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ABSTRACT 
 
Multinomial ordinal data arise when measures of an outcome are scaled into ordered categories. The ordinal data 
can be analyzed using multinomial logit models (Agresti 2002). But the analysis is often complicated by the 
clustering nature of the data. One approach to handling intra-cluster correlation is logistic regression using a random 
intercept. Another approach is using random-intercept multivariate logit model, in which multiple logits of the 
outcomes are assumed to share a common random intercept. 
 

The multivariate modeling approach can be further extended by incorporating a vector of Multivariate Normal random 
intercepts to allow more flexibility in the correlation structure among multivariate outcomes. In this paper we describe 
a continuation-ratio logit model with Multivariate Normal random intercepts and use SAS PROC GLIMMIX to fit the 
model to survival data among premature infants admitted into hospital neonatal intensive care units.  

 

INTRODUCTION 
 
Multinomial ordinal data arise when measures of outcomes are scaled into ordered categories and multinomial logit 
models can be used for the analysis of the data [1]. In neonatal clinical research, data collected are often 
multinomial ordinal, taking the form of presence or absence of an outcome of interest at a number of progressive 
time points. For example, the clinical investigation that motivated this work concerns with mortality and morbidity of 
extremely preterm infants in the first few hours after birh (i.e., 12 or 24 hours) and then afterwards until 120 days. 
The multinomial data to be analyzed are the numbers of deaths or incidences of morbidity in two consecutive time 
periods, less than 12 or 24 hours after birth, 12 or 24 hours – 120 days, and the number of survivors after 120 days. 
As frequently encountered in clinical research, the analysis of such data is complicated by the clustering nature of 
the data. The study recruited infants from multiple medical centers and large differences in mortality and morbidity 
among the centers have been observed (Vohr and Wright et al. 2004, Cotton and Oh et al. 2005, Walsh and Laptook 
2007). Even after accounting for center differences in confounding factors such as birth weight, gestational age and 
antenatal steroid use, these differences persisted (Tyson and Younes et al. 1996). 
 

One approach to modeling outcome data from multiple centers is logistic regression that uses a random intercept to 
represent extra variation among centers. But taking this approach of logistic regression with a random intercept, one 
will need to dichotomize the multinomial outcome and fit separate models for each recoded binary outcome. Another 
approach is random-intercept multivariate logit model, in which logits of the outcomes are assumed to share a 
common random intercept (Das, Poole and Bada 2004). Although this approach is statistically more efficient than 
fitting separate models for each outcome, it is not well suited for multinomial ordinal data such as the 
aforementioned infant mortality or morbidity data. It may be realistic to assume a common random intercept where 
the multiple outcomes may measure the same underlying phenomenon. But the magnitude of intra-center variation 
of mortality or morbidity can be very different over a number of progressive time periods. Furthermore, the 
assumption of a shared common random intercept prevents the estimation of the covariance among the multinomial 
outcomes. It can be of clinical importance to assess whether a center’s performance on mortality and morbidity 
outcomes in an early period is predictive of its performance in a late period and identify factors associated with the 
center variations. 
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Coull and Agresti (2000) extended the multivariate approach by incorporating a vector of multivariate normal random 
intercepts in the continuation-ratio logit models for the analysis of categorical data. This model is a special case of 
the multivariate generalized linear mixed models and is not limited to the analysis of categorical data. In this paper, 
we describe the continuation-ratio logit model with multivariate normal random intercepts and apply it to model 
deaths among very premature infants admitted to hospital neonatal intensive care units (NICU) as examples. We will 
illustrate the modeling process using PROC GLIMMIX in the recently released SAS® 9.2 (SAS Institute 2009). The 
estimation results from logistic regressions with random intercepts are also obtained for comparison. 

 

STATISTICAL MODEL AND DATA 

 

MODEL 

 
Suppose that the outcome of interest may fall into one of the J ordinal categories. Let the multinomial response 
probability for the jth category be pj, j=1, 2, … , J. The corresponding probability conditional on the response falling 
into the jth category or afterwards is 

 

j = pj / (pj +…+ pJ). 
 

