
 SESUG 2014

1

Paper AD-103

%Destroy() a Macro With Permutations
Brandon Welch, Rho®, Inc., Chapel Hill, NC
James Vaughan, Rho, Inc., Chapel Hill, NC

ABSTRACT

The SAS

®
 Macro is a powerful tool. It minimizes repetitive tasks and provides portable tools for users. When these

tools are delivered to clients we want them to be of the highest quality. For example, when developed to perform a
complicated statistical test, the macro should produce accurate results and a clean log. To accomplish this, we insert
parameter checks. Depending on the complexity of the macro it is sometimes difficult to perform a thorough check.

We introduce the %Destroy()macro which uses the SYSCALL RANPERK routine to permute a list of arguments.

These arguments are then passed to the macro to test. We show how to add appropriate parameter checks, ensuring

on subsequent runs of %Destroy() the testing macro produces the desired results. While this article targets a

clinical computing audience, the techniques we present offer a good overview of macro processing that will educate
SAS programmers of all levels across various disciplines.

INTRODUCTION

In a statistical computing environment, we often create macros to perform repetitive or complicated tasks. For
example, a statistician may need to perform an exotic statistical task and place the code in a macro. This creates a
portable tool that a programmer can use without having to know the exact details of how the statistical test works. It is
good practice to have the macro validated and for the macro to produce a clean log when called. In this paper we will

only focus on producing a clean log. To do this we introduce the %Destroy() macro. This macro calls a macro and

passes a series of ‘good’ and ‘bad’ arguments at random. For the purposes of this paper, the macro we are testing

with %Destroy() will be called the ‘testing macro’. In the case where the argument is ‘bad’ or causes the testing

macro to fail, we add parameter checks. These checks ensure that on subsequent calls to the testing macro, we get a

clean log. Our goal is to add parameter checks to our testing macro such that when %Destroy() is invoked, we

have a clean log.

EXAMPLE

Here’s a simple macro (Contin) that computes a mean. We create two data sets (DAT1 and DAT2) with variables

VAR1, VAR2 and TRT. With the arguments used below, it works fine and exits gracefully:

 DATA dat1;

 do i = 1 to 30;

 var1 = rangam(12345,10);

 trt = ranbin(12345,3,0.3) + 1;

 output;

 end;

 RUN;

 DATA dat2;

 do i = 1 to 30;

 var2 = rannor(12345,10);

 trt = ranbin(12345,3,0.3) + 1;

 output;

 end;

 RUN;

 %macro Contin(InDat = , Sub = , Value =);

 DATA anly;

 set &InDat.(where = (trt = &Sub.));

 RUN;

 PROC MEANS data = anly;

 var &Value;

%Destroy() a Macro With Permutations, continued SESUG 2014

2

 RUN;

 %mend;

 %Contin(InDat = dat1, Sub = 3, Value = var1);

Now suppose we pass a ‘bad’ argument to the InDat= parameter:

 %Contin(InDat = badarg, Sub = 3, Value = var1);

Since the data set ‘badarg’ does not exist we get:

 ERROR: File WORK.BADARG.DATA does not exist.

To get around this we can add the following to %Contin() right before the first data step:

 %if %sysfunc(exist(&InDat)) = 0 %then %do;

 %put -------- DATA SET (&InDat) DOES NOT EXIST, MACRO Contin STOPPING;

 %return;

 %end;

The macro will stop before it gets to first data step and no ERRORS are issued to the log. Instead, we get:

-------- DATA SET (badarg) DOES NOT EXIST, MACRO Contin STOPPING

This is a good example of a parameter check that stops execution when we have no data. This is only one example.

By using the %Destroy() macro we develop a list of ‘good’ and ‘bad’ arguments and pass them all at random, so

more cases are tested. For those cases that produce WARNINGS and/or ERRORS we can implement the
appropriate parameter check to insure the log is clean. After we add all our parameter checks, any call to the testing

macro from %Destroy() will result in a clean log. Before we build %Destroy() permutations are discussed.

