

Paper CC37
Simple Rules to Remember When Working with Indexes

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract
SAS® users are always interested in learning techniques related to improving data access. One way of improving
information retrieval from a SAS data set or table is to create and use an index. An index consists of one or more
columns that are used to uniquely identify each row within a table. Functioning as a SAS object containing the values
in one or more columns in a table, an index may be defined as numeric, character, or a combination of both. This
presentation will emphasize the rules that users should know when creating and using indexes to make information
retrieval more efficient.

Introduction
Given the large number of books and articles on SQL and SQL-related topics, how strange it is not to find more
material related to indexes and their impact on WHERE clause processing. Certainly, these topics deserve
additional attention in order to assist SQL users’ achieve a greater understanding in applying these powerful
features in their database applications.

Indexes are designed to improve the speed in which subsets of data are accessed. Rather than physically sorting a
table (as performed by the ORDER BY clause or the BY statement in PROC SORT), an index is designed to set up
a logical data arrangement without the need to physically sort it. This has the advantage of reducing CPU and
memory requirements. It also reduces data access time when using WHERE clause processing. This paper
presents elements essential to achieving a better understanding of indexes and their effect on WHERE clause
processing.

Tables Used In Examples
The data used in all the examples in this paper consists of a selection of movies that I’ve viewed over the years,
along with its actors. The Movies table consists of six columns: title, length, category, year, studio, and rating. Title,
category, studio, and rating are defined as character columns with length and year being defined as numeric
columns. The data stored in the Movies table is illustrated below.

MOVIES Table

1

The data stored in the ACTORS table consists of three columns: title, actor_leading, and actor_supporting, all
of which are defined as character columns. The data stored in the Actors table is illustrated below.

ACTORS Table

Understanding Indexes
What exactly is an index? An index consists of one or more columns in a table to uniquely identify each row of data
within the table. Operating as a SAS object containing the values in one or more columns in a table, an index is
comprised of one or more columns and may be defined as numeric, character, or a combination of both. Although
there is no rule that says a table must have an index, when present, they are most frequently used to make
information retrieval using a WHERE clause more efficient.

To help determine when an index is necessary, it is important to look at existing data as well as the way the base
table(s) will be used. It is also critical to know what queries will be used and how they will access columns of data.
There are times when the column(s) making up an index are obvious and other times when they are not. When
determining whether an index provides any processing value, some very important rules should be kept in mind. An
index should permit the greatest flexibility so every column in a table can be accessed and displayed. Indexes should
also be assigned to discriminating column(s) only since query results will benefit greatest when this is the case.

Simple Rules to Know About Indexes
When an index is specified on one or more tables, a join process may actually be boosted. The PROC SQL
processor may use an index, when certain conditions permit its use. Here are a few things to keep in mind before
creating an index:

 If the table is small, sequential processing may be just as fast, or faster, than processing with an index

 Avoid creating more indexes than are absolutely necessary

 If the page count, as displayed in the CONTENTS procedure, is less than 3 pages, an index may
provide little or no value

 If the data subset for the index is large, sequential access may be more efficient than using the index

 If the percentage of matches is 15% or less (known as the 15% rule) of the overall population then an

index may be beneficial

 The costs associated with maintaining an index can outweigh its performance value, because an index is
updated each time the rows in a table are added, deleted, or modified.

Sample code will be illustrated next to demonstrate the creation of simple and composite indexes using the
CREATE INDEX statement in the SQL procedure.

2

Creating a Simple Index
A simple index is specifically defined for one column in a table and must be the same name as the column. Suppose
you had to create an index consisting of movie rating (RATING) in the MOVIES table. Once created, the index
becomes a separate object located in the SAS library.

SQL Code

PROC SQL;
CREATE INDEX RATING ON MOVIES(RATING);

QUIT;

SAS Log Results

PROC SQL;
CREATE INDEX RATING ON MOVIES(RATING);

NOTE: Simple index RATING has been defined.
QUIT;

Creating a Composite Index
A composite index is defined for two or more columns in a table and must have a unique name that is different than
the columns assigned to the index. Suppose you were to create an index consisting of movie category
(CATEGORY) and movie rating (RATING) in the MOVIES table. Once the composite index is created, the index
consisting of the two table columns become a separate object located in the SAS library.

SQL Code

PROC SQL;
CREATE INDEX CAT_RATING ON MOVIES(CATEGORY, RATING);

QUIT;

SAS Log Results

PROC SQL;
CREATE INDEX CAT_RATING ON MOVIES(CATEGORY, RATING);

NOTE: Composite index CAT_RATING has been defined.
QUIT;

Index Entries and Pointers
An index file is stored in the same SAS library as its associated data file. Having the same name as its data file, it is
represented as a separate entity known as an INDEX member type. An index file contains entries organized
hierarchically with entries being connected by pointers and organized in ascending order. Each entry contains a
unique value corresponding to the column’s frequency distribution and one or more unique observations, referred to
as the record identifier (RID). Space that is occupied by deleted values are automatically reclaimed and reused by
the index. A sample index containing entries representing the index file for the movie rating (RATING) is illustrated
below.

