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ABSTRACT  

Traditionally, the principal goal of educational assessments is to evaluate students’ academic achievement or 
proficiency in comparison to their peers or against promulgated standards. Both classical test theory (CTT) and item 
response theory (IRT) modeling frameworks provide measurement in the form of a summative estimate of the 
outcome variable. In recent years, understanding and exploring the complex cognitive processes that contribute to 
the learning outcome received growing interest in the field of psychometrics, where various item response modeling 
approaches have been devised to explain the relationship between the outcome and its componential attributes. 
Such approaches include the linear logistic test model (LLTM), the crossed random-effects linear logistic test model 
(CRELLTM), and the multiple regression method (MR). This paper introduces these statistical models and illustrates 
their implementation with the GLM, NLMIXED, and GLIMMIX procedures over an empirical data set. A simulation 
study was conducted to examine the performance of these approaches.  

INTRODUCTION 

Faced with the prevalence of standardized tests which are either legislature-mandated (such as the No Child Left 
Behind Act of 2001) or commercially available, educators demand that the assessments their student are required to 
participate provide instructionally relevant results to have their worth maximized in helping with teaching and learning 
in return for their expensive costs. Advancement in cognition in educational psychology has increased our 
understanding of the mechanisms of human learning and problem solving, including cognitive domains, schemas, 
strategies, sub-operations/tasks, production rules, etc. As the traditional CTT and IRT frameworks are not suitable, 
the challenge to evaluate these unobservable processes has given rise to a series of componential models that are 
having a huge impact on test construction and analysis procedures. Before presenting these models, it is necessary 
to introduce briefly an indispensable modeling element.  

Q-Matrix 

The Q-matrix is an I by K incidence matrix mapping the K attributes to the I items. That is, each item is described by 
the cognitive processes upon which making a correct response depends. Typically, the columns of the Q-matrix are 
the attributes and the rows represent all the items. Also typically, an entry of “1” in the matrix indicates that attribute is 
needed to answer correctly the item on the row and an entry of “0” otherwise. In this case, these entries are called 
“indicators” (of occurrence). With some modeling approaches, there is dependency between the attributes or non-
binary entries in the matrix as a fixed weighting system. The criticality of the Q-matrix lies in the fact that it paints the 
cognitive blueprint for test construction and componential models and must be specified before analysis. An example 
of the Q-matrix is given in Table 1.  

The Linear Logistic Test Model 

One of the early psychometric models incorporating cognitive processes is the linear logistic test model (LLTM) 
introduced by Fischer (1973), who discovered that an examinee must carry out eight basic cognitive operations in 
order to answer differentiating calculus questions. Presumably, the item difficulty parameter could be redefined in an 
additive function of the parameters of the eight cognitive processes plus person ability. In other words, the probability 
of answering a question correctly could be predicted using the LLTM by including person parameter and the item’s 
cognitive properties. In traditional IRT framework, the LLTM is often considered a member of the Rasch families 
(Embretson & Reise, 2000). The fundamental formulation of the Rasch model for binary data can be expressed as 
 

ܲ൫ ௜ܺ௝ ൌ 1หߠ௝, ௜൯ߚ ൌ
exp൫ߠ௝ െ ௜൯ߚ

ൣ1 ൅ exp൫ߠ௝ െ ௜൯൧ߚ
, 

 
where P(Xij=1) represents the probability of a correct response to item i for person j, θj is the ability level of person j, 
and βi is the item difficulty of item i. When a linear summation of cognitive attributes replaces item difficulty,

i , the 

Rasch model is extended into the LLTM, whose equation is given as:  
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That is, in the LLTM the item difficulty parameters that are replaced by cognitive attributes can be conceptualized as 
 

௜ߚ ൌ ෍ݍ௜௞ߟ௞	,

௄

௞ୀଵ

 

 
where ηk is the process parameters of the model, whose values represent the contribution of cognitive attribute k = 1, 
…, K to the difficulty of item i; and qik is an entry in the pre-specified Q-matrix. In the framework of explanatory item 
response models (De Boeck & Wilson, 2004), the LLTM is considered an item explanatory model since item 
properties reflecting cognitive attributes are used to explain item responses. The LLTM can be implemented by the 
NLMIXED and GLIMMIX procedures as illustrated later. 

