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ABSTRACT

Hierarchical data are common in many fields, from pharmaceuticals to agriculture to sociology. As data
sizes and sources grow, information is likely to be observed on nested units at multiple levels, calling for the
multilevel modeling approach.

This paper describes how to use the GLIMMIX procedure in SAS/STAT® to analyze hierarchical data that
have a wide variety of distributions. Examples are included to illustrate the flexibility that PROC GLIMMIX
offers for modeling within-unit correlation, disentangling explanatory variables at different levels, and handling
unbalanced data.

Also discussed are enhanced weighting options, new in SAS/STAT 13.1, for both the MODEL and RANDOM
statements. These weighting options enable PROC GLIMMIX to handle weights at different levels. PROC
GLIMMIX uses a pseudolikelihood approach to estimate parameters, and it computes robust standard
error estimators. This new feature is applied to an example of complex survey data that are collected from
multistage sampling and have unequal sampling probabilities.

INTRODUCTION

As data sizes and sources grow, information is likely to be observed on nested clusters at multiple levels,
giving rise to what are called “hierarchical data.” Such data are common in many fields, from pharmaceuticals
to agriculture to sociology. Hierarchical data call for specialized analytical techniques that take into account
the interaction between information at different levels. These techniques are generally referred to as mixed
models, and SAS/STAT software provides many ways to use them to answer questions about your multilevel
data.

As a starting point, consider the following example from the pharmaceutical industry, noting the hierarchical
character of the data with an eye towards the multiple levels of analysis it calls for. Brown and Prescott (1999)
discuss a randomized multicenter hypertension trial in which patients at each center are randomized to
receive one of three drugs and are then followed up for four visits. Diastolic blood pressure (DBP) is recorded
before the treatment and at each of the four visits. This multicenter study has a three-level structure:

1. Visits are the level-1 units.

2. Patients are the level-2 clusters.

3. Centers are the level-3 clusters.

Visits are nested within patients, which are further nested within centers. The units at levels that are higher
than level 1 are sometimes called clusters. Visit time is a level-1 covariate. Baseline DBP and treatment
vary only from patient to patient and are thus level-2 covariates. No level-3 covariates are measured on the
centers.

What is the rationale for distinguishing DBP measurements based on patient and center? Patients at the
same center tend to be more similar to each other than they are to patients from another center. The reason
for within-center similarity could be the closeness of residences of the patients or the shared medical practice
at the center. Furthermore, repeated DBP measurements of the same patient are closer to each other than
they are to measurements of a different patient.

The within-cluster dependence makes ordinary regression modeling inappropriate, but you can use multilevel
models to accommodate such dependence. The cluster correlation is more than just a nuisance though. The
hierarchical design provides rich information about how the processes operate at different levels. Multilevel
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models enable you to disentangle such information by including covariates at different levels and assigning
unexplained variability to different levels. For example, a three-level model enables you to estimate effects
of covariates at the visit, patient, and center level in the multicenter study. Furthermore, you can include
random effects to address the variability that is not explained by those covariates. These random effects are
specified at levels that are defined by nested clusters.

The upshot is that multilevel models for hierarchical data are a special case of mixed-effects models.
Multilevel models can be analyzed using any of a number of SAS/STAT procedures, including the MIXED,
HPMIXED, HPLMIXED, GLIMMIX, and NLMIXED procedures. This paper highlights the flexibility and power
that PROC GLIMMIX offers for fitting multilevel models.

The next section discusses the multilevel modeling approach and its relationship with mixed models. The
section after that shows you how to use PROC GLIMMIX to fit a three-level model to the multicenter trial
data. A review of the weighted multilevel models and their application to a multistage sampling survey are
covered in the last two sections.

MULTILEVEL MODELS ARE MIXED MODELS

Model Formulation

One of the key points about multilevel models is that the hierarchical structure of the data makes it natural to
conceive of the model in stages. To see this in action, consider a three-level model that has fixed effects at
the first and second levels and random intercepts and slopes at the second and third levels. In the following
development, a superscript .l/ denotes the level l , and i , j , and k denote the indices of level-1, level-2,
and level-3 units, respectively. A model for this data can be specified in three stages. At each stage, you
incorporate covariates and random effects to explain the level-specific variation around the mean intercept
and mean slope. The level-1 model posits a linear relationship between the fundamental observed response
Yijk and the level-1 covariate x.1/

ijk
:

Yijk D ˛0jk C ˛1jkx
.1/

ijk
C eijk

At the next level, the intercept and slope from this level-1 model vary among level-2 units according to the
following relationships with the level-2 covariate, x.2/

jk
:

˛0jk D ˇ00k C ˇ01kx
.2/

jk
C 

.2/

0jk

˛1jk D ˇ10k C ˇ11kx
.2/

jk
C 

.2/

1jk

Finally, the level-2 intercepts vary among level-3 units according to the level-3 models:

ˇ00k D �00 C 
.3/

0k

ˇ10k D �10 C 
.3/

1k

In addition to the responses, covariates, and the parameters that relate them, this three-level model incorpo-
rates random terms at each of the three levels: the level-1 residual is eijk , and the random-effects vectors
at level 2 and level 3 are  .2/

jk
D .

.2/

0jk
; 
.2/

1jk
/ and  .3/

k
D .