The continuation-ratio logit for the jth category, j=1, … , J-1, is defined as the logit of this conditional probability, that 
is, 
 

logit(j) = log(pj / (pj+1 +…+ pJ)). 
 

Although other forms of logit can be defined and modeled for an ordinal multinomial outcome, the use of the 
continuation-ratio logit is convenient in that a multinomial logit model can often be estimated by separately fitting a 

binary logistic regression model for each logit(j). The models can be estimated and interpreted in ways more 
familiar to epidemiologists. 
 
The formulation of a multivariate continuation-ratio logit model for clustered data in the settings of multi-center 
studies, experiments on animal litters, or longitudinal repeated measurement studies features a cluster-specific 
vector of random intercepts [7]. Specifically, denote the vector of the continuation-ratio logits for a cluster or 

individual s by s = (s1, s2 , … , s(J-1)), s=1,…,N, the model is of the form 
 

logit(s) = s + Xs  
 

where s is a vector of J-1 random intercepts and assumed to follow a multivariate Normal distribution, MN(0,), and 

 is a vector of coefficients for the covariate matrix Xs representing fixed effects to be estimated. The variance-

covariance matrix  specifies the correlation structure among the continuation-ratio logits. 
 

The estimation of this model usually involves complex multidimensional integral approximation, and computational 
techniques such as multiple quadrature or Monte Carlo EM algorithms may be used. Because this model is a special 
case of the multivariate generalized linear mixed models, we used PROC GLIMMIX to estimate the model 
parameters. The model estimation methods are based on restricted pseudo-likelihood in PROC GLIMMIX. 

  

DATA AND MODEL FITTING 

 

The Neonatal Research Network (NRN) of the Eunice Kennedy Shriver National Institute of Child Health and Human 
Development (NICHD) of the U.S. National Institutes of Health supports a registry of infants between 22 0/7 to 28 6/7 
weeks (<29 weeks) inclusive gestational age or between 401 grams to 1000 grams inclusive birth weight admitted to 
the NICUs of participating centers. The data used for our example analysis were taken from the NRN registry. All 
inborn infants during 1998 and 2007 with birth weights of 401-1000 grams in the registry were included in our 
analysis. One clinical center was excluded due to small number of infants. The outcome of interest was the early 
death in the first 24 hours after birth and the late death between the first 24 hours and 120 days. Identifying 
predictors of neonatal survival has been of great interests to clinicians who desire to make evidence-based decisions 
on clinical management (Tyson and Parik et al. 2008, Higgins, Delivorial-Papadopoulos and Raju 2005, 
Ambalavanan and Carlo 2001, 2005). Two major research questions are to be addressed. First, the effects of 
potential predictors of infant survival will be estimated and the differences in the estimated effects on the early death 
and the late death will be tested. Second, the variance-covariance structure between a center’s early death rate and 

https://neonatal.rti.org/dsp_LeaveSiteWarning.cfm?extlink=http://www.nichd.nih.gov/about/overview/&returnlink=/about/network.cfm
https://neonatal.rti.org/dsp_LeaveSiteWarning.cfm?extlink=http://www.nichd.nih.gov/about/overview/&returnlink=/about/network.cfm
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its late death rate will be assessed and the correlation will be tested. The potential predictors of death included 
neonatal characteristics such as gestational age, birth weight, sex and race, pregnancy complications such as 
multiple birth and antepartum hemorrhage, and labor and delivery information such as use of antenatal steroid and 
antibiotics and C-section. In addition, the effect of respiratory support at age 24 hours, which is unlike other 
predictors and available only among infants who survived beyond the first 24 hours, was examined.  
 
The input data file must be properly prepared to make use of the multivariate modeling feature of PROC GLIMMIX, 
one record corresponding to each dependent variable for an individual. In the case of our analysis of the early death 

and the late death, the dependent variables are the continuation-ratio logits, logit(1), the log-odds of the early death, 

and logit(2), the log-odds of the late death conditional on survival during the first 24 hours. We created a binary 
dependent variable of death and an indicator of the time period corresponding to the dependent variable in the input 

data to represent the two logits. All infants had records for the dependent variable with its value being logit(1) and 
the value of the indicator being the first 24 hours, and infants who lived longer than 24 hours also had records for the 

dependent variable with its value being logit(2) and the value of the indicator being the 24 hours - 120 days. 
 