The Crossed Random-Effects LLTM 

The fundamental assumption of the LLTM is that the variation of the item difficulty parameter is accounted for 
completely by the process parameters behind an item, thus leaving no room for error in the model. Such an 
unrealistic relationship between the item parameter and its components is considered a limitation with the LLTM 
(Hartig, Frey, Nold, & Klieme, 2012). Studies (Janssen and De Boeck, 2002; Rijmen & de Boeck, 2002) found that the 
model-data fit of the LLTM was less than satisfactory even when the Q-matrix is well designed and most of the 
variance in item difficulty parameters is explained by parameters of cognitive attributes. By adding an error term on 
item difficulty (i.e., ߚመ௜ ൌ ௜ߚ ൅  ௜), the crossed random-effects LLTM (CRELLTM) proposed by Janssen and colleaguesߝ
(2004) resolves this limitation.  
 
With the CRELLTM, the item difficulty parameters as predicted by parameters of cognitive processes can be 
conceptualized as 
 

መ௜ߚ ൌ ෍ݍ௜௞ߟ௞

௄

௞ୀଵ

൅  ,	௜ߝ

 
where ߝ௜ reflects the portion of difficulty parameter for item i unaccounted for by cognitive attributes. The accuracy 
and precision of parameter estimation for cognitive attributes under the CRELLTM was investigated as implemented 
with the GLIMMIX procedure (Cao, Wang, Chen, & Li, 2013). With generalized linear mixed models, this error term is 
captured by treating item parameters as a random effect.  

The Regression Approach 

Given that item difficulty is defined in the LLTM as a function of all parameters of cognitive attributes, a crude method 
to obtain these parameter estimates is through a multiple regression. First, item difficulty parameters are estimated 
with the GLIMMIX procedure (Chen, Li, & Kromrey, 2013) by fitting the dichotomous Rasch model. Next, the item 
parameter estimates are regressed on all attributes represented by their occurrence in the Q-matrix. That is, for the 
difficulty estimate of a certain item, its predictors include only those attributes contributing to it and their values are all 
one.  

AN EXAMPLE 

560 fourth graders from a Midwestern state sat in an administration of a widely used standardized test designed to 
provide instructional support for schools. Only the 19 reading comprehension questions from the exam were used. 
The three processes of comprehension assessed by the exam include retrieval and understanding, inference and 
interpretation, and evaluation and synthesis. A group of subject matter experts studied the items and mapped them to 
the three processes to create a plausible Q-matrix, which is shown in Table 1 below. The response data were 
transformed into the “long format”, where all responses filled one column ordered by students and items. An excerpt 
of the data in this format is given in Table 1, which shows only the segment for Student 1. Column 3 contains his/her 
responses (“scores”) to all 19 items. For example, the response to item2 was correct but that to item 3 was incorrect.  
Column “c1” to “c3” represent the three processes of the Q-matrix, which is repeated for every segment of the data 
for all 560 students. Note that some items tap into more than one comprehension process (e.g., the third and eighth 
items both assessing retrieval and understanding as well as inference and interpretation). That is, students are 
expected by the model to implement the two processes in order to answer the question correctly.  
 

Methods 

As discussed earlier, the LLTM can be considered an item explanatory model and thus a case of generalized linear 
mixed models (GLMMs). Therefore both the NLMIXED and GLIMMIX procedures can be used to fit this model. The 
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NLMIXED procedure in SAS for the non-linear mixed modeling (NLMMs), which subsumes GLMMs, has been widely 
used to formulate various item response theory (IRT) models (e.g., De Boeck & Wilson, 2004). This procedure 
becomes more popular for researchers and practitioners because of the availability of SAS and modeling flexibility 
due to its capability to include item discrimination parameter. The LLTM code as implemented with NLMIXED is 
follows. 
 
proc nlmixed data=all qpoints=20 tech=newrap; 
  parms b1-b3=0 sd0=1; 
  beta= b1*c1 + b2*c2 + b3*c3;  
  ex=exp(theta-beta); 
  p=ex/(1+ex); 
  model response ~ binary(p); 
  Random theta ~ normal(0,sd0**2) subject=student OUT = theta_hat; 
  Estimate 'sd0**2' sd0**2; 
  ods output Parameters = Parmsnl ParameterEstimates = Parmnl AdditionalEstimates = 
AddEstnl FitStatistics = Fitnl ; 
 run; 
 

