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Introduction:  
 
 Time series quite often show patterns that repeat periodically.  Monthly retail 
sales provide a good example.  If the seasonality is very regular, seasonal dummy 
variables can be used to give, for example, a monthly effect for each month.  With this 
approach, the January effect is assumed to be the same regardless of the year.  Seasonal 
ARMA error terms can be added to make some local modifications.  An alternate model 
that is useful when the seasonality changes over the years is the seasonal unit root model.  
Motivated by Box and Jenkins’ approach to modeling international airline ticket sales, 
this method takes a span d difference for seasonality d, e.g. d=12 for monthly data, and 
analyzes these seasonal span differences. Using the backshift operator B, the polynomial 
(1-Bd) represents the span d difference.  Tables of percentiles for testing that the 
polynomial has unit roots (as does 1-Bd) are available (Dickey, Hasza, Fuller, 1984, 
henceforth “DHF”) for seasonal periods d=2, 4, and 12.  As with ordinary (d=1) unit root 
tests, these are nonstandard distributions that shift when typical deterministic inputs like 
seasonal means are included in the model.  It is possible that a user may want to test for 
unit roots at a longer lag, for example one might suspect periodicity 24 or 7x24=168 in 
hourly data and hence might ask if unit roots at those lags give an appropriate model. 
This paper deals with large d results for unit root tests. Some features emerge that are 
nicer than those of the shorter period cases.  This paper is a slight modification of a paper 
(Dickey, 2008) delivered at the 2008 Joint Statistics Meetings.  A followup paper with 
more mathematical detail and somewhat improved but more complex adjustments is to 
appear in the Journal of the Korean Statistical Society in 2010.  
 
The lag d model 
 
Let Yt denote data at time t, d denote the period of seasonality and B the standard 
backshift operator so  BdYt = Yt-d.  A simple model relating Yt to Yt-d is   
 
   Yt –f(t) = α(Yt-d –f(t-d)) + et  
 
where et is white noise (independent sequence of shocks)  and f(t) represents 
deterministic terms such as a constant mean,  seasonal means, sinusoid, and trends.  If 
α=1 then the seasonality is stochastic, a span d difference would be applied, and any 
perfectly periodic component in the f(t) would be differenced out of the data. The 
distributional results when α=1 (but not otherwise) do not depend on the nature of these 
components so, for simplicity, we begin with the mean 0 assumption, f(t) =μ=0, known 
starting values Y-j=μ=0 for j=0,1,2,…,-d+1 and n=md, that is, complete seasons. The 
results carry over into more realistic scenarios.   
 

1 
 



In order to study the behavior of the least squares estimate of α, a properly normalized 
version of the estimator is computed as follows:        

ˆ( )m d α α− = 1 2 1
( 1) 1 ( 1) ( 1) 1

1 1 1 1
[(1/ ) ] / [ ]

d m d m

d i s d i s d i s
s i s i

d m Y e m d Y− − − 2
− + − − + − + −

= = = =
∑∑ ∑∑ ,  

which is a ratio of two normalized sums. In this expression s is the period (or season) 
within a seasonal cycle of d time periods.  For monthly data d=12 and s=1 is the January 
index.  Here i represents the cycle (the year for example) so the time subscript t is t=d(i-
1)+s when i-1 cycles have passed and we are in period s of the ith cycle.  A table for m=2 
years of quarterly (d=4) data under our model appears below where i indexes the rows 
and s the columns.  Writing Y with double subscripts like Yi,s as shown will be useful 
later.  

