
 SESUG 2014

1

 Paper AD-57

Your Database Can Do SAS® Too!
Harry Droogendyk, Stratia Consulting Inc., Lynden, ON

ABSTRACT

How often have you pulled oodles of data out of the corporate data warehouse down into SAS for additional
processing? Additional processing, sometimes thought to be uniquely SAS's, such as FIRST. logic, cumulative
totals, lag functionality, specialized summarization or advanced date manipulation? Using the Analytical / OLAP and
Windowing functionality available in many databases (e.g. Teradata, Netezza) all of this processing can be
performed directly in the database without moving and reprocessing detail data unnecessarily.

This presentation will illustrate how to increase your coding and execution efficiency by utilizing the database's power
through your SAS environment.

INTRODUCTION

SAS is continuing to work closely with leading database vendors to broaden and strengthen the SAS functionality that
processes “in-database”. For example, when running a PROC FREQ against a database table via the SAS/Access
libname, rather than pulling the detail data into SAS, SAS issues summarizing SQL to the database, counting and
grouping as necessary and a small, summary result set is returned to SAS.

However… this paper is not about in-database processing. Rather, we’ll identify ways to use native database
functionality instead of the SAS procedures or programming methods that we are accustomed to. It’s easy to
become locked into a way of doing things (after all, it works!) and miss the advantages of new, or different methods.

The first section of the paper will explore some reasons why SAS users often shy away from using native SQL
database syntax that makes their programs more efficient. We’ll begin with a few simple examples to deal with
collation differences, conditional logic and the use of temporary tables. The last portion of the paper will delve into
the more complex world of Analytical / OLAP and Windowing functionality to accomplish things we might think are
only possible in the SAS world.

While this paper will provide examples for only Teradata and Netezza, these same techniques can be used in many
major databases.

THE PROBLEM

TYPICAL ARCHITECTURE

Most organizations have a data warehouse to house and make operational data available to reporting and analytics
users. SAS Access software is installed on the desktop or server layer to provide seamless access to the data
warehouse database from the SAS environment.

Figure 1. typical SAS / DB architecture

Your Database Can Do SAS Too, continued SESUG 2014

2

When confronted with multiple processing options that an environment like the one pictured affords, it’s important to
remember some useful principles:

• use the correct tool for the job, each has strengths and weaknesses

• do the processing where it makes sense

• do not move data unnecessarily

• do the work once

SAS DATA STEP VS SQL

While from the SAS users’ perspective, it’s becoming more difficult to draw the lines as in-database functionality
continues to advance, it’s important that we think through the principles above when developing reporting and
analytical solutions. The tendency of many of us (certainly the author falls into this!!) is to stay with the tried and
true and use familiar methodologies that have served us well for years. But, technology moves on, vendors grow the
usefulness and utility of their products and we should venture outside our comfort zone and embrace the efficiencies
these advancements often provide.

Learning to use the latest database / SQL functionality is especially difficult for the SAS programmer. We love the
data step and the ultimate control it provides. We are very comfortable with the step-oriented structure that allows
large tasks to be broken into manageable chunks. The implied data step loop is very helpful, but if we want complete
control, we can program around that as well and deal with our data, row by row. (as an aside, see Ian Whitlock’s very
helpful treatment of how the SAS data step thinks at http://www2.sas.com/proceedings/sugi31/246-31.pdf) We can
visualize rows of data and two-dimension table structures very easily. SAS reads tables in order, it know the first and
last rows of a table or group, it allows us to create arrays across our columns and deal with the bits and bytes of our
data very easily. SAS data step allows us to define both what we want to do and also how we want to do it.

Databases and SQL work very differently – remember Relational
Algebra and all the talk of “sets”? Rows are concrete, “sets” are
somewhat abstract. And, since databases are generally at least
partially normalized, tables typically need to be joined using their
common relational keys to create the “result set”, e.g. the Employee
set is joined to the Department set via department_id.

When performing a table join, the programmer writes SQL to specify
the input tables, define the join criteria, any data filters required to limit
the result set and the selection criteria. Our SQL defines what we
want to do, but the database decides how it wants to do it based on
the mysterious wisdom of its query algorithms.

Massively Parallel Processing (MPP) architectures, used by some
databases, adds to the complexity. Multiple processes are running
concurrently, each churning away on a slice of the input sets, finally
aggregated to produce the result set. How does THAT work ?!?

