
 SESUG 2014

 1

Paper PO–133

PROC MEANS for Disaggregating Statistics in SAS®:
One Input Data Set and One Output Data Set with Everything You Need

Imelda C. Go, South Carolina Department of Education, Columbia, SC

Abbas S. Tavakoli, College of Nursing, University of South Carolina–Columbia

ABSTRACT

The need to calculate statistics for various groups or classifications is ever present. Calculating such statistics may involve
different strategies with some being less efficient than others. A common approach by new SAS programmers who are
not very familiar with PROC MEANS is to create a SAS data set for each group of interest and to execute PROC MEANS
for each group. This strategy can be resource-intensive when large data sets are involved. It requires multiple PROC
MEANS statements due to multiple input data sets and involves multiple output data sets (one per group of interest). In
lieu of this, an economy of programming code can be achieved using a simple coding strategy in the DATA step to take
advantage of PROC MEANS capabilities. Variables that indicate group membership (1 for group membership, blank for
non-group membership) can be created for each group of interest in a master data set. The master data set with these
blank/1 indicator variables can then be processed with PROC MEANS and its different statements (i.e., CLASS and
TYPES) to produce one data set with all the statistics generated for each group of interest.

A programmer can calculate disaggregate statistics in a number of different ways. A common approach by new SAS
programmers who are not very familiar with PROC MEANS is to create a SAS data set for each group of interest and to
execute PROC MEANS for each group. This strategy can be resource-intensive when large data sets are involved. It
requires multiple PROC MEANS statements due to multiple input data sets and involves multiple output data sets (one
per group of interest).

data master;
input gender $ score;
cards;
M 30
F 100
;

data males;
 set master (where=(gender='M'));

data females;
 set master (where=(gender='F'));

proc means data=males;
 output out=statsformales;

proc means data=females;
 output out=statsforfemales;

You could save a little code by using the WHERE statement with PROC MEANS. By doing this, you do not create a data
set for each group of interest. However, that still leaves you with more than one data set of statistics.

proc means data=master;
 output out=statsformales;
 where gender='M';

proc means data=master;
 output out=statsforfemales;
 where gender='F';

 SESUG 2014

 2

METHOD

The following discussion will show you how to create blank/1 indicator variables for any group of interest in your master
data set. Using this single master data set as input, you can obtain a single data set with the disaggregate statistics
according to these groups of interest from a single PROC MEANS statement.

Consider the following data set.

The following needs to be determined for the raw and scale scores:

 Average
 Total number of observations (i.e., denominator of the average) with a score

According to the following groups:
1. Males (gender = M)
2. Females (gender = F)
3. Students receiving free meals (meals = F)
4. Students receiving reduced-price meals (meals = R)
5. Students paying full price for meals (meals = P)

These results can be produced by the following code. The TYPES statement specifies which combinations of the class
variables are to be used for the calculations.

proc means data=example;
 class gender meals;
 var rawscore scalescore;
 types gender meals;
 output out=test n=nrs nss mean=mrs mss;

 SESUG 2014

 3

The corresponding output data set from PROC MEANS is shown below.

The _TYPE_ variable indicates which CLASS variables produced the data. Although it can be clearly seen from the
output, as shown above, which levels of each CLASS variable were represented for each line in the data set, the CLASS
variable configuration can be used to determine the _TYPE_ value. The following example involves two CLASS variables,
but the concept easily extends to however many CLASS variables there are.

1. Because there are two CLASS variables, think of a binary number that has two digits. The decimal
equivalents of the binary numbers can be computed as shown.

Binary Number Decimal Equivalent
00 0(21) + 0 (20) = 0
01 0(21) + 1 (20) = 1
10 1(21) + 0 (20) = 2
11 1(21) + 1 (20) = 3

2. Gender is the first CLASS variable listed. Use a 0/1 variable based on gender as the first digit in the binary

number. The digit is:
0 whenever gender was not used towards the calculations
1 whenever gender was used towards the calculations

3. Meals is the second CLASS variable listed. Use a 0/1 variable based on meals as the second digit in the
binary number. The digit is:

0 whenever meals was not used towards the calculations
1 whenever meals was used towards the calculations

4. Use the digits from steps #2 and #3 to as digits for the binary number. Since there is a one-to-one
correspondence between binary numbers and their corresponding decimal equivalents, the value of the
TYPE variable can only be produced by one binary number. The binary number, using the 1s and 0s as
defined above, will indicate which CLASS variables went towards a specific record in the output data set.

The _FREQ_ variable is automatically generated by SAS and shows the number of observations for each level of the
CLASS variable, if there is only one CLASS variable involved. When there is more than one CLASS variable, then it will
show the number for observations for the combination of levels in the CLASS variables. _FREQ_ , nrs, and nss are not
necessarily equal as shown in the example. _FREQ_ indicates the number of observations per level or combination of
levels. The nrs and nss values are the numbers of data points that were included in the calculation of mrs and mss
respectively. When there are missing values for the raw and scale scores, the values of nrs and nss are less than the
corresponding _FREQ_ value. Had there been no missing values, _FREQ_, nrs, and nss would have been all equal to
each other.