Table 1 Excerpt of the Response Data 

Student Item Response c1 c2 c3 

1 i1 1 0 0 1 

1 i2 1 0 0 1 

1 i3 0 1 1 0 

1 i4 1 1 0 0 

1 i5 1 0 1 0 

1 i6 1 0 1 0 

1 i7 1 0 1 0 

1 i8 1 1 1 0 

1 i9 0 1 0 0 

1 i10 1 1 0 0 

1 i11 1 1 1 1 

1 i12 0 0 1 1 

1 i13 1 1 0 0 

1 i14 1 1 0 0 

1 i15 1 0 1 0 

1 i16 0 0 1 0 

1 i17 0 1 0 0 

1 i18 0 0 1 0 

1 i19 1 0 1 1 
 
Data set “all” is in the long format. The Newton-Raphson (newrap) technique is used for optimization, which requires 
repeated computation of the function value (optimization criterion) and gradient vector (first-order partial derivatives). 
Other optimization techniques are available with NLMIXED. The integration method here is the adaptive gaussian 
quadrature The process parameters b1 to b3 are given an initial value of to 0 and initial standard deviation of 1 and 
an estimate of their variance is requested . In this example, instead of the original conditional maximum likelihood 
method, a variant of the LLTM (De Boeck and Wilson, 2004) is applied that employs marginal maximum likelihood 
estimation, which is available with PROC NLMIXED. In model definition, the item parameter beta equals to the sum of 
the three processes multiplied by their coefficients (b1 to b3), the parameters of interest. Note that the student ability, 
theta, assumes a normal distribution with a mean of 0 and a standard deviation of 1. Finally, output is saved in 
specified tables via the ODS. Parameter estimates of b1 to b3 are given below. Their values reflect the effect of every 
process on item difficulty. The negative values of the first two processes are expected since they are the “easier” 
ones.  
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Table 2 LLTM Estimates Using NLMIXED 

 
 
The GLIMMIX procedure is a relatively new package in SAS and has been shown as a good tool for psychometric 
analysis (Li, Chen, & Kromrey, 2013). The SAS PROC GLIMMIX performs estimation and statistical inference for 
GLMMs that extend the class of generalized linear models (GLMs) by incorporating normally distributed random 
effects. The GLIMMIX procedure has been applied to implement a number of item response models and is gaining 
increasing popularity in other fields due to its powerful functionalities and the wider use of GLMMs. 
 
The GLIMMIX and NLMIXED procedures conduct parameter estimation as an optimization problem and approximate 
the marginal likelihood as the solution. NLMIXED uses an integral approximation through Gaussian quadrature. 
GLIMMIX by default fits GLMMs based on linearizations with a technique known as restricted pseudo-likelihood 
(RPL) but it is also capable of estimation methods based on integral approximation, a Laplace approximation of the 
marginal log likelihood and adaptive Gauss-Hermite quadrature. The code to implement the LLTM with GLIMMIX is 
here. 
 
 proc glimmix data = all method=quad;  
  class item student; 
  model response (event='1')= c1 c2 c3/ solution noint link=logit dist = binary ;  
  random int / subject = student solution; 
  ods output FitStatistics=Fitlltm ParameterEstimates = Parmlltm SolutionR=Rlltm; 
 run; 
 
Maximum likelihood estimation and quadrature method of likelihood approximation are used. The MODEL statement 
lists the three attribute parameters as the fixed effects and predictors for a correct response. Their estimates are 
given in Table 3, where the direction of the effects will have to be reversed. The RANDOM statement identifies 
students (theta) as random effects in the mixed model and requests its estimate by specifying the SOLUTION option.  
 