Sets are abstract, SQL seems uncontrollable, Cartesian products can
be the unfortunate result of missing a single join criteria, arrgghh…
SAS and data step are so much friendlier…. ☺

Figure 2. SQL ?!?! Ba boom

Often it proves just too easy to pull data from the DB into SAS rather than fight with the vagaries of the database and
SQL, even if the data volumes are large, the network slow, and storage space sparse…

But, your database can do SAS too! And it’s not as difficult as you might think. The remainder of the paper will deal
with a number of techniques to allow the database to do the heavy lifting, reduce the movement of data and use
database functionality to deal with processes we might think are exclusively within the SAS domain. Some of these
areas are brief and quite simple and one might question why they’re included - others more involved and complex. In
either case, the examples and database techniques presented are drawn from relatively common, recent experience.

STARTING SIMPLE – KEEP IT IN THE DATABASE

WHY CAN’T THE DATABASE SORT CORRECTLY ?

An installation uses Teradata databases to regulate user access to specific views within the corporate data
warehouse. Many different databases exist, each containing a number of views. To accommodate the various
access levels required, many views are found in more than one database. While attempting to determine the degree

Your Database Can Do SAS Too, continued SESUG 2014

3

of overlap between two databases, a list of views for each database was extracted from Teradata, sorted in a
Teradata pass-thru query and SAS MERGE was used to compare the views in each database.

proc sql ;
 connect to teradata (mode=teradata user=&td_u password= "&td_p");

 create table tables as
 select * from connection to teradata (
 select databasename, tablename
 from dbc.tables
 where databasename in ('DDWV01' , 'DDWV04I')
 order by tablename
);
quit ;

data idm;
 merge tables (where = (databasename = 'DDWV01') in = ddwv01)
 tables (where = (databasename = 'DDWV04I') in = ddwv04i) ;
 by tablename;

 flag = ddwv01 + ddwv04i * 2 ;
run ;

Unexpectedly, the data step merge did not complete successfully, instead, throwing an error because the BY
variables were out of order:

ERROR: BY variables are not properly sorted on data set WORK.TABLES.

ddwv01=1 ddwv04i=0 DatabaseName=DDWV01 TableName=tln_loans FIRST.TableName=1 LAST.TableName=1

flag=. _ERROR_=1 _N_=2207

NOTE: The SAS System stopped processing this step because of errors.

Investigation showed that Teradata ignored the case of the TableName column and sorted the column as shown
below.

Figure 3. Teradata case insensitive order

The SAS data step merge does not ignore case and expects incoming BY variables to be in the proper collating
sequence. Because of the sort difference, many users do not trust the Teradata ORDER BY and always sort
warehouse data in SAS, losing the advantage of Teradata’s MPP architecture. Changing the connection string to use
mode=ANSI didn’t fix the issue. Using the SAS Access Teradata libname had the same problem because SAS
passed the sort to Teradata to perform:

libname dbc teradata user=&td_u password= "&td_p" database=dbc;
proc sort data = dbc.tables (keep = databasename tablename)
 out = tables2;
 where databasename in ('DDWV01' , 'DDWV04I');
 by tablename ;
run ;

NOTE: Sorting was performed by the data source.

NOTE: There were 2258 observations read from the data set DBC.tables.

 WHERE databasename in ('DDWV01', 'DDWV04I');

Your Database Can Do SAS Too, continued SESUG 2014

4

The best solution to this problem takes advantage of the Teradata option casespecific to ensure the ORDER BY
clause generates the correct sort order.

proc sql ;
 connect to teradata (mode=teradata user=&td_u password= "&td_p");

 create table tables as
 select * from connection to teradata (
 select databasename, tablename
 from dbc.tables
 where databasename in ('DDWV01' , 'DDWV04I')
 order by tablename (casespecific)
);
quit ;

The example cited is trivial, but the impact of not using the power of the database to order huge tables is not.

CONDITIONALLY TRANSPOSE A RESULT SET

Reporting activities often require columns to be created from data that ordinarily appear in the table row. Given a call
center data table like the one below on the left, create a report by date, operator and call center queue, summarizing
the inbound and outbound calls for each call center queue separately as the report layout on the right depicts.