The indicator of the time period was treated as a class random-effect variable in our models. Various forms of the 
variance-covariance matrix available in the PROC GLIMMIX were specified for them to model the correlation 
structure between the continuation-ratio logits. Because the coefficient vector for the predictors represents fixed 
effects common for the two logits, the interaction terms between the indicator of the time period and the predictors 
were also included in the model to obtain the fixed-effects estimates unique to each of the two logits. We also 
included the predictor, respiratory support at age 24 hours, in our models. Because data on this predictor were 
collected at the 24 hours of life, the value of this predictor was set to be zero in all records for the values of the 

dependent variable corresponding to logit(1) in the input data and only its effects on logit(2) were estimated. 
 

Sample SAS Code 
 

Data modelingdata; 

 

Set babies; /* one row for each baby */ 

response = death24; 

respsuppt1=0; /* a covariate available only after 24
th
 hour */ 

dthtime="Early(<24hours)        "; /* indicator of time period */ 

output; 

response = death24_120; 

 respsuppt1=respsuppt; 

dthtime="Late(24 hrs – 120 days)";  

if death24_120>. then output; 

 

keep center patientid response dthtime  

gestage gestage_rc birthwt bwt100 wtle700g gwksle24 antibio aphemor 

mhyper edu_hs male antester apgar5_4 multbrth csect intub white 

respsuppt1; 

 

run; 

 

%macro joint_m(cs, catcov, predictors); 

proc glimmix data=modelingdata pconv=.0000002 ic=Q; 

class center dthtime &catcov; 

model response (event="1") = dthtime &predictors  

                            / noint dist=binary solution; 

random dthtime / subject=center type=&cs g; 

*nloptions absfconv=.0001;  

run; 

%mend; 

 

We produced estimation results from a number of models. First, we fitted two separate logistic regression models 
with random intercepts by the medical center for the early death and for the late death excluding infants who died in 
the first 24 hours. Second, we jointly modeled the early death and the late death by fitting the multivariate random-
effects continuation-ratio logit models. The forms of variance-covariance matrix for the random intercepts specified 
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included variance components, compound symmetry, main diagonal and unstructured. And finally, we added the 
predictor, respiratory support at age 24 hours, in the multivariate random-effects continuation-ratio logit models. 

 

RESULTS 

 

The frequency distributions of the infant deaths and the predictors are summarized in Table 1. There are about equal 
numbers of the early deaths and the late deaths in the data.  

 
The estimated coefficients for the predictors and variance-covariance estimates are summarized in Table 2. The 
multivariate logit model and the two univariate logistic regression models with random intercepts show very similar 
results. The estimated coefficients are close and their standard error estimates are essentially identical. It can be 
seen that the predictors have different effects on the early death than on the late death in terms of the magnitude of 
strength and level of significance. For example, the effect of gestational age is much stronger on the early death 
than on the late death. The effect of antepartum hemorrhage is significant on the early death but not on the late 
death. Multiple birth and intubation have significant and negative effects on the early death, reducing the log-odds of 
the early death, but they show positive effects on the late death. 
 
The estimated variance-covariance matrix for the random intercepts in the multivariate random-effects logit model 
shown was obtained under the unstructured form. The estimated variances are .23 for the early period and .19 for 
the late period, and the ratios to their standard error estimates are much greater than two. Thus there are strong 
clustering effects within medical centers of deaths and this effect appears stronger during the first 24 hours of life 
than during the 24 hours and 120 days. The estimated covariance between the early period and the late period, 
however, is small and the ratio to its standard error estimate is less than one, suggesting that the chance of the late 
death in a medical center (given survival beyond the early period) is not correlated with the chance of the early 
death. This also implies that the multivariate random-effects logit model should be essentially equivalent to the two 
univariate logistic regression models with random intercepts in this case. A comparison of -2log-likelihood values 
calculated for these models, also shown in the table, suggests that the multivariate model fits the data more 
adequately though. 
 

Table 3 shows the estimation results from the multivariate random-effects logit model that included an additional 
predictor, respiratory support at 24 hours. As indicated in the estimated variance-covariance matrix in the previous 
multivariate random-effects logit model, a diagonal variance-covariance matrix for the random intercepts was 
specified. The respiratory support at 24 hours has a strong effect on the late death. 