Y1=e1  
(Y1,1) 

Y2=e2 
(Y1,2) 

Y3=e3 
(Y1,3) 

Y4=e4 
(Y1,4)

Y5=e5+αe1 
(Y2,1) 

Y6=e6+αe2
(Y2,2) 

Y7=e7+αe3
(Y2,3) 

Y8=e8+αe4 
(Y2,4) 

 
Testing whether α=1 or not is referred to as unit root testing. In the unit root testing 
literature, the centered and standardized estimate shown here is referred to as the 
“normalized bias”.  Imagine the table above continuing for more years (rows) m.  The 
white noise terms et appearing in any column appear in no other column.  It follows that 
if the et series is independent then the numerator is the sum of d independent identically 
distributed terms.  The powers of m used in normalization follow from previous work on 
unit roots.  The important thing is that the numerator and denominator are both sums of 
independent and identically distributed terms.  As in the nonseasonal case, the 
distributions of the estimator and t test are nonstandard even in the limit and these 
distributions change as various commonly used deterministic terms are added to the 
model.  Behaviors for some d values, d=2,4,12 for example, have been studied with 
results suggesting nonstandard distributions. In particular, the t statistics for these cases 
do not approach the standard normal distribution, N(0,1) as m increases.  
 
The large d case 
 
Having reviewed results for small seasonal lag d, we turn to a study of limits as d 
increases.  Our interest herein lies in investigating large d asymptotics with the idea in 
mind of analyzing daily or weekly data over years, hourly data over weeks, etc.  Recall 
that the estimator is a ratio of two sums. The terms in the numerator have mean 0 and are 
identically distributed with variance approximately σ4/2 when m and d are large.  The 
denominator is approximately 2σ /2 when m and d are large. The variance of the ratio is 
then approximately σ4/2 divided by ( 2σ /2)2, that is, the variance is approximately 2.  The 
usual central limit theorem applies here and ensures that the distribution approaches a 
normal distribution as m and d get large.  In summary, the normalized estimator 
approaches a N(0,2) distribution when α=1 and m and d are large. 
 
The t statistic in this case has the same limit as the statistic obtained from ˆ( )α α−  by 
replacing the denominator by its square root multiplied by σ.  Writing this least squares t 

2 
 



test and applying our limit results, it follows that, if m and d increase in any order, the t 
statistic converges to a standard normal, N(0,1).   
 
Improving the normal approximation 
 
While the normal limit is a very nice result, it is clear from the tables of Dickey, Hasza 
and Fuller (DHF) that the d values for quarterly or monthly data are not sufficiently large 
for these limit results to be used, that is, those tables are far from N(0,1) even for large m. 
A simple adjustment given below will help here. The normality is coming mostly from 
increasing d, not m.  We look at what happens as d gets large in the hope that this will 
approximate the behavior of our statistics for large but fixed d.   
 
The DHF paper gives percentiles for the t statistic in the regression of Yt – Yt-d on Yt-d 
(no intercept) for some common seasonal periods d=2, 4, 12. The 5th and 95th percentiles 
for large samples in monthly (d=12) data are -1.80 and 1.52 which differ by 3.32. This is 
close to 2(1.645)=3.290, the normal table spread.  They average to -0.14, exactly the 
median shown in the DHF table. Thus a simple centering on the median appears to give a 
distribution with 5th and 95th percentiles very close to those of a normal.  The medians of 
the t statistic’s distribution for d=2, 4, 12 are -0.35, -0.24, and -0.14 for the limit cases, 
according to DHF, table 3.  Corresponding values  of 1/(2 )d−  are −0.3536,  −0.2500, 
and  −0.14434 thus giving a very simple adjustment that converges to 0, the N(0,1) 
median.  A plot of the DHF medians versus 1/ d  is shown in Figure 1.  
 
Figure 1:  Medians of Tau versus 1/ d  

                                
The relationship is remarkably linear.  A regression of the medians on 1/ d indicates an 
intercept near 0 and slope near -0.5, suggesting 1/(2 )d−  as a median bias correction. 
 
Table 1 shows the limit percentiles from DHF (“med” is their median) and those of a 
standard normal in the last row.  Subtracting   1/ (2 )d  from each of the percentile 
columns gives adjusted percentiles that are almost constant and are close to the standard 
normal values in the last row.  Roy and Fuller (2001) discuss another median unbiased 
estimator for near unit root series. Because our tau percentiles are approximately those of 
Z 1/(2 )d−  with Z~N(0,1) the practitioner can simply compute tau with a regression 
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program, add 1/ (2 )d , and compare to the standard normal distribution.  This strategy 
works remarkably well when d is at least 4.  It will work for quarterly, monthly, weekly 
or daily data for example.  See Appendix B for more on this adjustment.  
 
