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ABSTRACT 
A research team is interested in determining whether or not health effects of exposure to a mixture of air pollutants is 
additive, using summary statistics found in published toxicology studies. Additivity is defined as no significant 
difference between the effects of exposure to the mixture and the sum of the effects of exposure to each individual 
component of that mixture. The studies of interest to the research team typically did not test for this difference, even 
though the study design often made it possible. Many, however, did provide three summary statistics sufficient to 
reproduce the test exactly (number of subjects [n], mean response, and standard deviation). Using SAS®, we can 
perform the analysis of interest given those summary statistics. First, SAS/STAT® can be used to generate datasets 
standardized to those three statistics for each study. Next, using the appropriate ESTIMATE in PROC GLM, the effect 
of the mixture of pollutants can be tested against the sum of the effects of each component of the mixture. In order to 
compare results between studies of different toxicological endpoints, a relative difference between the mixture and 
the sum can be calculated. Next, the IML procedure can be used to calculate confidence intervals. Finally, a 
convenient way to display the results is with a forest plot, which can be created using PROC SGPLOT (SAS® ODS 
Graphics). Study details can be added to the plot as data points. Here we present the method we developed to test 
for the effect of interest to the research team: is the effect of the mixture equal to the sum of individual component 
effects? This method allowed us to obtain the exact test results that would have been obtained for the effect of 
interest using the original full data, if the original authors had conducted that test. 
 

INTRODUCTION 
The U.S. Environmental Protection Agency (EPA) regulates several common air pollutants, or criteria air pollutants, 
through the implementation of the National Ambient Air Quality Standards (NAAQS). The primary purpose of the 
NAAQS is to protect public health, accounting for sensitive sub-populations, with an adequate margin of safety. The 
Clean Air Act requires periodic updating of the NAAQS, based on any new scientific evidence supporting the levels of 
the standards. Several recent reports and publications (Johns et al., 2012; Hidy et al., 2011; Mauderly et al., 2010; 
NRC, 2004), have suggested that to support air quality regulations, the effects of the criteria pollutants should be 
evaluated as a mixture, rather than individually. A research team at the U.S. EPA is interested in evaluating published 
data from peer-reviewed studies of the health effects of mixtures of criteria air pollutants. Specifically, the interest is in 
testing the research hypothesis that the sum of effects due to each individual component of the mixture is not equal to 
the effects of exposure to the mixture as a whole. 
 
Generally, the default assumption in toxicology research is that the mixture of pollutants has an additive effect on the 
health outcome of interest. In other words, the sum of responses to each individual component of the mixture is 
generally believed to be equal to the response from exposure to the mixture as a whole. However, this is rarely 
tested, even though the design of many experimental studies would allow it to be. We gathered a collection of such 
studies published in peer-reviewed journals, in which the data was almost always provided only through a minimal set 
of summary statistics. We present a method for using reported summary statistics (i.e. number of experimental units, 
mean, and standard deviation or standard error) to test for the effect of interest (does sum = mixture?), obtaining the 
exact results that would have been obtained from the primary data by the original authors of the publications. We also 
include some data from our research project to illustrate this method. We are using this method to provide a 
mathematical foundation to claims of additive effects of mixtures of air pollutants and to synthesize the results of 
many studies. 
 

GENERATING DATASETS FOR ANALYSIS 
As pointed out by Larson (1992), all data sets with the same number of observations, mean and standard deviation 
gives identical analysis of variance (ANOVA) results. Several methods have been proposed to generate data sets 
from those sufficient three summary statistics. Lehman (1993), in response to Larson’s remarks, suggested that those 
synthetic data sets would have a more pleasant appearance if they were also random and normally distributed, 
although these two properties are not required in order to obtain the same ANOVA results. Following these methods, 
we generated data sets from the summary data extracted from the published toxicology studies. The studies had 4 
experimental groups: null (control) exposure, exposure to pollutant A (A_alone), exposure to pollutant B (B_alone), 
and exposure to the mixture of A and B (mixture). The following table shows an example of the source data file. 
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Study_ID Exposure N Mean StDev 

