
 1

Paper P0-13

Customizing Proc Import Code
Carolyn D. Williams, UNC Highway Safety Research Center, Chapel Hill, NC

ABSTRACT
Proc import is a great SAS tool that I use often when converting raw data to SAS®. Usually SAS zips
through the import procedure and the output is exactly what I expect. However occasionally there are
glitches and ‘gotcha’ with numeric and character data types which can really make for a very bad day. The
GUESSROWS= option value is valid for 1 to 32767 rows beyond that, the data type is pretty much set. What
happens at observation number 82767 and SAS has defined a numeric storage location but the raw data
has the value 302~40.33 or some other non numeric values for the next 200 records before it once again
encounters valid numeric fields. This poster takes a serious and sometimes humorous walk down the yellow
brick road to find the key to the import wizard’s heart so that we might learn how to customize import
statements and tame the bad (wicked) data

INTRODUCTION
In my capacity as a programmer Analyst for the Highway Safety Research Center, I am responsible for
converting huge amounts of raw data into SAS format. This paper looks at the proc import procedure and
some ways to modify the code provided to you by the import to correct errors listed in the program log.

THE PROBLEM
Data in format and types other than is given on the file layouts can present one of the most frustrating
problems in programming. These data can be oracle dumps, delimited files, plain text files, access or excel
files. They are usually accompanied by file descriptions and a short synopsis about the number of records
on file, length, and in cases of delimited files, what character is used as the delimiter.

SAS import wizard is my tool of choice when processing delimited files. For small files less than 50,000
records, the procedure works perfect and very I quickly move on the next stage. The following shows the
results of using the import wizard, when no column names are given.

/**
 * PRODUCT: SAS
 * VERSION: 9.2
 * CREATOR: External File Interface
 * DATE: 29JUN10
 * DESC: Generated SAS Data step Code
 * TEMPLATE SOURCE: (None Specified.)

***/
 data WORK.ACC08IL ;
 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
 infile 'F:\HSISDATA\rawdata\Illin\2008\CrashExtract.txt'
delimiter = ',' MISSOVER DSD 235 lrecl=32767 ;

 informat VAR1 $14. ;
 informat VAR2 $9. ;
 informat VAR3 $5. ;
 informat VAR4 $4. ;
 informat VAR5 $4. ;

 format VAR1 $14. ;
 format VAR2 $9. ;
 format VAR3 $5. ;
 format VAR4 $4. ;
 format VAR5 $4. ;
 input
 VAR1 $
 VAR2 $

 2

 VAR3 $
 VAR4 $
 VAR5 $;
 if _ERROR_ then call symputx('_EFIERR_',1); /* set ERROR detection
macro variable */
 run;

Notice the results from the contents procedure below. The length of each character variable is the maximum
length between the commas that separate each data items. Actual length in the file layout is what you really
want.

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat

 1 VAR1 Char 14 $14. $14.
 2 VAR2 Char 9 $9. $9.
 3 VAR3 Char 5 $5. $5.
 4 VAR4 Char 4 $4. $4.
 5 VAR5 Char 4 $4. $4.
 6 VAR6 Char 4 $4. $4.
 7 VAR7 Char 4 $4. $4.
 8 VAR8 Char 3 $3. $3.
 9 VAR9 Char 4 $4. $4.

THE SOLUTION
With very little effort this code can be customize to output a file that has the lengths you need without having
to use any SAS functions:

 data WORK.ACC08IL ;
 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
 infile 'F:\HSISDATA\rawdata\Illin\2008\CrashExtract.txt' delimiter =
',' MISSOVER DSD 235 lrecl=32767 ;

 informat VAR1 $8. ;
 informat VAR2 $7;
 informat VAR3 $3.;
 informat VAR4 $2. ;
 informat VAR5 $2. ;

 format VAR1 $8. ;
 format VAR2 $7. ;
 format VAR3 $3. ;
 format VAR4 $2. ;
 format VAR5 $2. ;
 input
 VAR1 $
 VAR2 $
 VAR3 $
 VAR4 $
 VAR5 $
;
 if _ERROR_ then call symputx('_EFIERR_',1); /* set ERROR detection macro
variable */
 run;

 3

If the file layout indicates the correct length then why not use the column name instead of the SAS default of
var. In working with files with fewer than 25 variables I usually type them in. When customizing files with 40
or more variables, I open the documentation file into the SAS editor and use the mark block command. This
feature is excellent when you want to cut and paste columns so now I have a means of acquiring the actual
column name and length of each variable. This is not rocket science, just a wizard working its magic one line
at a time as seen below:

 data WORK.ACC08IL ;
 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
 infile 'F:\HSISDATA\rawdata\Illin\2008\CrashExtract.txt' delimiter =
',' MISSOVER DSD 235 lrecl=32767 ;

 informat CASENO $8. ;
 informat MILEPOST $7;
 informat ACCESS $3.;
 informat MONTH $2. ;
 informat DAY $2. ;

format CASENO $8.;
 format MILEPOST $7. ;
 format ACCESS $3. ;
 format VMONTH $2. ;
 format DAY $2. ;
 input
 CASENO $
 MILEPOST $
 ACCESS $
 MONTH $
 DAY $;
 if _ERROR_ then call symputx('_EFIERR_',1); /* set ERROR detection macro
variable */ run;

CONCLUSION
Customizing Proc Import Code is not and easy solution if you have over fifty variables, but if this is data you
receive on a regular basis, customization and adding macros can make your job a lot easier. SAS has
products, one being, SAS Enterprise Guide that can handle problem data. The proc import is part of Base
SAS and for those organizations that do not have the full suite of SAS products, customizing proc import is
an easy alternative

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Carolyn D. Williams
UNC Highway Safety Research Center

730 MLK Blvd, Suite 300
Chapel Hill, NC 27599
Work Phone: 919-962-8707
Fax: 919-962-8710
E-mail: cd_williams@unc.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