PERMUTATIONS

In order to sufficiently test the macro’s ability to identify and correctly handle both ‘good’ and ‘bad’ arguments, a list of
possible arguments (‘good’ and ‘bad’) is compiled for each macro parameter. Since an argument may be considered
‘good’ for one parameter, but ‘bad’ for another, we expand the list of possible argument sets by randomly permuting
(or rearranging) the values from the full set of arguments of size n into a set of size k, with particular sequence or
order without repetition, also known as sequences without repetition.

For the example macro (Contin) there are x arrangements (or sets) of a fixed length of 3 arguments (‘good’ and/or

‘bad’) taken from a list of size n where x = nP3 (or the number of permutations of n items that are taken 3 at a time).

The total number of permutations generated is set to nP3; however, because the values are randomly permutated, not
all possible permutations of k out of n items may be generated.

BUILDING %DESTROY()

We use the %Contin() macro as our testing macro. We first create a list of arguments resulting in ‘good’ and ‘bad’

cases. These will be randomly passed to %Contin(). We chose ”var1 3 a var2 dat1 dat2”. Note that some

permutations of these yield desirable results (like above, dat1 3 var1) and some do not.

%Destroy() has 4 parameters:

Mac = Name of the testing macro (%Contin() in our example)

Seed = Seed used for SYSCALL RANPERK

TestArgs = List of test arguments, separated by vertical bar (var1|3|a|var2|dat1|dat2)

ParmNum = Number of parameters in testing macro, %Contin() has three parameters

Step 1: Count the number of test arguments (six in our example):

 %let TargCnt = %sysfunc(countw(&TestArgs.,|));

Step 2: Determine total number of permutations (6P3 = 120):

%Destroy() a Macro With Permutations, continued SESUG 2014

3

 %let PermNum = %sysfunc(perm(&TArgCnt.,&ParmNum.));

Step 3: Split list of arguments into separate arguments and make comma delimited (required for SYSCALL

RANPERK)

 %let Args = ;

 %do i = 1 %to &TArgCnt;

 %let p&i = %scan(&TestArgs.,&i,|);

 %if &i = 1 %then %let Args = p&i;

 %else %let Args = &Args%str(,)p&i;

 %end;

Step4: Generate permutations and call testing macro for each permutation:

 %do j = 1 %to &PermNum;

 %*GENERATE PERMUTATIONS;

 %syscall ranperk(seed, ParmNum, %unquote(&Args));

 %put -----------;

 %put &p1 &p2 &p3;

 %put -----------;

 %*CALL MACRO FOR EVERY PERMUTATION;

 %&Mac.(InDat = &p1,

 Sub = &p2,

 Value = &p3);

 %end;

Note for %syscall, we must mask the & for each &pi. If we do not mask the &, the explicit variable values will

resolve within RANPERK – subsequently throwing an error.

Partial text in log from %put:

a dat1 dat2

dat1 a 3

dat1 dat2 a

3 var2 a

.

.

.

IMPLEMENTING %DESTROY() AND ADDING PARAMETER CHECKS

Using %Contin() as our testing macro, after running %Destroy() we get:

Message Type Message

Error File WORK.A.DATA does not exist.

Error File WORK.VAR1.DATA does not exist.

Error File WORK.VAR2.DATA does not exist.

Error Syntax error, expecting one of the following

Error Syntax error, statement will be ignored.

Error The symbol is not recognized and will be ignored.

%Destroy() a Macro With Permutations, continued SESUG 2014

4

Message Type Message

Error Variable A not found.

Error Variable DAT1 not found.

Error Variable DAT2 not found.

Error Variable VAR1 not found.

Error Variable VAR2 not found.

Error Variable a is not on file WORK.DAT1.

Error Variable a is not on file WORK.DAT2.

Error Variable dat1 is not on file WORK.DAT2.

Error Variable dat2 is not on file WORK.DAT1.