1201_a control 4 101 5 

1201_a A_alone 4 221 70 

1201_a B_alone 4 283 62 

1201_a mixture 4 543 55 

1252_g control 4 2.671 0.329 

1252_g A_alone 4 2.928 0.395 

1252_g B_alone 4 5.862 0.197 

1252_g mixture 4 6.207 0.307 

1252_h control 4 0.373 0.034 

1252_h A_alone 4 0.387 0.0227 

1252_h B_alone 4 0.435 0.017 

1252_h mixture 4 0.498 0.017 

15440_d control 10 6.39 0.77 

15440_d A_alone 8 6 1.77 

15440_d B_alone 8 7.97 0.63 

15440_d mixture 4 9.8 1.06 

Table 1: Example Source Data Set 
 
The following SAS® macro generates a data set from the three sufficient statistics, one data set for each line of the 
source data. Random observations are generated and they are then normalized and standardized to the provided 
mean and standard deviation. Note the following macro variables: FILE is the source data set, VAR1 is the study 
identifier, VAR2 is the exposure group, VAR3 is “n” or number of subjects, VAR4 is the mean, VAR5 is the standard 
deviation. 
 

%MACRO MAKEDATA(FILE, VAR1, VAR2, VAR3, VAR4, VAR5); 

options nonotes; 

 

data _NULL_; 

if 0 then set &FILE NOBS=nobs; 

call symput('OBSCOUNT', nobs); 

stop; 

run; 

 

%do I=1 %to &OBSCOUNT; 

data _NULL_; 

set &FILE (FIRSTOBS=&I); 

call symput('study', &VAR1); 

call symput('cell', &VAR2); 

call symput('n', &VAR3); 

call symput('mean', &VAR4); 

call symput('stdev', &VAR5); 

stop; 

run; 

 

data A;  

do i=1 to &n; 

y=rand('normal', 0, 1); 

study="&study"; 

cell="&cell"; 

output; 

end; 

drop i; 

run;  

 

proc standard data=A mean=&mean std=&stdev out=A; 

run; 
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proc append base=SIMULATE data=A; 

run; 

%END;  

%MEND MAKEDATA; 

  
%MAKEDATA(SOURCE, study, cell, n ,mean, stdev) 

 

First the macro determines how many rows are in the source data file. Then, the do-group loops through from the first 
source observation to the last, doing the following: 
 
1. Creating the macro variables study, cell (i.e. treatment group), n, mean and stdev 
2. Taking the current row of the source data set and generating a new data set (A) with n observations from a 

normal distribution. 
3. Standardizing A to the mean and standard deviation from the source data set. 
4. Appending A to a new data set called SIMULATE 
 
When the macro has finished, the dataset SIMULATE contains the data generated from each row of the source data 
file. Therefore if the first row of Table 1 is fed into the macro, SIMULATE will have 4 corresponding observations, with 
a mean of 101 and a standard deviation of 5. 
 

TESTING FOR ADDITIVITY 
All the studies that were to be evaluated for additivity had a completely randomized design with a factorial 
arrangement of two pollutants (pollutant A and pollutant B) at two levels each (present or absent). The subjects were 
randomly assigned to the following four treatment groups: control exposure (A0B0), exposure to pollutant A (A1B0), 
exposure to pollutant B (A0B1), or exposure to a mixture of pollutant A and pollutant B (A1B1). Analysis of variance 
was performed, at α = 0.05, on the SIMULATE data using PROC GLM. The null and alternative hypotheses are as 
follows: 

H0: (µA + µB) = µM 

Ha: (µA + µB) ≠ µM 

 

Where µA represents the mean response from exposure to pollutant A (A1B0 – A0B0), µB represents the mean 

response from exposure to pollutant B (A0B1 – A0B0), and µM represents the mean response from exposure to the 
mixture of A and B (A1B1 – A0B0). The effect due to control (null) exposure was subtracted from each of these 
values. The following code presents the use of PROC GLM for a 2 X 2 factorial model.  
 
ods output  means=CELLMEANS estimates=RESULTS overallanova=ROOTS; 

ods html close; 

ods listing close; 