Table Column Column Values Report Layout

operator_id integer Operator

Date

HA Creditor General

call_dt date ID Name In Out In Out In Out

queue_id ‘HA’,’H’ – Home & Auto

‘CR’,’C’ – Creditor

‘GN’,’G’ – General Line

ib_cnt integer

ob_cnt integer

Table 1. CALL_DATA columns and desired report layou t

Rather than pulling all the detail call data from the database into SAS to perform the transpose and summarization,
take advantage of the database’s power using SQL’s CASE / WHEN statements to generate the multiple,
summarized columns required for the report, and bring the much smaller, summarized result set into SAS.

create table sum_call_data as
 select * from connection to netezza (
 select c.call_dt, c.operator_id, o.operator_nm
 , sum(case when queue_cd in ('HA' , 'H') then ib_cnt else 0 end) as ha_ib_cnt
 , sum(case when queue_cd in ('CR' , 'C') then ib_cnt else 0 end) as cr_ib_cnt
 , sum(case when queue_cd in ('GN' , 'G') then ib_cnt else 0 end) as gen_ib_cnt
 , sum(case when queue_cd in ('HA' , 'H') then ob_cnt else 0 end) as ha_ob_cnt
 , sum(case when queue_cd in ('CR' , 'C') then ob_cnt else 0 end) as cr_ob_cnt
 , sum(case when queue_cd in ('GN' , 'G') then ob_cnt else 0 end) as gen_ob_cnt
 from db..call_data c,
 db..operator o
 where c.operator_id = o.operator_id
 group by 1, 2, 3

);

The CASE / WHEN statements can be used almost anywhere in SQL, e.g. SELECT, within functions like SUM(),
WHERE, HAVING and ORDER, GROUP BY clauses providing very granular control, much like the IF / SELECT
statements do in SAS data step. The execution and storage efficiency advantages realized by not moving detail data
through the pipe from the database into SAS are enormous. Do the work where it makes sense.

Your Database Can Do SAS Too, continued SESUG 2014

5

SAS WORK VS DATABASE TEMPORARY TABLES

The SAS WORK library is very, very handy. There’s no need to define anything, no tables / columns to CREATE, no
need to clean up. SAS WORK is there, it’s functional and it requires no maintenance – no wonder we love it.

When dealing with complex programming challenges in the database, it’s often helpful to create intermediate tables
to reduce query complexity, especially when dealing with outer joins. Intermediate tables also allow partial results to
be verified and built on before continuing. It’s often a temptation to bring the data down into SAS simply because it’s
easier to create intermediate results in WORK datasets than it is in the database.

In another scenario, a user will sometimes supply a list of account numbers in Excel for which credit card transaction
data must be extracted from the datamart. Imagine that the account numbers are 16 digits long and the spreadsheet
contains 10,000 accounts. How can those account numbers be used to subset the massive transaction table and
produce the report required for those 10K accounts? It’s easy enough to import the Excel spreadsheet into SAS.
But, 16 bytes x 10,000 is too big to fit into a macro variable, and besides, the IN () condition doesn’t perform that well
with large lists. Pull the zillion credit card transactions down into SAS and join to the WORK table created by the
Excel import?!?

Database temporary tables are almost as easy to work with as SAS WORK datasets. Since each database vendor
seems to have a slightly different implementation for defining and using temporary tables, see the SAS Access and
the database vendor’s documentation for specifics if the Teradata and Netezza syntax below does not work in your
databases.

LIBNAME ACCESS TO TEMPORARY DATABASE TABLES

The easiest way to move small work files between SAS and the database is through the use of the SAS Access
libname engine for the database. The libname can point at a production schema or database, but it can also connect
to temporary or sandbox areas in the database. The examples below illustrate moving data from a SAS library into a
database temporary table.

This is the approach to use to populate a temporary table with the 10K account numbers in the example given at the
beginning of this section. Once the temporary table is created on the database and populated with the account
numbers, it may be included in a database join just like any other table – keeping the processing on the database
where it belongs.

Creating Teradata Temporary Tables using Teradata L IBNAME

Teradata has two different types of temporary tables, Global Temporary Tables (GTT) and Volatile Tables (VT). In
my experience, VT are somewhat easier to use. GTT cannot be defined WITH DATA and require a subsequent
INSERT step to populate. On the other hand, VT can be defined and loaded on the fly in one step. In addition, the
GTT structure will persist after the connection is closed though any data in the table will be deleted. VT disappear
entirely once the connection is closed. Regardless of which type of Teradata temporary table is employed, a
PRIMARY INDEX should be defined and COLLECT STATS executed against it to assist the query optimizer.