Error Variable var1 is not on file WORK.DAT2.

Error Variable var2 is not on file WORK.DAT1.

Warning Data set WORK.ANLY was not replaced because this step was stopped.

Warning The data set WORK.ANLY may be incomplete. When this step was stopped
there were 0

 Table 1. First log report

Our first priority is to ensure the macro stops if our input data set does not exist. We saw above that by using

%sysfunc(exist()), we can avoid this error. In addition, a data set may exist but not have any observations. We

use the automatic variable &SQLObs to determine if a data set has zero observations. If this occurs, the macro stops.

Note we assign the value of &SQLObs to &DatObs. We reset the value to null at each call to %Contin(). This

prevents values from previous calls to %Contin() from carrying over to the current call.

 PROC SQL noprint;

 select * from anly;

 QUIT;

 %let DatObs = &SQLObs;

 %if &DatObs = 0 %then %do;

 %put -------- DATA SET (&InDat) HAS ZERO RECORDS, MACRO Contin STOPPING;

 %return;

 %end;

After adding these checks, we get:

Message Type Message

Error Syntax error, expecting one of the following

Error The symbol is not recognized and will be ignored.

Error Variable A not found.

Error Variable DAT1 not found.

Error Variable DAT2 not found.

Error Variable VAR1 not found.

Error Variable VAR2 not found.

Error Variable a is not on file WORK.DAT1.

Error Variable a is not on file WORK.DAT2.

Error Variable dat1 is not on file WORK.DAT2.

Error Variable dat2 is not on file WORK.DAT1.

%Destroy() a Macro With Permutations, continued SESUG 2014

5

Message Type Message

Error Variable var1 is not on file WORK.DAT2.

Error Variable var2 is not on file WORK.DAT1.

Warning Data set WORK.ANLY was not replaced because this step was stopped.

Warning The data set WORK.ANLY may be incomplete. When this step was stopped there
were 0

 Table 2. Second log report

Now that the explicit data issues are resolved, we focus on the variables. One of the arguments is a number (3).
Variable names cannot be numbers. So we add:

 %if %datatyp(&Value) ne CHAR %then %do;

 %put -------- VARIABLE NAME (&Value) IS A NUMBER IN &InDat, MACRO Contin

 STOPPING;

 %return;

 %end;

Also, for our WHERE expression in the ANLY data step, the TRT variable must be numeric. We use the

%datatyp() autocall macro again:

 %if %datatyp(&Sub) = CHAR %then %do;

 %put -------- TREATMENT VARIABLE VALUE (&Sub) IS INVALID (MUST BE

 NUMERIC), MACRO Contin STOPPING;

 %return;

 %end;

After adding these checks to %Contin(), we get:

Message Type Message

Error Variable A not found.

Error Variable DAT1 not found.

Error Variable DAT2 not found.

 Table 3. Final log report

All that’s left now is to check for variable existence. We do this by using I/O functions.

 %let DSId = %sysfunc(open(&InDat));

 %let DSObs = %sysfunc(attrn(&DSId,NOBS));

 %if &DSObs > 0 %then %do;

 %if %sysfunc(VARNUM(&DSId,&Value)) = 0 %then %do;

 %put -------- VARIABLE (&Value) DOES NOT EXIST IN &InDat, MACRO Contin

 STOPPING;

 %return;

 %end;

 %end;

 %let RC = %sysfunc(close(&DSId));

CONCLUSION

It is always good practice to maintain a clean log. This is especially important when we delivery programs to our

clients. If our programs use macros for repetitive tasks or complicated statistical tests, the %Destroy() macro offers

a good solution to ensure the macro works properly and produces a clean log. This paper introduces some advanced
macro techniques. But equally important, it shows the reader some tools that determine we have valid arguments

(e.g. using %sysfunc(exist()) when determining a data set’s existence). What we show in this paper are only a

%Destroy() a Macro With Permutations, continued SESUG 2014

6

few examples. By feeding macro ‘good’ and ‘bad’ arguments at random, one can test many types of cases and
ultimately produce a superior product.

