30 M4S 3H2 11367 08/12/2008 A903 

30 M4S 3H2 11367 08/12/2008 G310 

30 M4S 3H2 11367 08/12/2008 G489 

30 M4S 3H2 13197 28/08/2008 G313 

30 M4S 3H2 13197 08/12/2008 G313 

30 M4S 3H2 16125 03/06/2008 G313 

30 M4S 3H2 17768 04/04/2008 A001 

30 M4S 3H2 17768 15/07/2008 A007 

30 M4S 3H2 17768 26/08/2008 A003 

30 M4S 3H2 17985 09/12/2008 S323 

30 M4S 3H2 18644 19/01/2009 A007 

30 M4S 3H2 18799 28/08/2008 A035 

30 M4S 3H2 18799 28/08/2008 G310 

30 M4S 3H2 18799 28/08/2008 G489 

30 M4S 3H2 18799 09/12/2008 G224 

30 M4S 3H2 18799 09/12/2008 S323 

30 M4S 3H2 18799 10/12/2008 C032 

 



21 

 

Table: FeeSchedule 

 

Table attributes: 

- Feecode: the code that a doctor uses to charge the service provided to a patient 

- EffectiveDate: the date when the providerFee is effective 

- EndDate: default to 99999999 

- ProviderFee: the amount of money charged on the corresponding service code 

 

Key: a combination of FeeCode and EffectiveDate. 

 

Data in FeeSchedule: 

 

FeeCode EffectiveDate EndDate ProviderFee 

A201 2008-04-01 99999999 1.55 

A201 2008-10-01 99999999 5.5 

A202 2008-04-01 99999999 18.1 

A203 2008-04-01 99999999 12 

A203 2008-10-01 99999999 16.54 

A203 2009-01-01 99999999 20.68 

A204 2008-04-01 99999999 1.55 

A205 2007-04-01 99999999 10 

A205 2008-04-01 99999999 14 

A205 2008-10-01 99999999 23.27 

A205 2009-01-01 99999999 30 

A206 2008-04-01 99999999 15.51 

A207 2008-04-01 99999999 62.04 

A208 2008-04-01 99999999 7.76 

A303 2008-04-01 99999999 11.45 

A304 2008-04-01 99999999 7 

A305 2008-04-01 99999999 16.4 

A310 2008-04-01 99999999 11 

A310 2009-01-01 99999999 28.44 

 

 

 



22 

 

Table: tranSample 

 

Table attributes:  

- PID: patient’s identification # 

- DID: doctor’s identification # 

- Visitdate: the date when a patient visits a doctor 

- Feecode: the code that a doctor uses to charge the service provided to a patient 

 

Key: a combination of PID, DID and visitdate. 

 

All data in tranSample: 
 

PID DID visitdate feecode 

402 7343 16/04/2008 A204 

402 7343 07/01/2009 A203 

1516 12631 31/07/2008 A310 

1531 2256 22/04/2008 A204 

1531 2256 22/07/2008 A204 

1531 2256 20/01/2009 A204 

1797 8636 10/02/2009 A205 

3029 3547 04/11/2008 A204 

3513 244 25/11/2008 A205 

3957 22107 27/03/2009 A205 

4448 648 11/09/2008 A205 

4707 4371 30/04/2008 A203 

4707 4371 05/06/2008 A204 

4707 4371 18/08/2008 A204 

4707 4371 07/10/2008 A204 

4707 4371 26/11/2008 A204 

4707 7158 13/12/2008 A205 

5172 19967 28/08/2008 A205 

5172 19967 25/09/2008 A203 

5172 19967 19/12/2008 A204 

5172 19967 03/03/2009 A204 

5650 15900 12/11/2008 A205 

5650 15900 17/12/2008 A203 

5650 20089 27/02/2009 A205 

5690 9218 23/09/2008 A205 

5690 9218 19/11/2008 A203 

5690 9218 09/01/2009 A203 

5798 17855 29/01/2009 A205 

5798 17855 15/02/2009 A204 

5798 17855 17/02/2009 A204 

5798 17855 24/02/2009 A204 

5798 17855 11/03/2009 A203 

6263 13604 13/05/2008 A205 

6671 19470 18/11/2008 A205 

6846 20089 14/11/2008 A205 

6846 20089 24/03/2009 A204 

6846 22107 31/03/2009 A204 



23 

7250 15718 20/03/2009 A205 

7379 1880 25/02/2009 A204 

7379 8113 22/02/2009 A204 

7401 3631 25/02/2009 A203 

7792 12747 23/12/2008 A310 

7792 12747 27/01/2009 A310 

7959 8978 02/07/2008 A205 

8330 13604 01/12/2008 A205 

8330 13604 22/01/2009 A205 

8548 5974 14/06/2008 A203 

8548 8978 09/06/2008 A205 

8859 9218 21/08/2008 A205 

9168 18377 28/10/2008 A205 

9168 18377 24/11/2008 A204 

9168 18377 16/12/2008 A204 

9185 8271 06/06/2008 A204 

9185 8271 29/09/2008 A204 

9185 8271 11/02/2009 A203 

9691 18246 21/10/2008 A205 

9691 18246 09/12/2008 A206 

9691 18246 16/01/2009 A206 

11241 2256 05/05/2008 A204 

11455 20900 25/09/2008 A204 
 

 

 

 

 

 


