
1

SESUG Paper 207-2019

Make your Data shine with R-Shiny
Pavan Vemuri(Sri Pavan Vemuri), Alkermes;

ABSTRACT

Data visualization and analysis is vital to the Pharma/CRO industry. Real time data access can enhance
and streamline the ease of information transfer. This Paper aims to provide an example and serve as a
template for other applications by making Patient profiles data reactive. R and R-shiny are used to build
the profiles data as a web service instead of static reports giving the ability to access/visualize data in real
time.

INTRODUCTION

Data signals are key drivers in Clinical trials. Patient profiles are a fitting example to corroborate the
above statement as they analyze key patient data. The data in pursuit for these reports can be safety
and/or efficacy data. Output format is usually static and in RTF/PDF. Having real time access (will be
used interchangeably as “reactive data”) will simplify the data transfer process and in turn the analysis
time. The program in this presentation achieves this by building a web based application for patient
profiles using R-Shiny. While demonstration here is specific to Patient profiles, the logic and approach
can be implemented in any situation where real time data access is beneficial.

1. Building the Patient Profiles Application:

The purpose of this patient profiles application is to mimic the RTF/PDF report while providing the benefit
of reactive data. The steps involved in implementation process are explained below and can be broken
down into four components as shown in the flow chart “Figure 1.”

Figure 1. Process flow

1.1 End User Preference and Template:

The preliminary step involves identifying the audience and understanding the information they seek. This
determines the data, as well as the layout. The focus of implementation should be on delivering the
information in a precise and simple manner. In our scenario, this translates to a simple layout with the
ability to show overall as well as individual subject data by utilizing “patient id” as the trigger for selection.
The data is displayed as Tables and graphs with text fields in between to enhance readability. A single
page layout is selected vs. tab layout due to ease of navigation.

An html patient profiles page can be accomplished using various languages. R and R-Shiny are selected
due to ease of syntax esp. in data manipulation and hosting data. A high-level logic flow and R packages
used are explained below with basic R programming knowledge left to the user. The complete program is
shown in the appendix section “2.1 Code”.

End User
Preference

and template
finalization

Input Data

Data
Processing
and App.

Integration

Host and
Share the

application

2

Specific R packages perform specific functions. The functions from a package become available in the
program after the respective library call. The core packages used in this paper are:

 DPLYR: DPLYR is probably the most used R package for data manipulation. In our example, sub
setting/processing the data based on input selection is achieved using the DPLYR package
functions.

 PLOTLY: Plotly R package utilizes JavaScript library plotly.js. It is used to generate interactive
and standalone graphs. In our Paper it is used to generate the Adverse Events graph with
attributes like Hover text, zoom, pan etc. Figure 3 illustrates the Hover text feature.

 DT Package: The DT package converts the data frame(R data structures) into Java tables. This
helps in embedding your data directly into a web page. In our application every table seen is a
result of the DT package.

 SHINY: Shiny is a versatile web package. It is the main component of the paper and is used in
packaging the tables and graphs into User Interface and Server-side functions that work in
tandem as input/output modules. In other words, it helps to build the interface and establish
connection to the data.

The programming aspect of the application can be broken down into User Interface (UI) and the Server
side modules. The UI primarily deals with providing the Interface and a gateway for user to provide input.
The server side provides the processing and output mechanism for the data. The data can be populated
in the UI side, Server side or both. In this paper, Subject selection is implemented on the UI side and the
data for tables, graphs and reactive text boxes is performed on the server side.

Shown in Figure 2 is a blank template which gives an insight into how the final report would look like.

3

Figure 2. Template layout without data

The code needed to generate the template is shown below. It is worthwhile to note the minimal code
needed.

#program begins

define UI for application

1. ui <-

2. fluidPage(

 #### create a html style

3. tags$style(HTML("

 #first {

4. border-style: ridge;

5. border-width: 5px;

6. border-color: DeepSkyBlue;

7. background-color: LightSkyBlue;

8.

9. }

10. ")),

11. titlePanel("Patient Narratives"),

 # Create a new Row in the UI for selectInputs

 ##select input column

12. fluidRow(

13. column(2,

14. selectInput("USUBJID",

15. "SUBJECT:",

16. c("All",

17. unique(adae2$USUBJID))))

18.),

 # Create a new row for the table.

19. helpText("Text filed for information"),

 ##reactive text

20. textOutput("Text entered here changes with the input selection"),

 ##Panel for AE table (table1).

21. column(8,offset=0.5, id="first", h3("Adverse events"),dataTableOutput("Table1")),

 ##text to add infromation about graph

22. column(12, helpText("The following graph Overalays AE start and Trt. End days.")),

 ##AE plot (AEP).