ACKNOWLEDGMENTS

Eva J. Welch
Dave Scocca

Steve Noga

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Brandon Welch

Rho, Inc

6330 Quadrangle Dr., Ste. 500
Chapel Hill, NC 27517
Phone: 919-595-6592
Fax: 919-408-0999
Email: Brandon_Welch@rhoworld.com
Web: www.rhoworld.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

%Destroy() a Macro With Permutations, continued SESUG 2014

7

APPENDIX

 %macro Destroy(Mac = ,

 Seed = ,

 TestArgs = ,

 ParmNum =

);

 %*COUNT THE NUMBER OF TEST ARGUMENTS;

 %let TargCnt = %sysfunc(countw(&TestArgs.,|));

 %put ---------------------------------------;

 %put -----NUMBER OF TEST ARGUMENTS: &TArgCnt;

 %put ---------------------------------------;

 %*GET NUMBER OF PERMUTATIONS TO SCROLL THROUGH;

 %let PermNum = %sysfunc(perm(&TArgCnt.,&ParmNum.));

 %put ---------------------------------------;

 %put -----NUMBER OF PERMUTATIONS: &PermNum;

 %put ---------------------------------------;

 %*SPLIT TEST ARGUMENT STRING INTO SEPARATE ARGUMENTS;

 %let Args = ;

 %do i = 1 %to &TArgCnt;

 %let p&i = %scan(&TestArgs.,&i,|);

 %if &i = 1 %then %let Args = p&i;

 %else %let Args = &Args%str(,)p&i;

 %end;

 %do j = 1 %to &PermNum;

 %*GENERATE PERMUTATIONS;

 %syscall ranperk(seed, ParmNum, %unquote(&Args));

 %put -----------;

 %put &p1 &p2 &p3;

 %put -----------;

 %*CALL MACRO FOR EVERY PERMUTATION;

 %&Mac.(InDat = &p1,

 Sub = &p2,

 Value = &p3);

 %end;

 %mend;

 /*******CONTIN MACRO INCLUDING ALL PARAMETER CHECKS*******/

 %macro Contin(InDat = ,

 Sub = ,

 Value =);

 %let DatObs = ;

 %if %sysfunc(exist(&InDat)) = 0 %then %do;

 %put -------- DATA SET (&InDat) DOES NOT EXIST, MACRO Contin STOPPING;

 %return;

 %end;

 %if %datatyp(&Value) ne CHAR %then %do;

 %put -------- VARIABLE NAME (&Value) IS A NUMBER IN &InDat, MACRO Contin

 STOPPING;

 %return;

 %end;

 %if %datatyp(&Sub) = CHAR %then %do;

 %put -------- TREATMENT VARIABLE VALUE (&Sub) IS INVALID (MUST BE

%Destroy() a Macro With Permutations, continued SESUG 2014

8

 NUMERIC), MACRO Contin STOPPING;

 %return;

 %end;

 %let DSId = %sysfunc(open(&InDat));

 %let DSObs = %sysfunc(attrn(&DSId,NOBS));

 %if &DSObs > 0 %then %do;

 %if %sysfunc(VARNUM(&DSId,&Value)) = 0 %then %do;

 %put -------- VARIABLE (&Value) DOES NOT EXIST IN &InDat, MACRO Contin

 STOPPING;

 %return;

 %end;

 %end;

 %let RC = %sysfunc(close(&DSId));

 DATA anly;

 set &InDat.(where = (trt = &Sub.));

 RUN;

 PROC SQL noprint;

 select * from anly;

 QUIT;

 %let DatObs = &SQLObs;

 %if &DatObs = 0 %then %do;

 %put -------- DATA SET (&InDat) HAS ZERO RECORDS, MACRO Contin STOPPING;

 %return;

 %end;

 PROC MEANS data = anly;

 var &Value;

 RUN;

 %mend;

	IDX
	IDX