 

proc GLM data=SIMULATE  plots=none; by study; 

class A B ; 

model Y = A|B / CLPARM; 

means A|B; 

estimate 'A1B0-A0B0' A -1 1 A*B -1 0 1 0; 

estimate 'A0B1-A0B0' B -1 1 A*B -1 1 0 0; 

estimate '(A1B0-A0B0) + (A0B1-A0B0)' A -1 1 B -1 1 A*B -2 1 1 0; 

estimate 'A1B1-A0B0' A -1 1 B -1 1 A*B -1 0 0 1; 

estimate '(A1B1-A0B0)-(A0B1-A0B0+A1B0-A0B0)' A*B 1 -1 -1 1; 

run; 

quit;  

ods output close; 

ods listing; 

 

From the PROC GLM output, several important results can be determined for each experiment in the source data: 
 

• The first two ESTIMATE statements provide tests of the effect of exposure to each pollutant by itself, the third 
ESTIMATE provides a test of the effect of the sum of exposures to each pollutant, and the fourth ESTIMATE 
provides a test of the effect of exposure to the mixture. Each of these effects is tested as a difference from the 
control group. 

• The fifth ESTIMATE statement provides a test of whether the effect of the sum of exposures to individual 
pollutants is different from the effect of exposure to the mixture. If the null hypothesis was not rejected, we 
concluded the effects of the mixture were not significantly different from additive. 
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• If none of the exposure groups (A alone, B alone, mixture) had an effect different from the effect of control (null) 
exposure, that experiment was flagged. These experiments were classified as having no effects for any 
exposure. 

 
Next, we wanted to be able to compare the direction and magnitude of the mixture effects, relative to additive, across 
the different studies. The studies measured different types of effects at various doses of the mixtures, therefore we 
decided to calculate a unitless ratio to represent the relative difference from additive: 
 

Quotient = 
effects of mixture - sum of individual effects

sum of individual effects
 

 
We utilized the methods of Dilba et al. (2006) to calculate the ratios and 95% confidence limits for them, based on 
Fieller’s theorem. The datasets CELLMEANS, RESULTS, and ROOTS, obtained from PROC GLM using ODS 
OUTPUT, are first used to prepare the data necessary to compute the confidence intervals. Some of the data could 
alternatively be taken from the SOURCE dataset.  
 
data TEMP1;  

set CELLMEANS;  

where Effect="A_B"; 

cell=A||B; 

Ninv=1/N; 

keep study Ninv mean_y cell; 

run; 

 

proc transpose data=TEMP1 out=TEMP2 prefix=Ybar; 

var mean_y; 

id cell; 

by study; 

run; 

 

proc transpose data=TEMP1 out=TEMP3 prefix=n; 

var Ninv; 

id cell; 

by study; 

run; 

 

data TEMP4;  

merge TEMP2 TEMP3 ROOTS (where=(Source="Error"));  

by study; 

drop _name_ _label_ source dependent SS Fvalue probF; 

run; 

quit; 

 

Next, the SAS® macro FIELLER uses PROC IML to calculate confidence intervals for the relevant ratio. Note the 
following macro variables: FILE is the prepared dataset from the previous steps (TEMP4), VAR1 is the study 
identifier, VAR2 through VAR5 are the means for control, A, B, and mixture, VAR6 through VAR9 are the n’s for 
control, A, B, and mixture, VAR10 is the degrees of freedom, and VAR11 is the overall ANOVA MSE. 
 
%MACRO 

FIELLER(FILE,VAR1,VAR2,VAR3,VAR4,VAR5,VAR6,VAR7,VAR8,VAR9,VAR10,VAR11); 

options nonotes; 

data _NULL_; 

if 0 then set &FILE NOBS=nobs; 

call symput('OBSCOUNT',nobs); 

stop; 

run; 

 