23. column(8,offset=0.5,id="first",plotlyOutput("AEP")),

 ##text to add infromation about Lab data

24. column(12, helpText("The following table gives the summary of lab parameters.")),

 ##Panel for Lab table (table2).

25. column(8, offset=0.5, h3("LAB"),id="first", dataTableOutput("table2")),

 ##text to add infromation about Response data

4

26. column(12, helpText("The following table gives the summary of Response Data.")),

 ##Panel for Response table (table3).

27. column(8, offset=0.5, h3("Response"),id="first", dataTableOutput("table3"))

28.)

29. server <- function(input, output) {}

 ## Serve side code comes

 ## Run the application

30. shinyApp(ui = ui, server = server)

The code until line 28 generates the UI. UI comprises of page layout and procedures that capture the
data in a specified format Ex; page style elements, text boxes, graph, tables etc. Some of the important
elements of the UI code are discussed in this paragraph. The “fluidpage” keyword in line 2 automatically
adjusts the placement and spacing of panels which hold data. Tag$style keyword in line 3 generates CSS
elements which give the page coloring, borders and additional formatting. The subject selection is
achieved using “Selectinput” keyword in line 14 which provides filter mechanism to input data. Similarly
“RenderTable”, “Rendergraph” and “Textoutput” keywords provide mechanism to show Tables, graphs
and textboxes respectively. Each of these elements provides procedures to render output and each of
them is given a unique id. This Id value is used on server side module to link the data. Line 29 is the
beginning of server side code implementation. The server side code is explained in detail in “section 1.3”.
Line 30 calls the App and the result of the call is Figure 2.

1.2 Input Data:

Input data is determined by the information being pursued and will need to be validated to preserve the
integrity. The format itself (SAS, EXCEL, CSV etc.) can be decided by programmer or based on the
convention of the department. In this paper, the data is stored in excel format for simplicity. The input data
utilized is displayed in tables 1, 2 and 3 in appendix section.

1.3 Server side code and Data Integration:

The server side code is where the UI elements are linked to the data using their unique IDs and provide
an input output mechanism to populate the data. The appendix section 2.1 shows the complete code. A
brief overview and program flow is explained here. The lines 62-70 help in populating the treatment start
and stop dates for the particular subject selection. The procedure(s) inside the brackets are executed first
and the data is passed to the appropriate element using its ID. Similarly lines 71-96 are responsible for
the AE, Lab, Response tables and lines 97-116 generate the graph.

 When the program is executed initially, the result is an html page with all the subjects data shown. This
will be called the landing page as this is the first glimpse of output a user will see.

5

Figure 3. Landing page

The text box labeled “SUBJECT:” provides the filtering mechanism via a drop down menu. The text as
well as tables and graph reflect specific subject data based on selection. When a selection is made, the
UI passes the selection information to the server side which performs data selection/processing and
returns back the results. Shown below is the screen shot when a subject 1004 is selected.

6

Figure 4. Subject Selection 1004.

1.4 Hosting the data onto a server:

This is the Final step and can be accomplished in more than one way. For corporate implementation, It is
advisable to communicate with the IT department to ensure the company security policies and guidelines
are followed. To establish complete control and customization, one will need to host the data in the
corporate server. Alternatively the data can also be hosted by R-server using a paid service. The input
data references will need to be made dynamic before hosting the application. This will ensure the data is
available when the application is run without any broken links. The application shown in the paper is
hosted on R server. Hosting data on R server for personal purpose is free which our case is.