.3/

0k
; 
.3/

1k
/, respectively. The usual distributional

assumption for the random effects is normality:


.2/

jk
� N.0;G.2// and 

.3/

k
� N.0;G.3//

The covariance matrices G.2/ and G.3/ specify how random intercept and slope vary across level-2 units and
level-3 units, respectively. The residual vector of a level-3 unit is handled similarly:

ek � N.0;R
.3/

k
/

This completes the three-stage model formulation of a multilevel model for this multilevel data.
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For the purpose of fitting this three-level model, you need to distinguish fundamental parameters from
intermediate ones. Substituting the level-3 models into the level-2 models and then the level-2 models into
the level-1 model yields the following:

Yijk D �00 C �10x
.1/

ijk
C ˇ01jx

.2/

jk
C ˇ11jx

.1/

ijk
x
.2/

jk
C


.2/

0jk
C 

.2/

1jk
x
.1/

ijk
C


.3/

0k
C 

.3/

1k
x
.1/

ijk
C

eijk (1)

This equation enables you to identify multiple sources of variation. The first line on the right-hand side of the
equation lists the fixed effects of this model: the overall intercept, the level-1 and level-2 covariates, and their
interaction. The second and third lines specify the random effects at the second and third levels, which are
followed by the residual on the last line. This form of model specification—especially the partition of fixed
and random effects and the further separation of random effects according to their levels—is the logic behind
the syntax of PROC GLIMMIX. This breakdown is different from the separate equations that researchers
in educational, social, and behavioral sciences often use to conceptualize multilevel models, but it is more
convenient for computation and it ties multilevel models to the larger area of mixed models.

Considered thus as a mixed model, a multilevel model can be written in matrix notation,

Y D Xˇ CZ C e

where Y and e are vectors of responses and residuals, respectively; X and Z are design matrices for fixed
and random effects, respectively; and ˇ and  are vectors of fixed and random effects, respectively. The
distribution assumptions for e and  translate to

e � N.0;R/ and  � N.0;G/

Thus,

Var.Y / D ZGZ0 CR

The preceding two equations define a linear mixed model, and the covariance parameters � in R and G
can be estimated using maximum likelihood (ML) or restricted maximum likelihood (REML) methods. Such
methods are extensively discussed in Littell et al. (1996). After you have the covariance parameter estimate
O� , you can obtain the empirical best linear unbiased estimator (EBLUE) of ˇ and the empirical best linear
unbiased predictor (EBLUP) of  .

Within-Cluster Dependence

The general mixed model formulation in the preceding two equations is all you need for estimation and
inference, but consider the form these relationships take for multilevel models in particular to see what they
imply for within-cluster dependence.

Recall how the observations in the multicenter trial example were correlated within patients and centers.
Such within-cluster dependence violates the independence assumption for ordinary regression models.
Multilevel models accommodate such within-cluster dependence by including random effects at different
levels and by assuming flexible covariance structures for residuals.

Consider, for example, a three-level random intercept model:

Yijk D �00 C �10x
.1/

ijk
C ˇ01jx

.2/

jk
C ˇ11jx

.1/

ijk
x
.2/

jk
C


.2/

jk
C 

.3/

k
C eijk

The random effects, eijk ,  .2/
jk

, and  .3/
k

are assumed to be uncorrelated and have the following distributions:

eijk � N.0;  1/; 
.2/

jk
� N.0;  2/; and 

.3/

k
� N.0;  3/
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The following conditional correlations result from this simple and natural assumption for the random effects.
Given Xk (the covariates for the level-3 cluster k):

• The correlation between yijk and yi 0j 0k (which represent the responses in the same level-3 cluster, but
different level-2 clusters) is

Corr.yijk ; yi 0j 0kjXk/ D
 3

 1 C  2 C  3
(2)

• The correlation between yijk and yi 0jk (which represent the responses in the same level-2 cluster, but
different level-1 clusters) is

Corr.yijk ; yi 0jkjXk/ D
 2 C  3

 1 C  2 C  3
(3)

To derive the covariance matrix for a general three-level model, follow the notations that are used in the
discussion of model formulation. Also, let Z.2/

jk
and Z

.3/

k
denote the design matrices for  .2/

jk
and 

.3/

k
,

respectively. That is, the elements of Z.2/
jk

indicate which parameters of  .2/
jk

apply to each observation,
according to the fundamental defining equation for the multilevel model, equation (1). Then the covariance
matrix for Yk(the vector of observations within a level-3 cluster k) can be expressed as

Cov.Yk/ D Z
.3/

k
G.3/Z

.3/0

k
C

0BBBB@
Z
.2/

1k
G.2/Z

.2/0

1k
0 : : : 0

0 Z
.2/

2k
G.2/Z

.2/0

2k
: : : 0

:::
:::

: : :
:::

0 0 : : : Z
.2/

Jk
G.2/Z

.2/0

Jk

1CCCCACR.3/k
where J is the number of level-2 units in the level-3 unit k.

Cross-Level Interactions between Effects

Another important consideration in devising and analyzing multilevel models is the possibility of interactions
between factors that vary at different levels. Of course, interactions are always something to be concerned
about. Sometimes they are nuisances that obscure your inferences about main effects, but they also can
be the primary effect of interest. For example, in assessing how a treatment affects a medical condition, it
is often true that the condition will improve or degrade regardless of treatment. That is, subjects might get
generally better or worse regardless of how they are treated, but the real question is whether the rate at
which subjects get better or worse is affected by treatment—that is, is there a time-by-treatment interaction?