 Value RID
 G 21
 PG 2, 9, 14, 15, 18, 19
 PG-13 3, 7, 8, 10, 12, 13, 22
 R 1, 4, 5, 6, 11, 16, 17, 20

3

Index Limitations
Indexes can be very useful, but they do have limitations. As data in a table is inserted, modified, or deleted, an index
must also be updated by the SAS System to address any and all changes. This automatic feature requires additional
CPU resources to process changes to a table. Also, as a separate structure in its own right, an index can consume
considerable storage space. As a consequence, care should be exercised not to create too many indexes but assign
indexes to the most discriminating variables in a table.

Because of the aforementioned drawbacks, indexes should only be created on tables where query search time
needs to be optimized. Any unnecessary indexes may force the SAS System to expend unnecessary resources
updating and reorganizing after insert, delete, and update operations are performed. Also, select one or more
columns to represent an index that has a subset size of no more than 15% (or smaller) of the population data set.
This is sometimes referred to as the 15% rule.

Optimizing Where Clause Processing With Indexes
A WHERE clause defines the logical conditions that control which rows a SELECT statement will select, a DELETE
statement will delete, or an UPDATE statement will update. This powerful, but optional, clause permits SAS users to
test and evaluate conditions as true or false. From a programming perspective, the evaluation of a condition
determines which of the alternate paths a program will follow. Conditional logic in PROC SQL is frequently
implemented in a WHERE clause to reference constants and relationships between columns and data values.

To achieve the best possible performance from programs containing SQL procedure code, the SQL optimizer
determines whether any available index(es) will perform better than if it were to use more traditional sequential data
access. Many users incorrectly assume that an available index is automatically used with WHERE-clause processing,
but this is not always the case. In fact, WHERE-clause processing does nothing more than influence the SQL
optimizer to take advantage of an index. When the optimizer determines that an index will improve processing
speeds, the index is used to direct activities related to data access. Otherwise, the SQL optimizer uses the more
traditional, and default, sequential data access method with WHERE-clause processing.

Conclusion
Indexes can be used to allow rapid access to table rows. Rather than physically sorting a table, an index is
designed to set up a logical arrangement for the data without the need to physically sort it. Not only does this have
the advantage of reducing CPU and memory requirements, it also reduces data access time when using WHERE
clause processing. As was presented, by adhering to a few important rules about creating indexes, SAS users can
experience an improvement in a query’s performance and processing speeds.

References
Lafler, Kirk Paul (2013). PROC SQL: Beyond the Basics Using SAS, Second Edition; SAS Institute Inc., Cary, NC,
USA.

Lafler, Kirk Paul (2011), “Simple Rules to Remember When Working with Indexes,” MidWest SAS Users

Group (MWSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (2010), “Simple Rules to Remember When Working with Indexes,” Western Users of SAS

Software (WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” South Central SAS Users

Group (SCSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” Western Users of SAS

Software (WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” PharmaSUG SAS Users Group

Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (2008), “Simple Rules to Remember When Working with Indexes,” Proceedings of the Annual

MidWest SAS Users Group 2008 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.
Lafler, Kirk Paul (2007), “Simple Rules to Remember When Working with Indexes,” Proceedings of the 1st

Annual SAS Global Forum (SGF) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA,
USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the 31st Annual
SAS Users Group International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the 30th Annual SAS Users Group
International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

4

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the Eleventh

Annual Western Users of SAS Software Conference.
Lafler, Kirk Paul (2002). PROC SQL Programming Tips; Software Intelligence Corporation, Spring Valley, CA, USA.
Raithel, Michael A. (2006). The Complete Guide to SAS® Indexes, SAS Institute, Cary, NC, USA.
SAS® Guide to the SQL Procedure: Usage and Reference, Version 6, First Edition (1990). SAS Institute, Cary, NC,
USA.

Acknowledgments
The author thanks Sharon Avrunin-Becker and Sarah Woodruff, SESUG 2014 Coder’s Corner Section Chairs,
for accepting my abstract and paper; as well as Abbas Tavakoli, SESUG 2014 Academic Chair, Darryl Putnam,
Operations Chair, and the WUSS Executive Committee for organizing a great conference!
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

About The Author
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been using SAS since 1979.
He is a SAS Certified Professional, provider of IT consulting services, trainer to SAS users around the world, and
sasCommunity.org emeritus Advisory Board member. As the author of six books including Google® Search
Complete! (Odyssey Press. 2014), PROC SQL: Beyond the Basics Using SAS, Second Edition (SAS Press. 2013)
and PROC SQL: Beyond the Basics Using SAS (SAS Press. 2004), Kirk has written more than five hundred papers
and articles, been an Invited speaker and trainer at four hundred-plus SAS International, regional, special-interest,
local, and in-house user group conferences and meetings, and is the recipient of 23 “Best” contributed paper, hands-
on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Senior SAS® Consultant, Application Developer, Data Scientist, Trainer and Author

Software Intelligence Corporation
E-mail: KirkLafler@cs.com

LinkedIn: http://www.linkedin.com/in/KirkPaulLafler
Twitter: @sasNerd

5

mailto:SharonAvruninBecker@westat.com?cc=SarahWoodruff@WESTAT.COM&subject=Coders%20Corner
mailto:SarahWoodruff@WESTAT.COM?cc=SharonAvruninBecker@westat.com&subject=Coders%20Corner
mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler

	page1
	page2
	page3
	page4
	page5