7

2.0 Appendix:

Table 1. Adverse Events

USUBJID TRTSDT TRTEDT TRTDURD VISITNUM PARAMCD AVAL CHG

1001 5/1/2018 5/1/2019 366 2 CHOL 20 5

1001 5/1/2018 5/1/2019 366 4 CHOL 25 10

1001 5/1/2018 5/1/2019 366 6 CHOL 30 15

1001 5/1/2018 5/1/2019 366 8 CHOL 35 20

1002 5/15/2018 5/15/2019 366 2 CHOL 20 5

1002 5/15/2018 5/15/2019 366 4 CHOL 25 10

1002 5/15/2018 5/15/2019 366 6 CHOL 30 15

1002 5/15/2018 5/15/2019 366 8 CHOL 35 20

1003 6/1/2018 6/1/2019 366 2 CHOL 20 5

1003 6/1/2018 6/1/2019 366 4 CHOL 25 10

1003 6/1/2018 6/1/2019 366 6 CHOL 30 15

1003 6/1/2018 6/1/2019 366 8 CHOL 35 20

1004 6/15/2018 6/15/2019 366 2 CHOL 20 5

1004 6/15/2018 6/15/2019 366 4 CHOL 25 10

1004 6/15/2018 6/15/2019 366 6 CHOL 30 15

1004 6/15/2018 6/15/2019 366 8 CHOL 35 20

1005 7/1/2018 7/1/2019 366 2 CHOL 20 5

1005 7/1/2018 7/1/2019 366 4 CHOL 25 10

1005 7/1/2018 7/1/2019 366 6 CHOL 30 15

1005 7/1/2018 7/1/2019 366 8 CHOL 35 20

1006 7/15/2018 7/15/2019 366 2 CHOL 20 5

1006 7/15/2018 7/15/2019 366 4 CHOL 25 10

1006 7/15/2018 7/15/2019 366 6 CHOL 30 15

1006 7/15/2018 7/15/2019 366 8 CHOL 35 20

USUBJID TRTSDT TRTEDT
TRTD
URD AEDECOD ASTDT AENDT ADY

AESEVN

1001 5/1/2018 5/1/2019 366 Headache 5/31/2018 6/30/2018 30
1

1001 5/1/2018 5/1/2019 366 Vomiting 6/10/2018 6/25/2018 40
2

1002 5/15/2018 5/15/2019 366 Nausea 8/23/2018 10/2/2018 100
3

1002 5/15/2018 5/15/2019 366 Back pain 12/26/2018 1/26/2019 225
1

1003 6/1/2018 6/1/2019 366 Rash 3/28/2019 6/2/2019 300
2

1004 6/15/2018 6/15/2019 366 Fever 6/30/2018 9/23/2018 15
3

1004 6/15/2018 6/15/2019 366 Head ache 7/5/2018 9/3/2018 20
1

1005 7/1/2018 7/1/2019 366 Vomiting 11/28/2018 1/17/2019 150
2

1005 7/1/2018 7/1/2019 366 Nausea 12/8/2018 1/17/2019 160
3

1006 7/15/2018 7/15/2019 366 Nausea 9/8/2018 10/8/2018 55
1

8

Table 2. Laboratory data

USUBJID TRTSDT TRTEDT TRTDURD VISITNUM PARAMCD RSDY AVALC

1001 5/1/2018 5/1/2019 366 2 BOR 20 SD

1001 5/1/2018 5/1/2019 366 4 BOR 25 SD

1001 5/1/2018 5/1/2019 366 6 BOR 30 PR

1001 5/1/2018 5/1/2019 366 8 BOR 35 CR

1002 5/15/2018 5/15/2019 366 2 BOR 20 SD

1002 5/15/2018 5/15/2019 366 4 BOR 25 SD

1002 5/15/2018 5/15/2019 366 6 BOR 30 CR

1002 5/15/2018 5/15/2019 366 8 BOR 35 SD

1003 6/1/2018 6/1/2019 366 2 BOR 20 CR

1003 6/1/2018 6/1/2019 366 4 BOR 25 SD

1003 6/1/2018 6/1/2019 366 6 BOR 30 PR

1003 6/1/2018 6/1/2019 366 8 BOR 35 PR

1004 6/15/2018 6/15/2019 366 2 BOR 20 SD

1004 6/15/2018 6/15/2019 366 4 BOR 25 SD

1004 6/15/2018 6/15/2019 366 6 BOR 30 SD

1004 6/15/2018 6/15/2019 366 8 BOR 35 SD

1005 7/1/2018 7/1/2019 366 2 BOR 20 CR

1005 7/1/2018 7/1/2019 366 4 BOR 25 PR

1005 7/1/2018 7/1/2019 366 6 BOR 30 CR

1005 7/1/2018 7/1/2019 366 8 BOR 35 CR

1006 7/15/2018 7/15/2019 366 2 BOR 20 PR

1006 7/15/2018 7/15/2019 366 4 BOR 25 PR

1006 7/15/2018 7/15/2019 366 6 BOR 30 PR

1006 7/15/2018 7/15/2019 366 8 BOR 35 SD

Table 3. Response Data

2.1 Code

1. ##Back up

2. library(shiny)

3. library(dplyr)

4. library(DT)

9

5. library(tibble)

6. library(plotly)

7. library(readxl)

8. ##Read the input files.

9. adae2 <- read_excel("./data/test_adae.xlsx")

10. adlb <- read_excel("./data/test_adlb.xlsx")

11. adrs <- read_excel("./data/test_adrs.xlsx")

12. ## Define UI for application that draws a histogram

13. ui <-

14. fluidPage(

15. ## create html style elements for border and colors

16. tags$style(HTML("

17. #first {

18. border-style: ridge;

19. border-width: 5px;

20. border-color: DeepSkyBlue;

21. background-color: LightSkyBlue;

22. }

23. ")),

24. titlePanel("Patient Narratives"),

25. ## Create a new Row in the UI to select subjects

26. ##select input column. This will hold all the unique subjects

27. fluidRow(

28. column(2,

29. selectInput("USUBJID",

30. "SUBJECT:",

31. c("All",

32. unique(adae2$USUBJID)))

33.)