A time-by-treatment interaction is one example of a cross-level interaction, because treatments are applied at
the subject level whereas time is an observation-level covariate. Another example that is more of a nuisance
is a treatment-by-center interaction in a design in which subjects are studied at multiple centers. If the effect
of the center is regarded as being random, then the treatment-by-center interaction is also a random effect.

With random center and treatment-by-center effects, you can still estimate treatment effects and their
differences, but they will necessarily depend on best linear unbiased predictions (BLUPs) for the center-
specific main effects and interactions. Because the standard errors of BLUP-based estimates reflect the
variation of center and treatment-by-center interaction, they are larger than the standard error estimates
from the fixed-effects model.

Example 1: A Multicenter Clinical Trial

This section applies the general concepts of multilevel modeling that are described in the preceding section
to the three-level multicenter trial that is defined in the section “INTRODUCTION” on page 1. The mixed
model formulations of three different multilevel models are examined: a simple random intercept model, a
model with cross-level interaction, and a random coefficient model. This section uses PROC GLIMMIX, but
any of the several mixed modeling procedures in SAS/STAT could do the job.

In this trial, 288 patients at 29 centers were randomized to receive one of three hypertension treatments:
a new drug, Carvedilol, and two standard drugs, Nifedipine and Atenolol. Patients were followed up every
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other week for four visits to have their diastolic blood pressure (DBP) measured. One goal of this study is to
assess the effect of the three treatments on DBP over the period of the follow-up. The variables in the data
set are:

• Center: center identifier

• Patient: patient identifier

• Visit: visit number 3, 4, 5, or 6 (post-randomization)

• dbp: diastolic blood pressure in mmHg measured at the follow-up visit

• dbp1: diastolic blood pressure prior to randomization

• Treat: treatment group Carvedilol, Nifedipine, or Atenolol

It is helpful to inspect the trend of DBP visually before you choose a model. Figure 1 shows the spaghetti
plot of DBP against the visit time for the patients at four centers. The plot shows that the DBP trends vary
significantly from patient to patient. If you picture the trend of DBP as a linear function of visit time, you can
see considerable variability in the intercepts within each center. Also the range of intercepts vary from center
to center, implying that there might be variation around the center mean intercept.

Figure 1 Spaghetti Plot of Four Centers

A Three-Level Random Intercept Model

Consider constructing a three-level model in the following stages:

1. The level-1 model for visit i of patient j at center k is a linear regression on visit time,

Yijk D ˛0 C ˛1vijk C eijk (4)

where Yijk , vijk , and eijk are DBP, visit time, and residual, respectively, for visit i of patient j at center k.
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2. Assume that the intercept ˛0 varies among patients according to the level-2 model,

˛0 D ˇ0 C ˇ1bjk C ˇ2�jk C pjk (5)

where bjk and �jk are level-2 covariates baseline DBP and treatment, respectively, and pjk is the
patient-level random intercept.

3. Express the variability among the centers in the level-3 model,

ˇ0 D �0 C ck (6)

where ck is the center-level random intercept.

Substituting the level-3 model into the level-2 model and then substituting the level-2 model into the level-1
model yields

Yijk D �0 C ˛1vijk C eijk C

pjk C ˇ1bjk C ˇ2�jk C

ck

The following lines show part of the data set:

data mctrial;
input patient visit center treat$ dbp dbp1;
datalines;

79 3 1 Carvedil 96 100
79 4 1 Carvedil 108 100
80 3 1 Nifedipi 82 100
80 4 1 Nifedipi 92 100
80 5 1 Nifedipi 90 100
80 6 1 Nifedipi 100 100
81 3 1 Atenolol 86 100

... more lines ...

237 5 41 Atenolol 80 104
237 6 41 Atenolol 90 104
238 3 41 Nifedipi 88 112
238 4 41 Nifedipi 100 112
;

This model can be fit using the following PROC GLIMMIX code:

proc glimmix data=mctrial;
class patient center treat;
model dbp = dbp1 treat visit/solution;
random intercept / subject = center;
random intercept / subject = patient(center);
covtest 'var(center) = 0' 0 .;
covtest 'var(patient(center)) = 0' . 0;
estimate 'Carvedil vs. Atenolol' treat 1 -1 0;
estimate 'Carvedil vs. Nifedipi' treat 0 1 -1;

run;

The CLASS statement identifies categorical variables. You use the MODEL statement to specify all the fixed
effects, and you use one RANDOM statement for each level of clustering. In each RANDOM statement, the
random effects are followed by the SUBJECT= option, which identifies the level. You use the COVTEST
statement to make inferences about the covariance parameters. The two COVTEST statements here test
whether the variances of the patient-level random intercept and the center-level random intercept are zero,
which is effectively a test for the significance for these random effects. Finally, the two ESTIMATE statements
compare the effect of the new treatment with the effects of the two standard ones.
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The fixed-effects solution table in Figure 2 shows that, controlling for other covariates, the DBP decreases
1 mmHg at each successive visit on average and every 1 mmHg increase in baseline DBP leads to 0.47
mmHg increase in post-treatment DBP measurement.