Note that FastLoad and FastExport are not supported for temporary tables due to a Teradata limitation.

libname dbtemp teradata user=&td_u password= "&td_p" database=user mode=teradata
 connection=global dbmstemp=yes ;

proc append base = dbtemp.sashelp_class
 data = sashelp.class;
run ;

From the example above:
• connection = global - temp tables
• dbmstemp = yes - create VT, if this option is omitted a GTT is created
• proc append is used just as it would be if a SAS libref / dataset were the destination table

o the destination table will be created if it does not exist
• the VT sashelp_class will persist until the DBTEMP libref is CLEARed

Creating Netezza Temporary Tables Implicitly using Netezza LIBNAME

The Netezza implementation is only different in that the libname engine will be “Netezza” and the DBMSTEMP
parameter is not required.

libname dbtemp netezza &netezza_connect database=sandbox connection=global ;

Your Database Can Do SAS Too, continued SESUG 2014

6

proc append base = dbtemp.sashelp_class
 data = sashelp.class;
run ;

CREATING TEMPORARY DATABASE TABLES VIA PASS-THRU

Temporary tables can also be created using pass-thru EXECUTE (CREATE ….) syntax. The SQL within the
EXECUTE parenthesis must be native to the database.

Creating Teradata Volatile Tables

proc sql ;
 connect to teradata (user=&td_u password= "&td_p" mode=teradata connection=global);

 execute (
 create volatile table ls_referrals as (

 select app_key_id
 , app_cse_num
 , app_sts_cd
 , app_sts_dt

 , sum(case when note_type_cd = 'Refer' then 1 else 0 end) as ref_cnt
 , sum(case when note_type_cd = 'Manual' then 1 else 0 end) as man_cnt
 , sum(case when note_type_cd = 'Other' then 1 else 0 end) as oth_cnt

 from ls_policy_inter
 where note_type_cd in ('Refer' , 'Manual', 'Other')
 group by 1, 2, 3, 4

)
 with data primary index (app_key_id)

 on commit preserve rows
) by teradata;
quit ;

In the example above:

• CONNECT clause
o connection = global - temp tables
o mode = teradata - automatically issues COMMIT WORK

• create VOLATILE table
• with data - defines and populates table
• primary index (app_key_id) - align indexes to other tables to be joined to in downstream queries

Creating Netezza Temporary Tables

proc sql ;
 connect to netezza (&netezza_connect database = sandbox connection=global);

 execute (create temporary table case_open_dt as (

 SELECT parent.casenumber as claim_casenumber
 , child.casenumber as benefit_casenumber
 , child.open_dt

 from fineos. .v occase parent
 inner join
 fineos. .v occase child
 on parent.i = child.i_occase_childcases)

Your Database Can Do SAS Too, continued SESUG 2014

7

 distribute on (claim_casenumber, benefit_casenumbe r)

) by netezza;
quit ;

In the example above:
• CONNECTION = GLOBAL - required for temporary tables
• create TEMPORARY
• distribute on

o where possible, use same distribution key as tables to be joined to

Retaining Temporary Tables Across Steps

One of the helpful features of temporary database tables is the automatic clean-up that occurs when the connection
between SAS and the database is broken. However, there are times when it’s necessary to create a temporary table,
do additional processing in a non-SQL step and then use the temporary table again in a subsequent step. To prevent
the temporary table from disappearing when the SQL step disconnects from the database (either explicitly or via the
quit;), first establish a libref to the database temporary table area before creating any temporary tables. Doing so will
ensure all temporary tables are preserved until the libref is cleared.

libname dbtemp netezza &netezza_connect database=sandbox connection=global ;

proc sql ;
 connect to netezza (&netezza_connect database=sandbox connection=global);

execute (create temporary table case_open_dt as (
 …

) by netezza;
quit ;

data dbtemp.case_history;
 set jibber_jabber;
 *....;
run ;

proc sql ;
 connect to netezza (&netezza_connect database=sandbox connection=global);

 create table final_result as
 select * from connection to netezza (
 select a. *, h.jibber, h.jabber
 from case_open_dt a,
 case_history h
 where a.case_no = h.case_no
);
quit ;

libname dbtemp clear ;

Only once libref DBTEMP is cleared are all the temporary tables deleted, regardless if they were created via the
database libref or pass-thru CREATE.

REALLY TEMPORARY “TABLES” – USING WITH CLAUSE

Most databases support the WITH syntax to create really temporary “tables” on the fly (Teradata supports this
feature starting in v14). The WITH clause allows the programmer to materialize sub-queries and write more
readable code that is easier to maintain. They are very helpful in breaking complex queries into manageable chunks
that are simpler to develop. The result of the WITH clause is persistent only through the query.

