

1

Paper CC61
Hands Free: Automating Variable Name Re-Naming Prior to Export

John Cohen, Advanced Data Concepts LLC, Newark, DE

ABSTRACT
Often production datasets come to us with data in the form of rolling 52 weeks, 12 or 24 months, or the like. For ease of use,
the variable names may be generic (something like VAR01, VAR02, etc., through VAR52 or VAR01 through VAR12), with the
actual dates corresponding to each column being maintained in some other fashion – often in the variable labels, a dataset
label, or some other construct. Not having to re-write your program each week or month to properly use these data is a huge
benefit.

Until, however, you may need to capture the date information to properly document – in the variable names (so far VAR01,
VAR02, etc.) – prior to, say, exporting to MS/Excel® (where the new column names may instead need to be JAN2011,
FEB2011, etc.). If the task of creating the correct corresponding variable names/column names each week or month were a
manual one, the toll on efficiency and accuracy could be substantial.

As an alternative we will use an approach using a “program-to-write-a-program” to capture date information in the incoming
SAS® dataset (from two likely alternate sources) and have our program complete the rest of the task seamlessly, week-after-
week (or month-after-month). By employing this approach we can continue to use incom-ing data with generic variable names
and output our results with specific (and correct!) variable names, all hands free.

METADATA
Metadata are data about data, a description of the contents of a data set including variable names, variable lengths, data
types, value labels, and the like.1 These are stored, if we know how to access them, in SAS data sets. As experienced SAS
programmers, we are practiced at manipulating SAS data sets. Today we may be re-porting on quarterly sales results,
calculating the P-value of the statistical difference between test and control data sets, comparing defect rates between
production lines in two different locations, average test scores by school district, manipulating character values to identify
most-mentioned products, or the like.

We can just as easily report on data set contents, calculating differences in data set update dates, or manipulating character
variables to modify variable labels or renaming variables in bulk. We will describe here just such a pro-cess, taking metadata
for a SAS data set and using these data to create a process for deriving a modified version of the original data set, updating
according to our requirements. The values of the incoming data will NOT be changed (at least in this instance). What WILL be
modified are some of the metadata data – such as variable names, value labels, etc.

PROGRAM TO WRITE A PROGRAM – THE APPROACH
Any program is basically reasonable to write the first time. After all, that is (at least part of) what we do. And the very process
of discovery, of testing and building, creates much of the value in our resulting code. However, up-dating the program because
a few things have changed the next week, and again the following week, and so on, likely does not add the same value. If
substantial logic changes are required, again that is part and parcel of the life of a SAS programmer. But if the changes consist
of incremental updating of, say, date-related variable names and labels, listings based on the latest customer lists, rankings of
sales results by territory, or the like, then the value of meticulously “hand-coding” the program modifications is negligible. And
the QC requirements and proba-bility of introducing new errors each time is certainly a costly time sink.

If you are thinking that there must be a better way, well, sometimes there is. A collection of techniques have been developed
by some of the clever folks in our SAS user community. These are referred to collectively as table-driven, dynamic data-driven,
and the like.2 Some of these are quite powerful and also quite involved. But the common theme is that we build programs
which take advantage of the underlying data to help write the program,

1 For a more extensive discussion of the concept and usage of metadata set DiIorio, “Metadata 101: A Beginner's Guide to
Table-Driven Applications Programming”.
2 See DiIorio and Abolafia, Fehd and Carpenter, or Koslova and Berestizhevsky for three different examples.

2

thus obviating some of the more mundane, lower-value programming tasks, reducing error rates, and help to make the
program more self-documenting. This means that when the data change, our programs will also change
– all without programmer intervention. (This is the dynamic part.) It also means that somehow, some of the pro-gramming
components will be created for us as part of the complete execution of the program. (This is the pro-gram-to-write-a-program
component.)

ACCESSING THE METADATA
Our first requirement will be to access the metadata – data about our data. (A representation of our data is visible in Figure 1.)
We will use what for most should be the most accessible technique – PROC CONTENTS with the OUT= option.3 This option
will write out the contents – with which we are likely quite familiar from the report this procedure generates – to a SAS data set.
And we all know what to do with a SAS data set! The default output data set contains many more variables than we will need.
Instead we will only keep those required for the next step in the process.

 Figure 1 – Our Data: Rolling 52-Week Sales Figures by Territory

Territory_Name Week_01 Week_02 Week_03 “ “ “ Week_52
Boston, MA 127 143 113 “ “ “ 157
Portland, ME 115 98 103 “ “ “ 112
Wilmington, DE 93 47 86 “ “ “ 101

“ “ “ “ “ “ “ “

Our PROC CONTENTS statement might look like this:

Figure 2 – Accessing the Metadata

Proc Contents data=Weekly_Sales

OUT=Weekly_Sales_Contents(keep=name label);
Run;

In Figure 2 we create the SAS metadata SAS data set (did you get that) with the OUT= option. We named this new data set
Weekly_Sales_Contents and kept only the variables NAME (the name of the variables in the Week-ly_Sales SAS data set)
and LABEL (the corresponding variable labels). Again, the metadata data (at least those components which we want to access
for the next step) are stored as the SAS data set Weekly_Sales_Contents and look something like Figure 3. FYI, each
observation in the metadata reflects one variable in our original data set.