Figure 2 Fixed-Effects Solutions

Solutions for Fixed Effects

Effect treat Estimate
Standard

Error DF t Value Pr > |t|

Intercept 48.3589 8.8725 28 5.45 <.0001

dbp1 0.4741 0.08585 803 5.52 <.0001

treat Atenolol -1.7586 0.9826 803 -1.79 0.0739

treat Carvedil 1.2468 0.9754 803 1.28 0.2015

treat Nifedipi 0 . . . .

visit -1.1022 0.1653 803 -6.67 <.0001

To compare the effect of Carvedilol with the effects of the two standard treatments, Nifedipine and Atenolol,
which is the main goal of the study, you can use the ESTIMATE statement to obtain the hypothesis tests for
estimates of treatment differences, which are shown in Figure 3. You can see that although the effect of
Carvedilol is similar to the effect of Nifedipine (p = 0.20), it is significantly different from the effect of Atenolol
(p = 0.002). On average, the DBP of a patient who receives Carvedilol is 3 mmHg higher than the DBP of a
patient who receives Atenolol.

Figure 3 Estimates of Treatment Differences

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

Carvedil vs. Atenolol -3.0055 0.9652 803 -3.11 0.0019

Carvedil vs. Nifedipi 1.2468 0.9754 803 1.28 0.2015

The “Tests of Covariance Parameters” table in Figure 4 indicates that both the center-level random intercept
(p = 0.0002) and the patient-level random intercept (p < 0.0001) are needed.

Figure 4 Covariance Parameter Tests

The GLIMMIX ProcedureThe GLIMMIX Procedure

Tests of Covariance Parameters
Based on the Restricted Likelihood

Label DF

-2 Res
Log
Like ChiSq Pr > ChiSq Note

var(center) = 0 1 7487.58 12.41 0.0002 MI

var(patient(center)) = 0 1 7749.65 274.47 <.0001 MI

MI: P-value based on a mixture of chi-squares.

Figure 5 displays the variance parameter estimates for this model.

Figure 5 Covariance Parameter Estimates

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept center 4.8109 2.5202

Intercept patient(center) 35.0216 3.9662

Residual 36.3289 1.8159
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Plugging the variance parameter estimates into equations (2) and (3), you can compute the conditional
correlation between DBP measurements of two different patients at the same center and the conditional
correlation between DBP measurements of two visits of the same patient as follows:

Corr.yijk ; yi 0j 0kjXk/ D
4:8

4:8C 35C 36
D 0:064 (7)

Corr.yijk ; yi 0jkjXk/ D
4:8C 35

4:8C 35C 36
D 0:53 (8)

In the preceding equations, Xk contains the visit-level and patient-level covariates for center k.

That is, of the variability in DBP that is not explained by the covariates, 6.4% is caused by unobserved
center-specific attributes and 53% is caused by unobserved patient-specific attributes. Another way to
interpret this is that DBP measurements on the same patient are much more similar to each other than are
DBP measurements on different patients at the same center, as the spaghetti plot in Figure 1 indicates.

Finally, using the estimated fixed effects and predicted random effects from the mixed model, you can return
full circle to depict the elements of the multilevel model.

To compute the predicted ˇ0 in equation (6), the level-3 model, use the SOLUTION option in the first
RANDOM statement to obtain the Center random effect solutions, and add the overall estimated intercept,
�0 = 48.3589, to each random effect solution. Figure 6 depicts the distribution of the resulting values, hinting
that there might be two different classes of Center, with the larger class having a higher ˇ0 value.

Figure 6 Plot of Level-3 Random Intercepts

To compute the predicted ˛0 in equation (5), the level-2 model, you can use the BLUP option in the OUTPUT
statement to obtain predictions for patients at vijk D 0. The results for the four largest centers are shown in
Figure 7. These results align with the corresponding data that are displayed in Figure 1.
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Figure 7 Plot of Level-2 Random Intercepts at Four Centers

A Three-Level Model with Cross-Level Interaction

The previous analysis revealed the following:

• a significant time effect, as measured by the fixed effect of Visit

• a significant treatment effect, mostly caused by the difference between the new drug, Carvedilol, and
the standard, Atenolol

• a small but significant difference between the average responses in different centers

Given these results, you might ask whether the effect of treatment varies with center—that is, whether there
is a treatment-by-center interaction. To check, you can add this interaction to the model and see how the
analysis is affected, as in the following statements:

proc glimmix data=mctrial;
class patient center treat;
model dbp = dbp1 treat visit/solution;
random center center*treat;
random intercept / subject= patient(center);
covtest 'var(center) = 0' 0 . .;
covtest 'var(center*treat) = 0' . 0 .;
covtest 'var(patient(center)) = 0' . . 0;
estimate 'Carvedil vs. Atenolol' treat 1 -1 0;
estimate 'Carvedil vs. Nifedipi' treat 0 1 -1;
estimate 'Carvedil vs. Atenolol, center 1' treat 1 -1 0 | center*treat 1 -1 0;
estimate 'Carvedil vs. Atenolol, center 2' treat 1 -1 0 | center*treat 0 0 0 1 -1 0;
estimate 'Carvedil vs. Nifedipi, center 1' treat 0 1 -1 | center*treat 0 1 -1;
estimate 'Carvedil vs. Nifedipi, center 2' treat 0 1 -1 | center*treat 0 0 0 0 1 -1;

run;
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A p-value of 0.38 for the test of treatment-by-center variance in Figure 8 does not provide strong evidence
for this interaction. In fact, you can see that the fixed-effects solutions in Figure 9 and the estimates of the
two random intercept variances in Figure 10 are similar to those from the previous model.