Table 1: Median Shifts and Tau Percentiles. 
 
  d     med    -1/(2 d )        p01       p025        p05        p10 
 
  2   -0.35     -0.35355   -2.67990   -2.31352   -1.99841   -1.63510 
  4   -0.24     -0.25000   -2.57635   -2.20996   -1.89485   -1.53155 
 12   -0.14     -0.14434   -2.47069   -2.10430   -1.78919   -1.42589 
inf    0.00       0        -2.32685   -1.96046   -1.64535   -1.28205 
 

The simple median based shift brings all the listed percentiles remarkably close to those 
of the standard normal in this limit case. We now investigate the distribution for finite m. 
Simulations were run using m=100 and various d.  Two sets of 40,000 were generated for 
each (m,d) combination. One run used d=365 and m=100, thus representing daily data 
over 100 years, ignoring leap year effects. This run involved 36500x40000 = 1.46 billion 
generated data points. All simulations were run in SAS1 which, for the run just 
mentioned, took about 10 minutes. The shift just mentioned was applied to the tau 
statistics and the results graphed.  Figure 2 displays the empirical percentiles as small 
circles plotted against 1/ d .  Horizontal reference lines are at the corresponding 
standard normal percentiles with a reference standard normal density on the left to 
annotate the plot. The diameters of the circles are about 6 times the maximum standard 
error of the empirical percentiles.  
 
Figure 2. Adjusted t Statistics 

                  
 
                                                 
1 SAS is the registered trademark of SAS Institute, Cary, NC.  
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The rightmost points are for d=1 and those in the middle for d=2.  While these two cases 
do not match the normal as well as the others, even these are in the vicinity of the normal 
values.  For d=4 or more, the discrepancy appears to be less than the radius used for 
drawing the small circles and the approximation is excellent across the typical range of 
percentiles used in testing (0.01, 0.025, 0.05, 0.10, 0.25, 0.50,…, 0.99).    
 
A similar but unadjusted graph for the normalized bias is shown in Figure 3.  Here too 
there is a rather smooth approach to the normal limit but it appears that without 
adjustment, the seasonal lag d must be quite large for the normal approximation to be 
effective.  The middle 90% range of the empirical distributions is not constant so a simple 
shift such as the one that was so effective with tau will not likely be of use here.  A few 
attempts at finding simple mean and variance adjustments to bring the distribution more 
in line with a standard normal for small d did not produce results worth reporting .  We 
thus recommend the use of the studentized statistic t with the median adjustment for unit 
root tests when d is 4 or more.  
 
 
Figure 3:  Normalized Bias and Limit Percentiles 
                 

                    
 
 
While the t test results are appealing, recall that the simulations on which they are based 
were for m=100 periods of period length d, for example, 100 years of monthly (d=12) 
data. This seems a rather large number of periods for practical use.  To look at the effect 
of smaller sample sizes, similar sets of histograms and empirical percentiles were 
computed for samples of 40,000 runs each but with m=5 and 10 instead of 100.  Since the 
tau statistic has clearly superior performance for large m, we show only the graph of the 
tau percentiles in Figure 4.   
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Figure 4:  Studentized (t) Statistics for m=5 and 10   
 

 
 
While the top few percentiles in these plots are somewhat off from the normal limits for 
smaller d (larger 1/d), the percentiles that are used in practice are those toward the bottom 
of the plots. These are impressively close to the normal reference lines. 
 