%do I=1 %to &OBSCOUNT; 

data _NULL_; 

set &FILE (FIRSTOBS=&I); 

call symput('study',&VAR1); 
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call symput('Ybar11',&VAR2); 

call symput('Ybar12',&VAR3); 

call symput('Ybar21',&VAR4); 

call symput('Ybar22',&VAR5); 

call symput('ninv11',&VAR6); 

call symput('ninv12',&VAR7); 

call symput('ninv21',&VAR8); 

call symput('ninv22',&VAR9); 

call symput('DF',&VAR10); 

call symput('MSE',&VAR11); 

stop; 

run; 

 

proc iml; 

Ybar = {&Ybar11,&Ybar12,&Ybar21,&Ybar22}; 

M = {&ninv11 0 0 0, 0 &ninv12 0 0, 0 0 &ninv21 0, 0 0 0 

&ninv22}; 

c = {1,-1,-1,1}; 

d = {-2,1,1,0}; 

t = tinv(1-0.05/2,&df); 

MSE = &MSE; 

A = (d`*Ybar)**2 - (t**2 * MSE * d` * M * d); 

B = -2*((c`*Ybar)*(d`*Ybar) - (t**2 * MSE * c` * M * d)); 

C = (c`*Ybar)**2 - (t**2 * MSE * c` * M * c); 

discr=((B**2)-4*A*C); 

if (A<=0) then do;  

lowerbound=.; 

upperbound=.; 

stop; 

end; 

else do; 

lowerbound= (-B - sqrt(discr))/(2*A); 

upperbound= (-B + sqrt(discr))/(2*A); 

stop; 

end; 

     study= {"&study"}; 

     bounds= lowerbound||upperbound; 

     cname = {"LCL" "UCL"}; 

     create CI from bounds [colname=cname]; 

    append from bounds; 

     sname={"study"}; 

     create STUDY from study [colname= sname]; 

     append from study; 

run; 

 

data CI; merge STUDY CI; 

run; 

 

proc append base=ALLCIs data=CI; 

run;  

quit; 

%END; 

%MEND FIELLER; 

 

%FIELLER(TEMP4,study,YbarA1B1,YbarA1B2,YbarA2B1,YbarA2B2,nA1B1,nA1B2,nA2B1,nA

2B2,DF,MS) 
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Similar to the MAKEDATA macro, the FIELLER macro first determines the number of observations in the input file, 
then loops through the data creating macro variables based on the input variables. Next, PROC IML is used to 
compute the confidence intervals for the ratio of interest. 
 

• Ybar is the column vector of four cell means (Ybar11, Ybar12, Ybar21, Ybar22) 

• M is the diagonal matrix of 1/n for the four cells (n11, n12, n21, n22)  

• c is the column vector of contrast coefficients for cell means in the numerator of the ratio of interest 

• d is the column vector of contrast coefficients for cell means in the denominator of the ratio of interest 

• t is the 1-α/2 quantile of a t distribution with degrees of freedom equal to denominator degrees of freedom in the 
overall ANOVA 

• MSE is the overall ANOVA MSE 

• A, B, and C are described in Dilba et al. 2006 
o If A ≤ 0: No solution in this case. Almost always, this occurs when the denominator is non-

significant (In this case, the denominator is the sum of effects). 
o Otherwise: The confidence bounds are the two solutions of Ay2 + By + C = 0 

 
Finally, the results are output to a data set and matched to the corresponding Study ID. This ends the IML procedure. 
The confidence intervals from all studies are compiled into a dataset called ALLCIs. 
 
After running the macro, the results are merged with the output from the PROC GLM and identifying information from 
the original source data into a final results file. This final file includes, among other parameters, the p-values from the 
ANOVA, a classification of the results based on the p-value and effect estimates, the quotient, and confidence 
intervals. 
 