“WITH” is only stated once before the first materialized sub-query. Materialized sub-queries must be contained within
parenthesis, commas separating subsequent sub-queries.

proc sql noprint ;
 connect to netezza (&netezza_connect database=sandbox connect ion=global);

Your Database Can Do SAS Too, continued SESUG 2014

8

 execute (create temporary table polmst_t as (

 with polmst_int as (
 select p.pol_no, p.pol_exp_dt, p.pol_tran_no, pe. blah

 from ha. .p olicy p
 left join
 stg_ha. .p ending pe
 on p.pol_no = pe.pol_no
),

 auto_and_prop_int as (

 select a.pol_no, a.pol_exp_dt
 , min(case when m.prop_type_cd in ('01' , '09' , '10') then '1HO'
 when m.prop_type_cd in ('02') then '2CO'
 when m.prop_type_cd in ('03') then '3TE'
 else '4XX' end) as ptype
 from <snip>
)

 select po. *, substr(pr.ptype, 2, 2) as ptype
 from polmst_int po
 left join
 auto_and_prop_int pr
 on po.pol_no = pr.pol_no
 and po.pol_exp_dt = pr.pol_exp_dt
)
 distribute on (pol_no)

) by netezza;

quit ;

In the example above:

• WITH is stated once
• first materialized sub-query is named POLMST_INT
• second is named AUTO_AND_PROP_INT, preceded by a comma
• the “real” query starts immediately after the closing parenthesis of the last materialized sub-query.

RAMPING UP! OLAP, ANALYTICAL AND WINDOWING FUNCTI ONALITY

One of the perceived advantages of a step-wise, row-oriented language like SAS data step is the ability to wrap one’s
head around the data structures as they are processed row by row. SQL can deal with result sets in a row-wise
fashion as well, but the programmer must utilize more complex functionality often referred to as OLAP / Analytical or
Windowing capabilities. In this next section we’ll look at how databases can do a number of things that one might
think are exclusively in the SAS domain:

• first. / last.

• lag()…, and lead(), which many wish SAS did have ☺

• cumulative sums, including those that appear on detail rows

In “normal” SQL, the familiar GROUP BY aggregations summarize multiple detail rows into a single summary row.
Window functions differ in that they allow an aggregate-like function to operate over some portion of rows selected by
a query, but each of those rows remain separate in the query output and may be “attached” to the detail row output.

Though variations exist between databases, the syntax of window function calls generally have the following
convention:

function_name (expression) OVER (window_definition), where:

function_name – e.g. MIN, MAX, AVG, COUNT etc… (DBs may have additional non-ANSI choices)

Your Database Can Do SAS Too, continued SESUG 2014

9

window_definition – optional clauses include:

PARTITION BY expression – similar to GROUP BY, define grouping column(s)

ORDER BY expression

frame_clause – defines the rows to be considered in the current partition, after ordering

 RANGE | ROWS BETWEEN frame_start AND frame_end

 where frame_start and frame_end can be:

 UNBOUNDED PRECEDING | value PRECEDING

 CURRENT ROW

 value FOLLOWING | UNBOUNDED FOLLOWING

The function_name operates on the rows:

• in the partition created by the PARTITION BY clause
• ordered by the ORDER BY specification
• limited by the optional frame_clause.

The examples below will (hopefully !!) make this more clear.

DATABASES CAN DO FIRST. BY_VAR

Programmers coming from another language to SAS are sometimes a little overwhelmed at the number of tools, or
coding choices, found in the SAS “toolbox” to accomplish a given task. One of the handier tools in the toolbox is the
control break handling functionality that falls out of first.by_var and last.by_var syntax.

SQL has min() and max() functions, but if the same min/max value is found on multiple rows, how does one get that
one, unique row required? A PILE of data is pulled out of datamarts and down into SAS simply so first. and last.
syntax can be employed to weed out duplicate data.