Figure 8 Covariance Parameter Tests

The GLIMMIX ProcedureThe GLIMMIX Procedure

Tests of Covariance Parameters
Based on the Restricted Likelihood

Label DF

-2 Res
Log
Like ChiSq Pr > ChiSq Note

var(center) = 0 1 7480.35 5.28 0.0108 MI

var(center*treat) = 0 1 7475.18 0.10 0.3755 MI

var(patient(center)) = 0 1 7725.97 250.89 <.0001 MI

MI: P-value based on a mixture of chi-squares.

Figure 9 Fixed-Effects Solutions

Solutions for Fixed Effects

Effect treat Estimate
Standard

Error DF t Value Pr > |t|

Intercept 48.4746 8.8767 28 5.46 <.0001

dbp1 0.4725 0.08588 803 5.50 <.0001

treat Atenolol -1.6680 1.0190 48 -1.64 0.1082

treat Carvedil 1.2944 1.0127 48 1.28 0.2073

treat Nifedipi 0 . . . .

visit -1.1025 0.1653 803 -6.67 <.0001

Figure 10 Covariance Parameter Estimates

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

center 4.6126 2.6047

center*treat 0.6195 2.0879

Intercept patient(center) 34.6027 4.1409

Residual 36.3316 1.8162

The first two rows in Figure 11 are hypothesis tests for estimates of population-wide treatment differences.
You can see that although the effect of Carvedilol is similar to the effect of Nifedipine (p = 0.21), it is
significantly different from the effect of Atenolol (p = 0.005). This tells you that, on average, the DBP of a
patient who receives Carvedilol is 3 mmHg higher than the DBP of a patient who receives Atenolol. The
next four rows in Figure 11 are hypothesis tests for treatment differences at center 1 and center 2. These
center-specific inferences lead to the same conclusions as the population-wide inferences lead to. This is
not surprising given the insignificance of the treatment-by-center interaction.
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Figure 11 Estimates of Treatment Differences

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

Carvedil vs. Atenolol -2.9624 1.0006 48 -2.96 0.0048

Carvedil vs. Nifedipi 1.2944 1.0127 48 1.28 0.2073

Carvedil vs. Atenolol, center 1 -3.3614 1.3356 48 -2.52 0.0152

Carvedil vs. Atenolol, center 2 -2.6574 1.4525 48 -1.83 0.0735

Carvedil vs. Nifedipi, center 1 0.8535 1.3342 48 0.64 0.5254

Carvedil vs. Nifedipi, center 2 1.2106 1.4533 48 0.83 0.4090

A Three-Level Random Coefficient Model

The analysis so far has revealed that time has a very strong negative effect on DBP. That is, the average
patient’s blood pressure goes down over the course of the study, regardless of treatment or center. Is this
reduction the same across all centers? This is a question about the interaction between Center and Visit.
The three-level model posited previously assumes that the intercept varies among centers:

ˇ0 D �0 C c
ˇ

k

Now you want to know whether the slope for time also varies among centers:

˛1 D ı0 C c
˛
k

This modified three-level model can be fit by using the following GLIMMIX code:

proc glimmix data=mctrial;
class patient center treat;
model dbp = dbp1 treat visit/solution;
random intercept visit / subject = center type=chol;
random intercept / subject = patient(center) ;
covtest 'Diagonal G' DIAGG;
estimate 'Carvedil vs. Atenolol' treat 1 -1 0;
estimate 'Carvedil vs. Nifedipi' treat 0 1 -1;

run;

The TYPE=CHOL option in the RANDOM statement for SUBJECT=CENTER tells PROC GLIMMIX to fit an
unstructured covariance structure for G.3/ (the covariance matrix for center-level random effects cˇ

k
and c˛

k
):

G.3/ D

�
�11 �21
�21 �22

�
For the purposes of numerical and statistical stability, this covariance matrix is parameterized through its
Cholesky root C ; that is, G.3/ D CC 0. It can be shown that �11 D �211, �21 D �11�21, and �22 D �221 C �

2
22

when you write this Cholesky root as

C D

�
�11 0

�21 �22

�

In the preceding SAS code, the DIAGG option in the COVTEST statement requests a likelihood ratio test for
�21 D 0 (that is, a test of whether cˇ

k
and c˛

k
are correlated).

The estimates and tests for the covariance parameters are shown in Figure 12 and Figure 13.
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Figure 12 Covariance Parameter Estimates

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

CHOL(1,1) center 2.6321 1.2029

CHOL(2,1) center -0.4634 0.2691

CHOL(2,2) center 0.4593 0.1110

Intercept patient(center) 35.2810 3.9769

Residual 35.4701 1.7875

Figure 13 Covariance Parameter Tests

The GLIMMIX ProcedureThe GLIMMIX Procedure

Tests of Covariance Parameters
Based on the Restricted Likelihood

Label DF

-2 Res
Log
Like ChiSq Pr > ChiSq Note

Diagonal G 1 7467.08 2.24 0.1345 DF

DF: P-value based on a chi-square with
DF degrees of freedom.

A p-value of 0.13 in the test result in Figure 13 indicates that the covariance matrix G.3/ for the center-level
random intercept and slope has a diagonal structure; that is, the center-level random intercept and slope are
uncorrelated.

The fixed-effects solutions and the estimates of treatment differences in this more complex model, shown in
Figure 14 and Figure 15, are quite similar to the ones from the simpler random intercept model.