 

CONCLUSION 

 

The multivariate models with random intercepts used in this paper assumed multivariate Normal distributed random 
effects. The extension from the univariate random effects to multivariate random effects afforded us the flexibility in 
the specification of the correlation structure among multiple responses. This extension is useful when the 
correlations among responses are of substantive research interests or are believed to be negative. With improved 
SAS PROC GLIMMIX the models can be readily estimated and well-suited for the analysis of clustered multinomial 
ordinal data. 

 

One issue we encountered in using PROC GLIMMIX concerns with the stability of the computational algorithm. 
Because the numerical estimation procedure involves two loops of iteration process, the default convergence criteria 
sometimes can not be met for the variance-covariance estimates between the two loops and thus the algorithm is 
terminated without yielding final parameter estimates. The default value of the convergence criteria has to be 
decreased to overcome this. 
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Table 1. In-born infants with birth weights of 401 to 1000 grams, NICHD Neonatal Network, 1998-2007  

(n=15422). 

 

Variable
1
 

 
n % 

Deaths     Died <=24 hours 2533 16.4 

     Died 24 hours-120 days 2566 16.6 

Gestational age in weeks     <=23 2869 18.6 

     24 2584 16.8 

     25 2729 17.7 

     26 2550 16.5 

     27 1914 12.4 

     >=28 2774 18.0 

Birth weight in grams     400-499 1348 8.7 

     500-599 2385 15.5 

     600-699 2918 18.9 

     700-799 2833 18.4 

     800-899 2877 18.7 

     900-1000 3061 19.9 

Gender     Female 7713 50.0 

     Male 7709 50.0 

Race     White 8051 52.2 

     Others 7310 47.4 

Mother's education
2
     Less than high school 2037 13.2 

     High school or more 4647 30.1 

     Not available 8738 56.7 

Multiple birth  3764 24.4 

C-section  8888 57.6 

Intubation at birth  10554 68.4 

Use of antenatal steroids  11643 75.5 

Maternal antibiotics  10037 65.1 

Antepartum hemmorrage  2676 17.4 

Maternal hypertension  3907 25.3 

Respiratory support at 24 hours
2
  11821 76.7 

 

Notes: 
1
 Missing data: 2 on gestational age, 35 on antibiotics, 13 on hemorrage,  

 13 on hypertension, 29 on antenatal steroids, 1 on multiple birth,  

 14 on C-section, 10 on intubation, 61 on race; 
2
 Respiratory support form required only for infants survived > 24 hours. 
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Table 2. Estimation results from two separate logistic regression models with random intercepts of early death (<=24 hours) and late 

death (24 hours - 120 days) and the results from the multivariate random-effects continuation-ratio logit model 

          

Covariate logistic regressions with random intercepts  Multivariate random-effects logit model 

 Died <=24 hours  
24 hours - 120 

days 
 Died <=24 hours  

24 hours - 120 

days 

 Estimate S.E.  Estimate S.E.  Estimate S.E.  Estimate S.E. 

Intercept -2.2253 0.2221  -3.0989 0.2096  -2.2300 0.2221  -3.0955 0.2095 

Gestational age: <=23 weeks 2.2535 0.1667  0.8833 0.1246  2.2553 0.1667  0.8860 0.1246 

24 weeks 1.2026 0.1592  0.6019 0.1048  1.2030 0.1592  0.6030 0.1048 

25 weeks 0.6190 0.1602  0.2499 0.0998  0.6186 0.1602  0.2508 0.0998 

26 weeks 0.0953 0.1709  0.0470 0.1012  0.0950 0.1709  0.0461 0.1012 

27 weeks -0.2280 0.1999  0.0212 0.1076  -0.2286 0.1999  0.0206 0.1076 

Birth weights: 401-499 grams 2.4843 0.1781  2.5125 0.1333  2.4839 0.1780  2.5139 0.1333 