The familiar SAS syntax below will find the oldest boy and the oldest girl in the SASHELP.CLASS table (names
sorted alphabetically where age is the same). The OUTPUT window results are below the code.

proc sort data = sashelp.class
 out = class;
 by sex descending age name;
run ;

data unique_class;
 set class;
 by sex;
 if first.sex ;
run ;

title 'first. - SAS' ;
proc print data = unique_class;
run ;

first. - SAS

Obs Name Sex Age Height Weight

 1 Janet F 15 62.5 112.5

 2 Philip M 16 72.0 150.0

To demonstrate the same ability within the database, a Teradata volatile table is created and populated with the
contents the SASHELP.CLASS dataset.

libname dbtemp teradata user=&td_u password= "&td_p" database=sandbox mode=teradata

connection=global dbmstemp=yes ;

Your Database Can Do SAS Too, continued SESUG 2014

10

proc append base = dbtemp.sashelp_class
 data = sashelp.class;
run ;

execute (create volatile table unique_class as (
 select * from sashelp_class

 qualify row_number() over
 (partition by sex
 order by age desc , name) = 1

) with data on commit preserve rows
) by teradata;

In the example above:

• QUALIFY - limit the result set, analogous to HAVING in a “normal” query, “= 1” is first.
• ROW_NUMBER()- assign a unique number to each row in the partition
• OVER - define the windowing criteria
• PARTITION - similar to GROUP BY, defines grouping column(s), sex
• ORDER BY - sort result set before QUALIFY is applied

• must explicitly specify ALL columns to be ordered
• Teradata doesn’t have EQUALS default like SAS

Or, in other words, order the rows by sex, descending age and ascending name, partition or group by sex and return
the first row within each partition. Your database can do SAS. ☺ Reverse the ORDER BY for last. processing.

Would qualify rank() over (partition by sex order by age desc) = 1 have the same result?
No, since the oldest female age is 15 and both Mary and Jane are 15 years old, both would appear in the first rank.
Only row_number() = 1 returns the same result as first.sex in the SAS example.

LAG() AND LEAD() FUNCTIONALITY

It’s sometimes necessary to compare the values of a column in the current row or observation with values of the
same (or different) column in the previous or next row. SAS users can employ the LAG function to return the
column values of previous observations (though SAS users have long requested a LEAD function, it does not yet
exist). However, LAG and LEAD functionality is available using database windowing techniques.

Using the SAS LAG

SAS LAG example (note LAG must not be executed conditionally or results will be incorrect).

data lag_lead;
 item_id = 1; captr_dt = '31mar2014'd ; sales= 20000 ; output ;
 item_id = 1; captr_dt = '30apr2014'd ; sales= 22000 ; output ;
 item_id = 2; captr_dt = '28feb2014'd ; sales= 12345 ; output ;
 item_id = 2; captr_dt = '31mar2014'd ; sales= 14210 ; output ;
 item_id = 2; captr_dt = '30apr2014'd ; sales= 13299 ; output ;
 format captr_dt date9. ; * for NZ load;
run ;

data lag_results;
 set lag_lead;
 by item_id;

 prev_month_sales = lag(sales);
 if first.item_id then
 prev_month_sales= . ;
run ;

proc print data = lag_results;
run ;

Your Database Can Do SAS Too, continued SESUG 2014

11

 prev_
 month_
item_id captr_dt sales sales

 1 31MAR2014 20000 .
 1 30APR2014 22000 20000
 2 28FEB2014 12345 .
 2 31MAR2014 14210 12345
 2 30APR2014 13299 14210

LAG using Windowing Functionality

The SAS dataset lag_lead is created in Netezza using the same libname / append method employed in the first.var
example.

proc sql ;
 connect to netezza (&netezza_connect connection=global datab ase=sandbox);
 select * from connection to netezza (
 select item_id, captr_dt, sales
 , min(sales)
 over (partition by item_id
 order by captr_dt
 rows between 1 preceding and 1 preceding
) as prev_month_sales
 from lag_lead
 order by 1, 2
);
quit ;

In the example above:

• MIN() - aggregate function
• OVER - define windowing criteria
• PARTITION - defines grouping column(s), item_id
• ORDER BY - sorts result set in captr_dt order before ROWS… is applied
• ROWS …. - defines the subset of rows to be passed to the aggregate function

• between 1 preceding and 1 preceding = the previous row
• if this is the first captr_dt in the item_id partition, null will be returned since there’s

no previous row

 PREV_MONTH_
 ITEM_ID CAPTR_DT SALES SALES

 1 31MAR2014 20000 .
 1 30APR2014 22000 20000
 2 28FEB2014 12345 .
 2 31MAR2014 14210 12345
 2 30APR2014 13299 14210

LEAD using Windowing Functionality

To effect LEAD functionality, change “preceding ” to “following ” in the frame_clause.

min(sales)
 over (partition by item_id
 order by captr_dt
 rows between 1 following and 1 following
) as next_month_sales

Your Database Can Do SAS Too, continued SESUG 2014

12

 NEXT_MONTH_
 ITEM_ID CAPTR_DT SALES SALES

 1 31MAR2014 20000 22000
 1 30APR2014 22000 .
 2 28FEB2014 12345 14210
 2 31MAR2014 14210 13299
 2 30APR2014 13299 .