Deterministic Trend and Seasonal Components 
 
As happens in the DHF paper, the addition of seasonal means to the model produces d 
numerator terms that no longer have mean 0.  In small fixed d (2, 4, 12) cases considered 
in DHF, this causes additional complications even in the limit as m gets large.  The same 
would be true here if we were to use seasonal means.  However, it seems to us unlikely 
that a practitioner would do so with large d.  For example, in hourly data with a one week 
lag, d is 24(7) = 168 and it seems unlikely that a set of 167 dummy variables would be 
used.  Rather it would seem that some smooth periodic function, like a sine and cosine 
combination of period 168 and possibly a few harmonics, would be used to model the 
seasonal deterministic piece.  Of course this is of practical interest since we expect people 
to do this test when they observe what appears to be a seasonal pattern.  Thus a model 
that explains seasonality is called for and the question as to whether this is an exactly 
repeating deterministic pattern or a seasonal unit root process enters the picture.  
 
One of the nicest results of our large d asymptotics is the effect of a fixed number of 
deterministic regressor terms.  These could be sinusoids as just described, a linear time 
trend with or without trend breaks, or most any set of regressors as long as the number is 
fixed as d gets large.  This means that in practice we want that number to be substantially 
smaller than d.   
 
To illustrate what happens, let us take the case of a single intercept term added to the 
regression.  We then are regressing the response vector Y with elements Yt on a column 
of 1s that we symbolize 1 and a column Y(-1) of lagged (by d) Y terms.  Alternatively we 
could first subtract the mean of all the data from the columns of current and lagged Y 
values then regress the time t deviations on their predecessors without an intercept.  The 
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sample mean is the mean of the individual channel means (the January mean, February 
mean … December mean in a monthly case) and appealing to known results in the unit 
root literature, the variance of each of these means is of order m and within each channel, 
the variance of the last data point is also m so in this sense the data and the mean are of 
the same order. Note however that we are going to average d of these means rather than 
fitting separate means to each channel so as always happens with averages of 
independent variables, the overall average has a variance proportional to 1/d with the 
ultimate conclusion being that if a finite number (in practice much smaller than d) of 
covariate effects are removed prior to performing a seasonal unit root t test, the effect on 
the distribution will disappear as d increases.  Suppose some other adjustment is made, 
for example suppose a sine and cosine of period d are used to fit a sine wave to the data 
and/or an overall linear trend is included.  Using the same logic, it can be shown that 
these too have negligible effects on the distribution under the unit root null hypothesis 
when d is large. A more mathematical exposition is given in Dickey (2008).  
 
For higher order models, the methods of DHF can be used here.  The procedure is to 
model the seasonal differences as an autoregressive process or order p which gives white 
noise errors under the null hypothesis.  Now filter the data in levels with the resulting 
backshift operator and regress the errors from the autoregressive fit on the seasonal lag of 
these filtered observations and the lagged differences of the original data to produce the t 
test.  More methodological details are in Appendix A and the following example 
illustrates the procedure.  
 
Example 
 
Figure 5 shows 757 observations of weekly data on working natural gas in underground 
storage in billions of cubic feet as reported on the department of energy’s Energy 
Information Agency web page.   
 
Figure 5.  Natural Gas   
 

 
We will analyze the data shown, although another approach would be to start with an 
ordinary first difference then check for an additional seasonal unit root with the 
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methodology just described. The periodogram indicates a fundamental sinusoid of period 
52 and one harmonic.  We will work with sinusoidal regressors and a linear trend as the 
components of f(t) then see if the apparent seasonality is of the unit root type or if, 
instead, the residuals from f(t) appear stationary.  
 
Taking span 52 differences 52׏rt of the residuals rt in the regression described above, a 
lag 2 autoregression with parameters  1.38 and -0.39 appears to be sufficient so we now 
work with  Yt = rt  − 1.38rt-1+ 0.39rt-2. The Ljung-Box test statistics up through lag 48 (in 
increments of 6) show no lack of fit for this AR(2) model. The fact that the 
autoregressive operator has a root near 1 suggests that the differences of the data might 
also be analyzed. This was tried with results similar to the ones shown here.  Under the 
null hypothesis, according to DHF, our Yt should be approximately a seasonal random 
walk.  We next run the regression of the span 52 difference Yt- Yt-52  on Yt-52 and lagged 
difference Yt-1-Yt-53 giving a test of our seasonal unit root null hypothesis 1ρ = and an 
update for our autoregressive parameter estimates.  The t statistic for Yt-52 is −26.25 and 
the update for the AR(1) parameters are very small.  The adjusted t, −26.25+ 1/(2 52 ) is 
clearly still very highly significant.  Dickey and Zhang (2010) show that  