Figure 14 Fixed-Effects Solutions

Solutions for Fixed Effects

Effect treat Estimate
Standard

Error DF t Value Pr > |t|

Intercept 47.2964 8.8548 28 5.34 <.0001

dbp1 0.4799 0.08566 775 5.60 <.0001

treat Atenolol -1.7822 0.9826 775 -1.81 0.0701

treat Carvedil 1.2010 0.9756 775 1.23 0.2187

treat Nifedipi 0 . . . .

visit -0.9967 0.2218 28 -4.49 0.0001

Figure 15 Estimates of Treatment Differences

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

Carvedil vs. Atenolol -2.9833 0.9654 775 -3.09 0.0021

Carvedil vs. Nifedipi 1.2010 0.9756 775 1.23 0.2187
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WEIGHTED MULTILEVEL MODELS

Multistage Sampling Surveys and Multilevel Models

An important example of multilevel data for which specialized analytic techniques are required is data
that arise from multistage survey sampling. In a multistage sampling design, you first select a sample
of large clusters of observations. The observations in this sample are called the primary sampling units
(PSU). Then, from each sampled PSU, you select a sample of smaller clusters. These observations are
called the secondary sampling units (SSU). Then, from each sampled SSU, you select a sample of even
smaller clusters or observation units. You continue this process down to the individual units for which survey
responses are measured. For example, if you want to survey all school children in your state, you might
first sample the districts in the state, then sample some schools within each selected district, then sample
some classes within each selected school, and finally sample students within each selected class. It is also
common to select all the units at any particular stage as your sample at that stage—for example, surveying
all the students in the selected classes.

Multilevel modeling is naturally appropriate for data that arise from a multistage sample. Often, the hierarchical
clusters of the sampling design map directly to the hierarchical random effects in the multilevel model, and
the characteristics of the units at each stage become level-specific explanatory variables.

The key point is how you handle the multistage sampling weights. Survey weights are often derived
by quite sophisticated methods to account for such desirable survey features as rational oversampling,
poststratification, nonresponse, and so on. If you have survey weights available at every stage of the survey
design, then you need to take these weights into account properly in order to draw valid inferences about
your population of interest. The WEIGHT statement in PROC GLIMMIX scales the residual covariance
matrix; it does not supply multiple levels of frequency weights.

SAS/STAT 13.1 to the rescue! New in this release of PROC GLIMMIX are the OBSWEIGHT= option in the
MODEL statement and the WEIGHT= option in the RANDOM statement, which enable you to specify just
such multiple levels of weights. This is the key feature that you can use in PROC GLIMMIX to fit multilevel
models to multistage survey samples. The next section discusses the underlying general methodology for
computing estimates and their variances in weighted multilevel models. An example in a subsequent section
shows you how to do this in practice with a multistage survey sample of the Programme for International
Student Assessment (PISA) study.

Not Quite Maximum Likelihood Estimation

The basic estimation principle that you use in analyzing multistage samples with multilevel models is the
fundamental statistical technique of maximum likelihood, but there is a terminological tangle:

• On one hand, with a survey sample you don’t actually have the likelihood that you want to be able to
maximize: the one for the entire population. So you use the weighted likelihood as an estimate for the
population likelihood, and you hope that by maximizing the former you get close to the maximum of
the latter. This weighted likelihood is called the pseudolikelihood by survey samplers. To compute the
weighted likelihood, you use the METHOD=QUADRATURE option.

• On the other hand, if the responses in your multistage sample are nonnormal, then it is not possible to
write down the likelihood for the corresponding generalized linear mixed models. In PROC GLIMMIX,
you can use adaptive quadrature (METHOD=QUADRATURE) to approximate the likelihood or you can
use an approximation that is based on linearization. The likelihood for the linearized model is also
called the pseudolikelihood by generalized linear mixed modelers, but they sometimes also refer to it
as the quasilikelihood. It should not be confused with the pseudolikelihood that is computed for the
weighted multilevel models.

To illustrate the computation of the weighted likelihood, consider the following three-stage sampling design.
(Extending this example to models that have more than three levels is straightforward.) Let superscript
.l/ denote the lth level and n.l/ denote the number of level-l units in the sample. Also let i D 1; : : : ; n

.1/
j ,

j D 1; : : : n
.2/

k
, and k D 1; : : : n.3/ denote the indices of units at level 1, level 2, and level 3, respectively.

Assume that the first-stage cluster (level-3 unit) k is selected with probability �k , the second-stage cluster
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(level-2 unit) j is selected with probability �j jk (which is the conditional probability that the second-stage
cluster j is selected given that the first-stage cluster k is already selected in the sample), and the third-stage
unit (level-1 unit) i is selected with probability �i jjk (which is the conditional probability that the third-stage
unit i is selected given that the second-stage cluster j within the first-stage cluster k is already selected in
the sample).

If you use the inverse selection probability weights wj jk D 1=�j jk and wi jjk D 1=�i jjk, a sample-based
estimator for the conditional log likelihood contribution of the first-stage cluster k is

log .p.ykj
.2/

k
; 
.3/

k
// D

n
.2/

kX
jD1

wj jk

n
.1/

jX
iD1

wi jjk log .p.yijkj
.2/

jk
; 
.3/

k
//

where  .2/
jk

is the random-effects vector for the second-stage cluster j within first-stage cluster k,  .2/
k
D

.
.2/

1k
; 
.2/

2k
; : : : ; 

.2/

n
.2/

k
k
/, and  .3/

k
is the random-effects vector for the first-stage cluster k.

As with unweighted multilevel models, the adaptive quadrature method is used to compute the likelihood
contribution of the first-stage cluster k:

p.yk/ D

Z
p.ykj

.2/

k
; 
.3/

k
/p.