Accessing the Nth LAG / LEAD using Windowing Functi onality

If a row other than the one immediately adjacent is required, the appropriate numeric value is specified before
“preceding” or “following”.

min(sales)
 over (partition by item_id
 order by captr_dt
 rows between 2 preceding and 2 preceding
) as prev_prev _month_sales

Rolling Average Over X Months

Rolling averages are often used to smooth out period over period volatility. In this case, the rolling 3 month average
is calculated from the preceding, current and following row, within item_id, ordered by captr_dt.

avg(sales)
 over (partition by item_id
 order by captr_dt
 rows between 1 preceding and 1 following
) as avg_sales_ rolling_3_mths

 AVG_SALES_
 ROLLING_
 ITEM_ID CAPTR_DT SALES 3_MTHS
--
 1 2014-03-31 $20,000 $21,000
 1 2014-04-30 $22,000 $21,000
 2 2014-02-28 $12,345 $13,278
 2 2014-03-31 $14,210 $13,285
 2 2014-04-30 $13,299 $13,755

DATABASE SQL CAN SUM DATA – WELL, YEAH, DUH.

Using SAS To Re-Merge Summary & Detail Data

SAS SQL is more forgiving than ANSI SQL. In SAS, it’s often helpful to merge summary data back into the original
detail table using a query like below:

select name, sex, age, weight, height, sum(weight) as wgt_sum
 from sashelp.class
 group by sex;

Because we have more non-aggregate columns on the SELECT than are found in the GROUP BY, SAS will generate
the NOTE below and very helpfully merge the summary field(s) back into the detail data.

NOTE: The query requires remerging summary statistics back with the original data.

Your Database Can Do SAS Too, continued SESUG 2014

13

Using the Database To Re-Merge Summary & Detail Dat a

However, the same syntax running against the database will generate an error because databases require that all
non-aggregated columns appear in the GROUP BY clause.

 select * from connection to teradata (
 select name, sex, age, weight, height, sum(weight) as wgt_sum
 from sashelp_class
 group by sex

);

 ERROR: Selected non-aggregate values must be part o f the associated group

How does one achieve the mixed SAS detail / summary result in a database query? One could code a sub-query,
summing weight and grouping by sex and join the sub-query result set to the detail data by sex. Or, windowing
functionality could be used:

select * from connection to teradata (
select name, sex, age, weight, height

 , sum(weight)
 over (partition by sex) as wgt_sum
 from sashelp_class
 order by 2, 1
);

In the example above:

• SUM() - aggregate function
• OVER - define windowing criteria
• PARTITION - defines grouping column(s)
• ROWS …. - specification is not included since we want to sum all rows in the partition
• GROUP BY ?? - not needed ☺

Cumulative Sums

When an insurance claim is opened, the adjuster establishes a reserve amount – setting aside a sum of money
required to pay the company’s estimated claim obligation. As time moves on the claim matures - additional details
emerge, estimates are obtained, claim severity more accurately known and payments made. As each of the claim
transactions occur, reserves are adjusted to reflect the anticipated remaining claim exposure. Because reserves are
reported as a balance sheet liability, the bean counters are very interested in knowing the sum of outstanding
reserves at any point in time. Hence, a requirement to report daily cumulative claims reserves by day.

Given the claim reserves transactions below, what a re the total outstanding reserves on April 11, 2014 ?

data claims_reserves;
 claim_no= 1; trans_dt= '04apr2014'd ; reserve_amt= 500 ; note= 'Open ' ; output ;
 claim_no= 1; trans_dt= '12apr2014'd ; reserve_amt= - 300 ; note= 'Pymt ' ; output ;
 claim_no= 1; trans_dt= '13apr2014'd ; reserve_amt= 600 ; note= 'Add ' ; output ;

 claim_no= 2; trans_dt= '09apr2014'd ; reserve_amt= 1200 ; note= 'Open ' ; output ;
 claim_no= 2; trans_dt= '12apr2014'd ; reserve_amt= - 800 ; note= 'Pymt ' ; output ;
 claim_no= 2; trans_dt= '13apr2014'd ; reserve_amt= - 400 ; note= 'Close' ; output ;

 format trans_dt date9. ;
run ;