Table 3 LLTM Estimates Using GLIMMIX 

 
 
The CRELLTM adds an error term in the regression function of item difficulty parameter on attribute parameters. 
GLIMMIX realizes that by also identifying items (beta) as random effects as shown in the following code. 
 
 proc glimmix data = all method=laplace;  
  class item student; 
  model response (event='1') = c1 c2 c3/ solution noint link=logit dist = binary  ;  
  random int / subject = student solution; 
  random int / subject = item solution; 
  ods output FitStatistics= Fitcrelltm ParameterEstimates = Parmcrelltm 
SolutionR=Rcrelltm; 
 run; 
 
Here the most obvious difference from the LLTM code is the addition of another RANDOM statement. As both items 
and students in the CLASS statement are treated as random effects, this belongs with the category of crossed 
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models, which is in fact a version of explanatory IRT models that account for the variation of both item difficulty and 
person ability. However, the NLMIXED procedure cannot be used to estimate random effects for person ability and 
item difficulty simultaneously with quadrature approximation method (De Boeck & Wilson, 2004). Similarly, this 
method when utilized by GLIMMIX does not work either. Therefore the approximation method used here is Laplace 
with optimization technique being dual quasi-newton.  
 
The attribute parameter estimates as fixed effects from the CRELLTM are given in Table 4. Note the similar but not 
close values to those in Table 3 and the need for reversing the direction of the fixed effects. Table 5 lists the model fit 
statistics output by GLIMMIX for the LLTM (on the left) and the CRELLTM (on the right). The CRELLTM had better fit.  
 
Table 4 CRELLTM Estimates 

 
 
The final approach to obtain process parameter estimates is through a regression analysis after item difficulties have 
been estimated. When items are considered nested within persons, the dichotomous Rasch model can be seen as a 
member of the GLMMs, enabling it to be fitted with GLIMMIX. The SAS code to derive estimates both item and 
person (i.e. students) parameters is as follows. 
 
 proc glimmix data = all method=quad; 
  class item student; 
  model response (event='1') = item student / solution noint link=logit dist = binary; 
  lsmeans item / cl ilink; 
  lsmeans student / cl ilink; 
  ods output lsmeans=lsmeans_item_effects FitStatistics= FitRasch  ; 
 run; 
 
The marginal log likelihood of the Rasch model is approximated using maximum likelihood estimation with Newton-
Raphson being the optimization technique. The direction of item effects output by the LSMEANS statement needs to 
be reversed for them to be interpreted as item difficulties. Table 6 presents the estimates of item difficulties from the 
four approaches. Note that those values from the two LLTM approaches are calculated on the basis of previous 
formulae whereas the CRELLTM and the Rasch estimates were provided by the GLIMMIX procedure.  
 
Table 5 Fit Statistics from GLIMMIX for LLTM and CRELLTM 
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Table 6 Item Difficulty Estimates from the Four Approaches 

Item NL LLTM LLTM CRELLTM Rasch 

i1 0.2193 0.2192 -1.0728 -1.1253 

i2 0.2193 0.2192 -0.6437 -0.6425 

i3 -0.8864 -0.8867 -0.3433 -1.8548 

i4 -0.3740 -0.3742 -0.1274 -0.8400 

i5 -0.5124 -0.5125 -1.5522 -2.6958 

i6 -0.5124 -0.5125 -0.5974 -1.6173 

i7 -0.5124 -0.5125 -0.5974 -1.6173 

i8 -0.8864 -0.8867 -0.2966 -1.8028 

i9 -0.3740 -0.3742 0.3002 -0.3588 

i10 -0.8864 -0.8867 0.4361 -0.2052 

i11 -0.6671 -0.6675 0.3361 -0.8496 

i12 -0.2931 -0.2933 0.3107 -0.3498 

i13 -0.3740 -0.3742 -0.4275 -1.1765 

i14 -0.3740 -0.3742 -0.0514 -0.7546 

i15 -0.5124 -0.5125 0.5092 -0.3770 

i16 -0.5124 -0.5125 0.5413 -0.3407 

i17 -0.3740 -0.3742 0.4361 -0.2052 

i18 -0.5124 -0.5125 0.8927 0.0575 

i19 -0.2931 -0.2933 1.1391 0.5943 
 
As expected, the two LLTM approaches supplied very close item difficulty estimates. However, they are far from the 
estimates from the other two approaches, confirming the less than realistic assumption of the LLTM with regards to 
the item parameter. The estimates based on the CRELLTM and on the Rasch model are similar but not close, 
suggestive of the fact that the CRELLTM includes the effects of cognitive processes in its analysis in addition to 
student scores.  
 