500-599 grams 1.7083 0.1651  1.7240 0.1073  1.7079 0.1651  1.7247 0.1073 

600-699 grams 1.0134 0.1620  1.1614 0.0983  1.0123 0.1620  1.1620 0.0983 

700-799 grams 0.5939 0.1639  0.6785 0.0966  0.5935 0.1639  0.6789 0.0966 

800-899 grams 0.3779 0.1645  0.1999 0.0991  0.3773 0.1645  0.2000 0.0991 

Gender: male 0.4108 0.0674  0.4458 0.0502  0.4107 0.0674  0.4459 0.0502 

Race: white 0.3201 0.0728  0.1870 0.0536  0.3217 0.0728  0.1855 0.0536 

Multiple birth -0.1883 0.0802  0.2421 0.0581  -0.1880 0.0802  0.2419 0.0581 

C-section -0.3327 0.0786  -0.1491 0.0569  -0.3317 0.0786  -0.1494 0.0569 

Intubation at birth -1.9102 0.0750  0.2897 0.0766  -1.9086 0.0750  0.2877 0.0766 

Use of antenatal steroids -1.1505 0.0795  -0.3887 0.0694  -1.1493 0.0795  -0.3883 0.0694 

Maternal antibiotics -0.1772 0.0793  -0.1456 0.0615  -0.1786 0.0793  -0.1454 0.0615 

Antepartum hemmorrage 0.1466 0.0831  0.0676 0.0660  0.1461 0.0831  0.0669 0.0660 

Maternal hypertension -1.0867 0.1140  -0.3755 0.0703  -1.0875 0.1140  -0.3749 0.0703 

Education: High school or more 0.2235 0.1146  -0.1838 0.0804  0.2250 0.1146  -0.1834 0.0804 

Respiratory support at 24 hours    0.5950 0.1476     0.5933 0.1476 

            

-2 Res Log Pseudo-Likelihood 103433.6   64966.4   168347.3     

Variance Parameter 0.2307 0.0870  0.1811 0.0660  0.2305 0.0869  0.1851 0.0674 

Covariance Parameter       0.0482 0.0545    

 

 



8 

 

 

Table 3. Estimation results from the multivariate random-effects continuation-ratio 

logit model: including an additional covariate available for the late death, 

respiratory support at 24 hours. 

            

Covariate Died <=24 hours  24 hours - 120 days 

  Estimate S.E.   Estimate S.E. 

Intercept -2.2253 0.2221  -3.0989 0.2096 

Gestational age: <=23 weeks 2.2535 0.1667  0.8833 0.1246 

                        24 weeks 1.2026 0.1592  0.6019 0.1048 

                        25 weeks 0.6190 0.1602  0.2499 0.0998 

                        26 weeks 0.0953 0.1709  -0.0470 0.1012 

                        27 weeks -0.2280 0.1999  -0.0212 0.1076 

Birth weights: 401-499 grams 2.4843 0.1781  2.5125 0.1333 

                     500-599 grams 1.7083 0.1651  1.7240 0.1073 

                     600-699 grams 1.0134 0.1620  1.1614 0.0983 

                     700-799 grams 0.5939 0.1639  0.6785 0.0966 

                     800-899 grams 0.3779 0.1645  0.1999 0.0991 

Gender: male 0.4108 0.0674  0.4458 0.0502 

Race: white 0.3201 0.0728  0.1870 0.0536 

Multiple birth -0.1883 0.0802  0.2421 0.0581 

C-section -0.3327 0.0786  -0.1491 0.0569 

Intubation at birth -1.9102 0.0750  0.2897 0.0766 

Use of antenatal steroids -1.1505 0.0795  -0.3887 0.0694 

Maternal antibiotics -0.1772 0.0793  -0.1456 0.0615 

Antepartum hemmorrage 0.1466 0.0831  0.0676 0.0660 

Maternal hypertension -1.0867 0.1140  -0.3755 0.0703 

Education: High school or more 0.2235 0.1146  -0.1838 0.0804 

    Not available 0.4507 0.1037  -0.1060 0.0741 

Respiratory support at 24 hours 0.0000 .  0.5950 0.1476 

      

-2 Res Log Pseudo-Likelihood 
168372.
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  Variance Parameter 0.2307 0.0870  0.1854 0.0675 

 Covariance Parameter 0 n.a.       

 