Normally this exercise would require SAS datastep code to:

• create the cumulative outstanding reserve totals by transaction date
• use of LAG function to detect gaps in transaction dates
• DO loop to generate rows for missing transaction dates

Your Database Can Do SAS Too, continued SESUG 2014

14

The SAS data is loaded into Teradata using the libname / proc append method used in the previous examples. The
steps below illustrate how daily outstanding reserves can be calculated exclusively in Teradata SQL. The solution
below is presented as a series of separate steps for clarity, but they could easily be combined for efficiency. Note
that the PERIOD data type and EXPAND ON are features found only in Teradata v13+.

In the first query, cumulative reserve sums are created by transaction date.

execute (
 create volatile table claims_reserves_cumul ative as (

 select claim_no, trans_dt
 , sum(reserve_amt)
 over (partition by claim_no
 order by trans_dt
 rows unbounded preceding) as os_reserve_amt
 from claims_reserves
)
 with data primary index (claim_no)
 on commit preserve rows
) by teradata;

In the example above:

• SUM() - aggregate function
• OVER - define windowing criteria
• PARTITION - defines grouping column as claim_no, i.e. cumulative sum is within claim_no
• ORDER BY - order rows by transaction date within the partition
• ROWS …. - all rows up to and including the current row are to be included in SUM()

The second query creates the Teradata PERIOD datatype field which is used to generate the daily outstanding
reserve amounts. The PERIOD datatype contains a range of dates in a single DB column (Note: complete gibberish
if brought into SAS). The period_dt value will be the starting & ending date for the outstanding reserve amount.

 execute (
 create volatile table claims_reserves_perio d as (

 select claim_no, os_reserve_amt
 , period(trans_dt,
 coalesce(min(trans_dt)
 over (partition by claim_no
 order by trans_dt
 rows between 1 following and 1 following
), current_date)) as period_dt
 from claims_reserves_cumulative
)
 with data primary index (claim_no)
 on commit preserve rows
) by teradata;

In the example above:

• MIN() - aggregate function, looking for the next transaction date for this claim_no
• COALESCE - returns the next transaction date, or the current_date if no more transactions are found
• OVER - define windowing criteria
• PARTITION - defines grouping column as claim_no, i.e. next transaction date is within claim_no
• ORDER BY - order rows by transaction date within the partition
• ROWS …. - only consider the row following the current row

execute (
 create volatile table claims_reserves_daily as (
 select claim_no

Your Database Can Do SAS Too, continued SESUG 2014

15

 , begin(trans_dt2) as trans_dt
 , os_reserve_amt
 from claims_reserves_period

 expand on period_dt as trans_dt2
 by interval '1' day
 for period (cast ('2014-04-01' as date),

cast ('2014-04-14' as date))
)
 with data primary index (claim_no)
 on commit preserve rows
) by teradata;

In the example above:

• BEGIN() - Teradata function to return the start period value of a PERIOD data type column
• EXPAND ON - creates a time series based on the period value in the input row
• BY INTERVAL - time series interval, begins with start value of PERIOD value, terminates with end value
• FOR PERIOD - limits the number of rows to be expanded

The final result is shown below. The total outstanding reserve on April 11, 2014 is $1,700.

 os_reserve_
 trans_dt amt

<snip>
10APR2014 1700
11APR2014 1700
12APR2014 600
13APR2014 800

CONCLUSION

Since SAS programmers are very comfortable with the flexibility of the familiar datastep, it’s a real temptation to pull
large amounts of detail data out of the database into SAS for additional processing that we might think is uniquely
SAS functionality. But database capability continues to evolve and it’s often possible to do most, if not all, data
preparation and manipulation in the database. Leveraging the power of the database reduces data movement,
network traffic and increases programmer and execution efficiency. Do stuff where it makes sense !

It’s vital to maintain an inquisitive nature and be willing to stretch yourself to learn new and better techniques. While
it’s often easier to lapse into the tried and true methods of yesteryear, there’s great advantage in exploiting the
strength of your tools, especially those you’ve not dared to try before.

REFERENCES

SQL Data Manipulation Language, Release 14.0, July 2013, Teradata Corporation

http://www.postgresql.org/docs/current/static/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Harry Droogendyk
Enterprise: Stratia Consulting Inc.
E-mail: conf@stratia.ca
Web: www.stratia.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