The estimates of person ability for the 560 students as gauged by the reading comprehension questions are 
compared between the approaches in the graph below. Note that these ability estimates are in ascending order.  
 

 
Figure 1: Distribution of Person Parameter Estimates from the Four Approaches 
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It is clear that the LLTM estimates using NLMIXED and GLIMMIX are so close that their lines overlap. These ability 
estimates are very close to the CRELLTM ones, especially towards the top end of the spectrum. On the other hand, 
the Rasch ability values are distant from the other three sets and are increasingly higher as the ability level goes up. 
The person parameter is fixed for the Rasch analysis but treated as random effects for the other three approaches 
defined as ߠ௝~ܰሺ0, ఏߪ

ଶሻ. 
 
After, the effects from the cognitive attributes can be estimated by regressing item difficulty estimates on the 
indicators in the Q-matrix. That is, the values of the three predictors are either 1 or 0. This linear regression can be 
conducted using GLIMMIX as follows. 
 
 proc glimmix data = mvreg ; 
  model difficulty = c1 - c3 / solution noint; 
  ods output parameterestimates = parmreg fitstatistics = fitreg ; 
 run; 
 
Apparently this is a crude method since it excludes information on individual differences in ability. The R-square value 
is only .56. Table 7 below lists the estimates for the three process parameters. Clearly, the values are not close to 
those obtained with the other approaches.  
 
Table 7 Estimates Based on Regression 

 

SIMULATION STUDY 

Which is the preferred approach to model cognitive processes? To answer this question, a comprehensive simulation 
study was conducted under a number of conditions. Data were simulated using a random number generator, 
RANNOR, in SAS/IML package. For each condition, 1000 replications were generated. The manipulated sample 
sizes were 25, 50, 100, 250, and 500. The population distribution shapes were set up as follows: normal (skewness = 
0, kurtosis= 0), negatively-skewed distribution (skewness = -2, Kurtosis = 6), slightly negatively-skewed (skewness = 
-1, Kurtosis = 3), slightly positively-skewed (skewness = 1, kurtosis = 3), positively-skewed (skewness = 2, kurtosis = 
6), highly leptokurtic (skewness = 0, kurtosis = 25), and slight platykurtic (skewness = 0, kurtosis = -1). The numbers 
of items was fixed at 21. It was decided to select eight cognitive attributes. The forms of the Q-matrix density was 
sparse or dense, the details of which are not discussed.  
 
Two decision criteria used to assess the estimation performance of these approaches are estimation bias and root 
mean square error (RMSE). Estimation bias is computed as the average difference between the estimated and true 
parameters:  
 

ݏܽ݅ܤ ൌ
∑ ߟ̂ െ ߟ
݊௥௘௣

	, 

 
where η is the attribute parameter. RMSE is the square root of the average squared difference between the estimated 
and true parameters and was used to detect the magnitude of estimation error. It is defined as  
 

ܧܵܯܴ ൌ ඨ
∑ሺ̂ߟ െ ሻଶߟ

݊௥௘௣
	. 

 
In addition, factorial ANOVA analysis with the generalized eta-squared effect size was conducted to examine what 
manipulated factors affected bias and RMSE significantly.  
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Results 

Overall, the CRELLTM approach performed better in terms of parameter estimation of cognitive attributes. The 
overall distribution of estimation bias for all four approaches is presented as the box and whisker plot in Figure 2. 
Tthe box plots of the two LLTM methods are almost identical. The average bias for CRELLTM method is smaller (-
0.0321) than those of the LLTM methods (-.0691 and -.0687). The variance of the estimation bias for CRELLTM is 
also lower (SD = .1665) than those of LLTM (.1788 and .1791). In comparison, estimation bias and its variance 
associated with the regression approach are far greater (Mean = .0118 and SD = .4910).  
 
The factorial ANOVA analysis provided generalized eta-squared effect size for all four methods, which are 
summarized in Table 7. The largest effect for CRELLTM and the two LLTM methods came from the interaction 
between sample size and population distribution shape (underlined values), which are significantly higher than the 
rest of the effects. As for the regression approach, significant effects were found from sample size, population 
distribution shape, and their interaction.  