DISPLAYING THE RESULTS 
For the intended audience, the most informative way to display the results is in a forest plot. PROC SGPLOT was 
used to plot multiple scatter plots in a single plot area, using more than one x-axis. The following code can be used to 
create a forest plot. The variables here correspond with those in Tables 2 and 3. Note that the xaxis and x2axis 
offsets will need to be adjusted to fit the data on the corresponding plot. 
 
proc sgplot data=forest noautolegend; 

scatter y=study x=quotient / group=additivity  

     xerrorupper=UCL  

     xerrorlower=LCL  

     name="plot1"; 

 scatter y=study x=Reference / markerchar=ref x2axis; 

 scatter y=study x=Species / markerchar=spec x2axis; 

 scatter y=study x=Endpoint_Type / markerchar=endpt x2axis; 

 scatter y=study x=NO2 / markerchar=Nconc x2axis; 

 scatter y=study x=O3 / markerchar=Oconc x2axis; 

 scatter y=study x=Duration / markerchar=time x2axis; 

xaxis offsetmin=0.75 offsetmax=0 min=-15 max=15  

minor display=(nolabel); 

 x2axis offsetmin=0.07 offsetmax=0.35 display=(noticks nolabel noline); 

 yaxis reverse display=(noticks nolabel novalues noline); 

 refline 0 / axis=x lineattrs=(pattern=shortdash) 

        transparency=0.5; 

 keylegend "plot1" / position=topright down=2; 

run; 
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Table 2 and 3 show an example of the data (DATA = FOREST) required to create the forest plot. Table 2 and 3 are 
two parts of a single dataset. 
 

study ref spec endpt Nconc Oconc Time 

1201_a 
Farman et al. 
(1999) 

rats pulmonary histology 14.4 0.8 6 h/day; 7 days 

1201_b 
Farman et al. 
(1999) 

rats pulmonary histology 14.4 0.8 6h/day; 78-90 days 

43705_b Last et al. (1993) rats body weight 14.4 0.8 6h/day; 79-90 days 

43705_i Last et al. (1993) rats lung elastin 14.4 0.8 6h/day; 79-90 days 

43704_d 
Rajini et al. 
(1993) 

rats lung injury 14.4 0.8 6h/day for 3 days 

42369_e Last (1991)† rats lung collagen 5 1 mg/m3 NaCl† 7 days continuous 

42343_h 
Schlesinger et 
al. (1990) 

rabbits eicosanoids (pulmonary) 3 0.3 2h exposure; 24 sacrifice hr 

42343_i 
Schlesinger et 
al. (1990) 

rabbits eicosanoids (pulmonary) 3 0.3 2h exposure; 0 sacrifice hr 

42396_j 
Schlesinger et 
al. (1991) 

rabbits eicosanoids (pulmonary) 3 0.3 2h exposure; 24 sacrifice hr 

42239_k Lee et al. (1989) rats enzymes; metabolizing  1.8 0.45 3 days continuous 

15440_d 
Bermudez 
(2001) 

rats DNA repair (lung cells) 1.2 0.3 3 days continuous 

Table 2: First 7 variables of the FOREST data set 
 

additivity quotient LCL UCL Reference Species Endpoint_Type NO2 O3 Duration 

Greater 0.4635 0.0514 1.5517 Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Greater 0.64 0.0298 4.1545 Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Greater 1.6380 . . Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Greater 4.8823 . . Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Greater 1.5348 . . Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Greater 9.9397 . . Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Less -2.768 . . Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Less -3.500 . . Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Less -0.782 -3.044 -0.081 Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Less -0.242 -0.344 -0.120 Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Greater 1.8655 . . Reference Species Endpoint Type 
NO2 
(ppm) 

O3 
(ppm) 

Duration 

Table 3: Next 10 variables of the FOREST data set 
 
Finally, Output 1 shows a forest plot created with PROC SGPLOT. Title and footnote statements were used to create 
the titles and x-axis label. The Graph Template Language (GTL) was used to create a template with the marker 
colors and types, among other options, we wanted for the plot. Note that the arrows on some confidence intervals 
were added after plot creation with a graphics editor. 
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Output 1: Forest plot created with SGPLOT procedure. 
 

CONCLUSION 
In conclusion, the method presented here can be used to conduct an ANOVA in order to obtain comparisons not 
performed in an original analysis, when only summary statistics have been reported. The calculation of the quotient is 
useful for comparing data across experiments when different responses have been measured. We used this 
approach to compare health endpoints that can be grouped in categories (e.g., lung function), even if different metrics 
were used across studies. Finally the SGPLOT procedure is useful for combining point estimates and confidence 
intervals with descriptor information in order to create a detailed forest plot. 
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