 Figure 3 – Our Metadata

Name Label
Week_01 week_ending_2010_01_08
Week_02 week_ending_2010_01_15
Week_03 week_ending_2010_01_22
“ “
Week_52 week_ending_2010_12_31

3 Some of the more elegant solutions alluded to previously use combinations of PROC SQL and the SAS macro
language, both powerful but also more advanced components of Base SAS than is appropriate here.

3

DYNAMIC DATA-DRIVEN COMPONENT

We next bring this metadata SAS data set into a DATA step and manipulate it as in the example in Figure 4. Our goal is to
take the variable labels – each one capturing the actual (week ending) date of that variable/data column
– and rename the variables – all generic names in the incoming data set – so that the resulting output data set variable names
become self-documenting.

Figure 4 – Manipulating the SAS Metadata & Creating the Program Component

/** create temporary storage space **/
Filename RENAME ‘C:NESUG 2011\CC04\update_rename.sas’;

Data _null_;

Set Weekly_Sales_Contents end=eof;
File RENAME; /** access temporary storage space **/

If _n_ = 1 then put @1 'rename '; /** beginning of program component **/

New_name = substr(label,13,10); /** “calculate” values **/

put @8 name $8. ' = ' new_name $10.; /** write rename statements **/

if eof then put @3 ';' ; /** complete the SAS statement **/

run;

Simply put, we have taken the metadata, captured the specific (week ending) date for each variable/observation in turn, and
created a statement which will rename the original generic variable names of Week_1, Week_2, etc. to _2010_01_08,
_2010_01_15, etc. These rename statements are created one observation at a time, and the final entire programming
component, from the initial “RENAME”, through each individual variable/observations respec-tive rename step, to the final
statement-ending semi-colon (“:”) will be captured in a text file named “up-date_rename.sas” – in fact a little SAS program
fragment. It may look a bit like Figure 5.

Figure 5 – The Program Component in the Flesh

Rename

Week_01 = _2010_01_08
Week_02 = _2010_01_15
Week_03 = _2010_01_22

“ “ “
“ “ “
“ “ “

Week_52 = _2010_12_31
;

To access this program component/fragment, a simple %INCLUDE statement referring to the original FILENAME will do the
trick as in Figure 6, which includes what might be a representative program. We create a (rolling) annu-al total – made much
simpler with the generic variable names – then rename the original weekly variables and output to a new SAS data set. We
may then pass this data set along to a colleague, or vendor in a different com-pany, or export to, say, MS/Access® or
MS/Excel. The (week ending) dates of the data columns are now captured in the outgoing data set variable names, and at
least this component of documenting our data will require no addi-tional effort on our part.

4

Figure 6 – Accessing the Program Component

Data report;

Set Weekly_Sales;
Rolling_Total = sum(of Week_01 – Week_52);
%INCLUDE RENAME;

Run;

/** forward to colleague, e-mail to outside vendor, or export to Excel **/
/** Dates of columns are now documented each time the program executes **/
/** with no need for any additional program modifications **/

Through testing, we know that these are valid variable names and specific to the contents of each varia-ble/column. This
means that when we want to run the program again next week (or next year), we can re-run the same program AS IS – no
changes!!!!! We do not need to hand-code Week_01 = _2010_01_15 when we run again next week, Week_01 =
_2010_01_22 the following week, and so forth. The program will do this for us with much greater accuracy and requiring little
time.

CONCLUSIONS
Some programming tasks, once a program is well-past initial development and testing, become both tedious and fraught with
potential for errors quite out-of-keeping with the value of the programming time we need to invest in making incremental
changes and the testing thereof. Where these changes are reflected in the underlying data in ways which we can manipulate –
once captured in the metadata – we may be in the position to create dynamic, data-driven programs which can simplify some
of the regular updating tasks. These will then both save us pro-gramming time – much of it mundane – and improve our
accuracy – a win/win.

But few things in life are free. This comes at a cost of an increase in upfront programming complexity and in de-velopment and
testing time. Further, as the program can almost become “turnkey,” there may be a need to build in automatic validation
processes. The payoff comes in the ease of running our process in the future. The approach described here is hopefully
relatively easy to understand and replicate.

REFERENCES:

Frank DiIorio, “Metadata 101: A Beginner's Guide to Table-Driven Applications Programming”, in Proceedings of the 20th
Annual Northeast SAS Users Group Conference, Nov. 11 – 14 2007, Baltimore, MD.

Frank DiIorio and Jeff Abolafia. “Dictionary tables and views: Essential tools for serious applications”, in
Proceedings of the 29th SAS User Group International Conference,May 9-12, 2004, Montréal, Canada.

Fehd , Ronald J. and Art Carpenter, “List Processing Basics: Creating and Using Lists of Macro Variables”, in SGF 2007
Conference Proceedings, March 22-25, 2009, National Harbor, Maryland.

Kolosova , Tanya and Samuel Berestizhevsky, Table-Driven Strategies for Rapid SAS Applications Develop-ment,
Cary, NC: SAS Institute Inc., 1995.

ACKNOWLEDGMENTS
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

John Cohen
Advanced Data Concepts LLC
Newark, DE
(302) 559-2060
Jcohen1265@aol.com

	page1
	page2
	page3
	page4