Table 8 Eta Squared Effect Size from Attribute Bias 

Source CRELLTM LLTM-GLIMMIX LLTM-NLMIXED Regression 

N_PERSONS*SHAPE 0.3607 0.3765 0.3767 0.2344 

SHAPE*QF 0.0747 0.0882 0.0881 0.0119 

N_PERSONS 0.0670 0.0603 0.0601 0.3594 

N_PERSONS*QF 0.0523 0.0395 0.0395 0.0410 

SHAPE 0.0399 0.0448 0.0452 0.2614 

QF 0.0234 0.0131 0.0130 0.0384 

 

  
Figure 2: Distribution of Attribute Estimation Bias across the Four Methods 

 
The average RMSE of attributes estimation for all four approaches is quite large (.6135 for CRELLTM, .6449 for 
LLTM-GLIMMIX, and .6456 for LLTM-NLMIXED). This appears to contradict the findings of relatively small bias from 
the three non-regression approaches as discussed in the previous section. Figure 3 displays the distributions of 
RMSE. Again, CRELLTM exhibited smaller and less varying RMSE than the other methods whereas the two LLTM 
approaches had almost identical distributions. The RMSE for the regression method is far greater than others.  
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Figure 3: Distribution of Attribute Estimation RMSE across the Four Methods 
 
The results of factorial ANOVA analysis with generalized eta-squared effect sizes indicates that the main effect of the 
interaction between sample size and population distribution shape has a considerable effect on the RMSE of the 
attributes estimates from the three non-regression methods. All three η2 values are at a great level (> .3300). In 
addition, the effect size of interaction between population distribution shape and Q-matrix density is also large for the 
CRELLTM approach. On the other hand, the effect size of Q-matrix density is significant for the two LLTM methods 
as exhibited in Figure 4. In Table 2, all these η2 are underlined. 
 

Table 9 Eta Squared Effect Size from Attribute RSME 

Source CRELLTM LLTM-GLIMMIX LLTM-NLMIXED Regression 

N_PERSONS*SHAPE 0.3355 0.3538 0.3534 0.0518 

SHAPE*QF 0.1119 0.0754 0.0755 0.0405 

N_PERSONS 0.0909 0.0235 0.0237  

QF 0.0493 0.1475 0.1486  

SHAPE 0.0412 0.0467 0.0464 0.0114 

N_PERSONS*QF 0.0338 0.0316 0.0315 
 

CONCLUSION 

When componential modeling, including study of cognitive processes, receives growing attention in social and 
behavioral sciences, it is exciting that SAS has acquired powerful functionalities to implement analyses of this kind 
with procedures of NLMIXED and GLIMMIX. This paper has illustrated how to fit several cognitive process models 
using these procedures. The LLTM as implemented with NLMIXED and GLIMMIX gave estimates that were almost 
identical. Since it is less than reasonable to assume that the attribute parameters account for the entire variation of 
the item parameter, the CRELLTM is a better modeling approach by adding an error term. GLIMMIX is the only 
procedure capable of fitting it with the additional error term by allowing items to be random effects in the mixed 
model. On the other hand, the two-step regression approach using GLIMMIX is the least favored given that each step 
produces error in estimation. Li et al. (2013) found that GLIMMIX running Rasch analysis can run into large errors 
with small sample sizes and short tests. Moreover, the step of regressing estimated item parameters on the Q-matrix 
is problematic since it ignores personal differences in the data.  
 
The evidence from the simulation study supports the reasoning. The CRELLTM performed the best in terms of 
estimating the effects from the cognitive attributes. The average estimation bias and RMSE across all conditions is 
negligible. But it should be cautioned that under some conditions considerable bias and large deviances occurred. 
Factorial ANOVA analysis with generalized eta-square effect sizes reveals that the most influential main effect (all 
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effect sizes > .3) comes from the interaction between sample size and population distribution shape consistently for 
the three non-regression approaches. Another notable effect is due to density of the Q-matrix. 
 

 
Figure 4: Distribution of Attribute RMSE by Q-matrix Density for LLTM  
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