.2/

k
/p.

.3/

k
/d.

.2/

k
/d.

.3/

k
/

A sample-based estimator for the population log likelihood is

log .p.y// D
n.3/X
kD1

wk log .p.yk//

where wk D 1=�k .

Robust Standard Error Estimator

For inference about fixed effects and variances that are estimated by the likelihood method discussed
previously, you can use the empirical (sandwich) variance estimators.

The only empirical estimator that PROC GLIMMIX computes in SAS/STAT 13.2 for weighted multilevel
models is EMPIRICAL=CLASSICAL, which can be described as follows.

Let ˛ D .ˇ0; � 0/0, where ˇ is the vector of the fixed-effects parameters and � is the vector of covariance
parameters. For an L-level model, Rabe-Hesketh and Skrondal (2006) show that the gradient can be written
as a weighted sum of the gradients of the top-level units,

n.L/X
kD1

wk
@ log.p.yk I˛//

@˛
�

n.L/X
kD1

Sk.˛/

where n.L/ is the number of level-L units and Sk.˛/ is the weighted score vector of the level-L unit k. The
estimator of the “meat” of the sandwich estimator can be written as

J D
n.L/

n.L/ � 1

n.L/X
kD1

Sk. Ǫ /Sk. Ǫ /
0

The empirical estimator of the covariance matrix of Ǫ can be constructed as

H. Ǫ /�1JH. Ǫ /�1

where H.˛/ is the second derivative matrix of the log pseudolikelihood with respect to ˛:

H.˛/ D
@2 log.p.yk I˛//

@˛@˛0

The covariance parameter estimators that are obtained by the weighted likelihood method can be biased
when the sample size is small. Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal (2006) discuss
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two weight-scaling methods for reducing the biases of the covariance parameter estimators in a two-level
model. To derive the scaling factor � for a two-level model, let ni denote the number of level-1 units in the
level-2 unit i and let wj ji denote the weight of level-1 unit j in level-2 unit i. The first method computes an
“apparent” cluster size as the “effective” sample size:

niX
jD1

�wj ji D
.
Pni

jD1wj ji /
2Pni

jD1w
2
j ji

Therefore, the scale factor is

� D

Pni

jD1wj jiPni

jD1w
2
j ji

The second method sets the apparent cluster size equal to the actual cluster size so that the scale factor is

� D
niPni

jD1wj ji

The level-1 scaled weights are then computed as ws
j ji
D �wj ji . PROC GLIMMIX directly uses the weights

that are provided in the data set. To use the scaled weights, you need to provide them in the data set.

Example 2: The Programme for International Student Assessment (PISA) Study

Rabe-Hesketh and Skrondal (2006) introduce the data about reading proficiency among 15-year-old Ameri-
can students from the PISA study. This section shows you how to use PROC GLIMMIX to fit a weighted
multilevel model to this data. The PISA study has a three-stage sampling design: geographic areas (PSUs)
are sampled at stage 1, schools are sampled at stage 2, and students are sampled at stage 3. Sampling
probabilities are devised at each stage of the study by using criteria that account for estimated sizes and
percentages of minority students. Because of nonresponse and missingness on some of the covariates,
2,069 students from 148 schools in 46 PSUs are included in the analysis. The student-level and school-level
weights (wfstuwt and wnrschbw, respectively) are inverse probabilities that are further adjusted for non-
response and noninclusion. To reduce the bias in the variance parameter estimate, scaled student-level
weights (sw1) are computed using Method 1 in Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal
(2006).

The outcome considered here is the binary variable Passread. This variable takes the value 1 when the
reading proficiency is at the top two levels that are defined by the Organization for Economic Co-operation
and Development. The variable Idschool identifies the schools. The explanatory variables in the data set
are:

• Female indicates whether the student is female.

• ISEI indicates the student’s international socioeconomic index.

• Highschool indicates whether the highest education level by either parent is high school.

• College indicates whether the highest education level by either parent is college.

• TestLang indicates whether the test language (English) is spoken at home.

• OneFor indicates whether one parent is foreign-born.

• BothFor indicates whether both parents are foreign-born.

• MISEI indicates the school mean ISEI.

Of these eight variables, MISEI is a school-level covariate and the rest are student-level covariates. The
school mean ISEI is included in the model to check the between-school effect of ISEI. Including the MISEI
variable enables you to consider the effect of the socioeconomic mix of a school on a student’s reading
proficiency. The following lines show part of the data set:
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data pisa;
input sw1 misei wnrschbw female isei highschool college onefor

bothfor testlang passread idschool;
datalines;

1.000 48.3 146.02 1 37 0 1 1 0 1 1 1
1.000 48.3 146.02 1 77 1 0 0 0 1 1 1
1.000 48.3 146.02 1 53 0 1 0 0 1 0 1
1.000 48.3 146.02 1 30 1 0 0 0 1 0 1
1.000 48.3 146.02 1 70 0 1 0 0 1 0 1
1.000 48.3 146.02 1 39 0 1 0 0 1 1 1

... more lines ...