Suppose that a cross-tabulation between gender and meals is required and that missing values for gender and meals
should be included in the cross-tabulation. Missing values can be included by using the MISSING option with the CLASS
statement. The NOPRINT option suppresses the output normally generated by the procedure.

proc means nway data=example noprint;
 class gender meals/missing;
 var rawscore scalescore;
 output out=test n=nrs nss mean=mrs mss;

The SUM statement adds up the values of the specified variables and provides the total in the PROC PRINT output;

proc print data=test;
 sum _freq_ nrs nss;

 SESUG 2014

 4

Let us suppose the same statistics need to be computed according to the following groups:

1. All students
2. Males
3. Females
4. Students receiving free or reduced-price meals
5. Students paying full price for meals
6. Students receiving free meals

Note that there is an overlap between categories 4 and 6.

The first step is to create counters for each variable. Counter1 defaults to 1 since this applies to all students. The
remaining counters are each set to 1 if the criteria for group membership are satisfied. The advantage of using counters
this way is that they can be easily coded for any group of interest no matter how many variables are used to make the
determination for group membership (e.g., females receiving free meals, etc.). If it is just counts that are needed, the sum
of the counters will provide the total number of records per group.

data example;
set example;
counter1=1;
select(gender);
when ('M') counter2=1;
when ('F') counter3=1;
otherwise;
end;
**F = free, R = reduced, P = full pay;
select(meals);
when ('F') do; counter4=1; counter6=1; end;
when ('R') counter4=1;
when ('P') counter5=1;
otherwise;
end;

proc means data=example sum maxdec=0;
 var counter1-counter6;

 SESUG 2014

 5

There is often a need to compute various types of statistics and not just determine the number of members in groups of
interest. PROC MEANS can be useful for this purpose. List all the counters in the CLASS and TYPES statements.

proc means data=example;
 class counter1-counter6/missing;
 var rawscore scalescore;
 types counter1 counter2 counter3 counter4 counter5 counter6;
 output out=test n=nrs nss mean=mrs mss;

In the output data set, the only rows of interest are the ones with a counter value of 1. The following code will eliminate the
rows that are not of interest by specifying a WHERE option in the OUTPUT statement. Note that the MISSING option was
used with the CLASS statement.

proc means data=example;
 class counter1-counter6/missing;
 var rawscore scalescore;
 types counter1 counter2 counter3 counter4 counter5 counter6;
 output out=test
 (where=(sum(counter1,counter2,counter3,counter4,counter5,counter6)>0))
 n=nrs nss mean=mrs mss;

Because of how PROC MEANS processes data, no observations will result in the data set without the MISSING option as
shown in the SAS log below.

 SESUG 2014

 6

Instead of using the TYPES statement shown above, using the “ways 1;” statement instead has the same effect. It tells
SAS that only levels of single (1) class variables should be considered for the calculations. If the “ways 2;” statement
was used, that means the 2-way combinations of all pairs of class variables should be used in the calculations.

proc means data=example;
 class counter1-counter6/missing;
 var rawscore scalescore;
 ways 1;
 output out=test
 (where=(sum(counter1,counter2,counter3,counter4,counter5,counter6)>0))
 n=nrs nss mean=mrs mss;

This table shows the correspondence between the groups and the _TYPE_ values. Although the example is for six
counters, the concept can easily be generalized to however many counters are involved. The nth counter will have a
TYPE value of 2(n–1).

Variable Group Description _TYPE_ Value Binary Number
counter1 All students 32 = 25 100000
counter2 Males 16 = 24 010000
counter3 Females 8 = 23 001000
counter4 Students receiving free or reduced-price

meals
4 = 22 000100

counter5 Students paying full price for meals 2 = 21 000010
counter6 Students receiving free meals 1 = 20 000001

In looking at the code, the SUM function appears to have many arguments and using
sum(of counter1-counter6)>0
instead of
sum(counter1,counter2,counter3,counter4,counter5,counter6)>0
is an idea. However, the log shows that there is a problem with this.

 SESUG 2014

 7

This is a known issue as shown in the SAS Usage Note # 14554.

A macro can be useful when there is a large number of counters.

%macro example(n);
proc means data=example;
 class counter1-counter&n/missing;
 var rawscore scalescore;
 ways 1;
 output out=test (where=(sum(
 %do i=1 %to %eval(&n);
 counter&i
 %if &i < %eval(&n) %then %do;,%end;
 %end;
)>0)) n=nrs nss mean=mrs mss;
%mend example;

%example(6)

When the program is run with the MPRINT system option in effect, the SAS code generated by the macro appears in the
SAS log.

 SESUG 2014

 8

REFERENCES

SAS Institute Inc. 2009. Base SAS® 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2010. SAS®

 9.2 Language Reference: Concepts, Second Edition. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2011. SAS® 9.2 Language Reference: Dictionary, Fourth Edition. Cary, NC: SAS Institute Inc.

Usage Note 14554: Syntax error when using OF operator within a WHERE statement. Retrieved July 18, 2011, from the

SAS Support Web site: http://support.sas.com/kb/14/554.html

TRADEMARK NOTICE

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