2 (2 1) 2
3 2

k
d d

+
+  provides an even better bias adjustment when k regressors are used, 

but the test statistic so strongly rejects the null hypothesis that the adjustments hardly 
matter.  The coefficient on Yt-52 estimates 1ρ −  and that coefficient is near −1, indicating 
that the seasonal AR coefficient ρ may in fact be near 0, that is, the sinusoid may have 
completely accounted for all of the seasonality. 
 
The fit is excellent.  The model was refit, withholding data starting January 1, 2007. A 
plot of the data (squares) forecast and forecast error bands is given in the left panel of 
Figure 6. The historic error bands are so tight as to be almost indistinguishable from the 
data and forecasts. The fit to the withheld data is also excellent and the forecast bands 
begin to spread slightly there.   
 
Figure 6: Crossvalidating the Gas Model 
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A model often encountered in seasonal time series, the “airline model” of Box, Jenkins,  
and Reinsel (1994) was fit to the data as well.  In that model, both first and span 12 
differences are taken.  Forecasts and error bands are shown in Figure 6, right side. The 
span 52 moving average coefficient was quite close to the unit root boundary.  This is 
indication of overdifferencing at the seasonal span, consistent with our findings.  In 
addition, warning messages about convergence were encountered.  The error variance 
was larger than that of the sinusoidal model.  Comparison of the prediction intervals 
underscores the importance of carefully deciding about seasonal unit roots.  
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Appendix A:  
 
The basis for the methodology in the example is given in DHF.  One example of a  
seasonal multiplicative model is (1 )(1 )d

t tB B Y eρ α− − =

1

and one can write e as a function 
of the two parameters and expand it in Taylor’s series about initial estimates that are 
consistent under the null hypothesis ρ = .  We have 
            0 0 0( , ) (1, ) [(1 ) ]( 1) (1 ) ( )d d

t t t te e B B Y B B Yρ α α α ρ α α= − − − − − − R+
where R is a Taylor’s series remainder.  Given an initial estimate, 0α , of α we are 
motivated to regress (1, )te α on 0t d t dY Y 1α− − −−  and 1 1t t dY Y− − −−  
 
 
Appendix B:  
 
One motivation for the median adjustment can be seen by taking the second order Taylor 
Series expansion    

    
3

0 0 0 0 0 0
1/ / (1/ )( ) / (
2

Y X Y X X Y Y Y X X X= + − − − 0 )  
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    2 5/2 2 3/2
0 0 0 0 0 0 0

30( ) / 2 ( )( ) / 2 2 ( )( ) / 2
4

Y Y Y X X X X X X Y Y R− −+ − + − − − − +  

where R is a Taylor series remainder.  Take Y to be the sum of d numerator terms 
Y= , Y0 =0 to be the expected value of Y, X to be the sum of d denominator terms 

X= , and X0 to be the expected value dm(m-1)/2 of X .  Here each Ni is of the form 
iN∑
iD∑

, 1 /i t itY e 2σ−∑ in our double subscript notation and each Di of the form 2 2
, 1 /i tY σ−∑ . 

Thus /t Y X= is the t statistic with the error mean square set to its limit 2σ .  Since 
Y0=0 =E{X-X0} we have, ignoring the remainder,  { } { / }E t E Y X= ≈      

3/2
0 0{( )( )}0X E X X Y Y−− − − .  Using 0 0{( )( )}E X X Y Y− −  = dm(m-1)(m-2)/3 (Dickey, 

1976) we find that 3/2{E X −
0 0 0)( )} (( 2)X X Y Y m− = −( / 3) / ( ( )dm m− − − =1) / 2−  

2( 2) / (3 ( 1)) 1/ (2.17 )m dm m− − − ≈ − d . This approximation is close to our 

suggested 1/ (2 )d−  median adjustment.   
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