0.962 40.5 140.92 0 69 0 1 0 0 1 0 151
1.100 40.5 140.92 1 43 0 1 0 0 1 0 151
0.962 40.5 140.92 0 23 1 0 0 0 1 0 151
0.962 40.5 140.92 0 23 0 1 0 0 1 0 151
;

The following statements fit a weighted two-level random-intercept logistic model to this data:

%let ddfs = 147,147,147,147,147,147,147,147;
proc glimmix data=pisa method=quadrature empirical=classical;

model passread = ISEI Female Highschool College OneFor
BothFor TestLang MISEI
/dist=binomial link=logit obsweight=sw1
ddf=&ddfs solution;

random intercept /subject=idschool weight=wnrschbw;
run;

To fit a weighted multilevel model, you should use the METHOD=QUADRATURE estimation option. The
QPOINTS= option specifies the number of quadrature points to be used in the adaptive quadrature approxi-
mation. The EMPIRICAL=CLASSICAL option instructs PROC GLIMMIX to compute the empirical (sandwich)
variance estimators, which are recommended for the inference on fixed effects and variance parameters in
weighted multilevel models. The OBSWEIGHT=SW1 option in the MODEL statement specifies the weight
variable for the observational level, which is the student level in this analysis. The WEIGHT=WNRSCHBW
option in the RANDOM statement specifies the weight variable for the school level, which is identified by the
SUBJECT= IDSCHOOL option. The DDF=&ddfs option sets the denominator degrees of freedom to the
number of schools minus one.

Figure 16 Fixed-Effects Solutions

Solutions for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept -5.8716 0.9495 38642 -6.18 <.0001

isei 0.01822 0.004789 147 3.80 0.0002

female 0.6222 0.1534 147 4.06 <.0001

highschool 0.1032 0.4754 147 0.22 0.8284

college 0.4535 0.5036 147 0.90 0.3693

onefor -0.1093 0.2731 147 -0.40 0.6896

bothfor -0.2803 0.3252 147 -0.86 0.3900

testlang 0.6253 0.3808 147 1.64 0.1027

misei 0.06812 0.01636 147 4.16 <.0001
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Figure 17 Covariance Parameter Estimate

The GLIMMIX ProcedureThe GLIMMIX Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard

Error

Intercept idschool 0.2939 0.1222

The estimates shown in Figure 16 have implications that agree with theories and observations in educational
studies. For example, it is expected that female students tend to be more proficient in reading than male
students. Also, the international socioeconomic index ISEI is believed to have an impact on a student’s
reading ability.

CONCLUSION

This paper shows several examples of analyzing a type of data that is very common in both observational
and experimental studies in many areas—namely, data that have a hierarchical structure. The hierarchical
structure of such data lends itself naturally to the multilevel modeling approach. Each layer in the hierarchy
translates into a level in the model: the observed characteristics become explanatory variables, and
the unobserved characteristics are addressed by the random effects. The random components in the
model induce between-unit variation and within-unit correlation, which are two important characteristics of
hierarchical data. In other words, the multilevel modeling approach enables you to decipher the effects of
covariates and quantify the variation by using both fixed and random effects. Thus, multilevel models are
mixed-effects models.

SAS/STAT software offers an array of mixed modeling procedures that can be used for the estimation of
multilevel models. Among them, three implement linear mixed models, one implements generalized linear
mixed models, and one implements nonlinear mixed models:

• PROC MIXED offers a wealth of features for estimation and inference of models that have normal
responses. For example, it offers a large number of choices for covariance structures and post-model-
fitting analysis.

• PROC HPMIXED uses sparse matrix techniques to achieve good performance for models that are
large and sparse.

• PROC HPLMIXED uses parallel and distributed computing to achieve good performance for hierarchical
data that have a large number of top-level units.

• PROC GLIMMIX fits generalized linear mixed models to responses from exponential families. Multilevel
models and weighted multilevel models are a subset of the models that can be analyzed by PROC
GLIMMIX.

• PROC NLMIXED fits flexible nonlinear mixed models by relaxing the assumption that the transformation
of the mean is linearly related to the model effects. The ability to fit a model that has more than two
levels is a feature that is scheduled to be released in SAS/STAT 13.2.

Of all the mixed modeling procedures, PROC GLIMMlX offers the most versatile options and features for
the estimation and inference of multilevel models. You can choose different estimation methods for different
types of models. For example, both the pseudolikelihood method and the maximum likelihood method
based on adaptive quadrature are available for models that have categorical responses. Weighted multilevel
models are a new feature in SAS/STAT 13.1 that can be applied to complex survey data analysis. Also,
PROC GLIMMIX provides a wide spectrum of facilities to estimate, test, and compare model effects in the
post-model-fitting analysis, as is illustrated in the analyses of the multicenter clinical trial and the PISA data.

For all the mixed modeling procedures that SAS/STAT provides, the effort to improve the performance and
to enhance the functionality is always ongoing. Particularly for PROC GLIMMIX, SAS/STAT development
is considering the implementation of a faster adaptive quadrature algorithm that is proposed by Pinheiro
and Chao (2006). It is well known that the quadrature approximation is computationally intensive for models
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that have large numbers of units and random effects at lower levels. This new algorithm will significantly
reduce the computation burden and thus improve the performance. Also, it is worth mentioning that the
correlation estimates in equations (2) and (3) can potentially be reused for designing the next blood pressure
study, using methods discussed in Castelloe (2014). Outliers are a common concern in multilevel models as
they are in other regression models. Multilevel model designs have multiple levels of observations and thus
multiple levels of outliers. These outliers can potentially be studied with the scaled Cook’s distance ideas of
Zhu, Ibrahim, and Cho (2012), using the SAS implementation discussed in Schneider and Tobias (2014).
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