34.),

35. ## Create a new row for the table.

10

36. helpText("The following page gives the summary of AE's of interest, Laboratory and Response

37. realted information of Subject(s)."),

38. ##reactive text to hold the start and end dates of treatment

39. textOutput("trt_start"),

40. #Data table for AE

41. column(8,offset=0.5, id="first", h3("Adverse events"),dataTableOutput("table")),

42. ##help text

43. column(12, helpText("The following graph Overalays AE start and Trt. End days.")),

44. ##AE Plot

45. column(8,offset=0.5,id="first",plotlyOutput("AEP")),

46. ##help text

47. column(12, helpText("The following table gives the summary of lab parameters.")),

48. ##Table for Lab

49. column(8, offset=0.5, h3("LAB"),id="first", dataTableOutput("table0")),

50. column(12, helpText("The following table gives the summary of Response Data.")),

51. ##Table for Response Data

52. column(8, offset=0.5, h3("Response"),id="first", dataTableOutput("table1"))

53.)

54. ## Server side implementation

55. server <- function(input, output) {

56. ##text outupt

57. output$trt_start <- renderText({

58. ##subset data and show treatment start and end dates based on selected subject

59. data0 <- as_tibble(adae2)

60. if (input$USUBJID != "All") {

61. data0 <- as_tibble(adae2) %>% filter(USUBJID== input$USUBJID)

62. data0_ <- c("The treatment start and end dates are:",unique(as.character(data0$TRTSDT)), "/",

63. unique(as.character(data0$TRTEDT)))

64. }

11

65. ##output a generic statment if all subjects are selected

66. if (input$USUBJID == "All") {

67. data0_ <- c("The treatment start and end dates are: Make a subject selection")

68. }

69. data0_

70. })

71. ## Filter AE data based on subject selections

72. output$table <- renderDataTable(datatable({

73. data <- as_tibble(adae2)

74. if (input$USUBJID != "All") {

75. data <- as_tibble(adae2) %>% filter(USUBJID== input$USUBJID)

76. }

77. data

78. }, options = list(dom = 't')))

79. ## Filter Lab data based on subject selections

80. output$table0 <- renderDataTable(datatable({

81. data1 <- as_tibble(adlb)

82. if (input$USUBJID != "All") {

83. data1 <- as_tibble(adlb) %>% filter(USUBJID== input$USUBJID)

84. #data <- filter(adae2, USUBJID==input$USUBJID)

85. }

86. data1

87. }, options = list(dom = 't')))

88. ## Filter Response data based on Subject selections

89. output$table1 <- renderDataTable(datatable({

90. data2 <- as_tibble(adrs)

91. if (input$USUBJID != "All") {

92. data2 <- as_tibble(adrs) %>% filter(USUBJID== input$USUBJID)

93. #data <- filter(adae2, USUBJID==input$USUBJID)

94. }

95. data2

12

96. }, options = list(dom = 't')))

97. output$AEP <- renderPlotly({

98. data <- as_tibble(adae2)

99. adsl <- as_tibble(adae2) %>% distinct(USUBJID,TRTDURD,TRTSDT,TRTEDT)

100. if (input$USUBJID != "All") {

101. data <- as_tibble(adae2) %>% filter(USUBJID== input$USUBJID)

102. adsl <- as_tibble(adae2) %>% filter(USUBJID== input$USUBJID) %>%
distinct(USUBJID,TRTDURD,TRTSDT,TRTEDT)

103. }

104. plot_ly(adsl) %>% add_trace(x = ~TRTDURD, y = ~USUBJID, type = 'bar',

105. orientation = 'h', name = 'trt_duration',marker = list(color = 'red',opacity=0.5),width=0.5,hoverinfo ="text",

106. text = ~paste('TRT_END:',TRTEDT)) %>% add_trace(x=~data$ADY, y = ~data$USUBJID,color=~data$AEDECOD,

107. type = 'scatter', mode = 'markers', yaxis = 'y2', marker = list(size=10,opacity = 1, line = list(color='black',width = 1)),

108. hoverinfo = "text", text = ~paste('</br> AE:', data$AEDECOD, '</br> start:',

109. data$ASTDT,'</br> End:',data$AENDT)) %>%

110. layout(title = 'Adverse Events', xaxis = list(title = "AE start and Trt. Dur.

111. (days)",dtick=20),

112. yaxis = list(side = 'left', title = 'Subjects', showgrid = FALSE, zeroline = FALSE, type

113. = 'category'),yaxis2 = list(side = 'right', overlaying = "y",showticklabels = FALSE,

114. title = '', showgrid = FALSE, zeroline = FALSE))

115. })

116. }

117. #Run the application

118. shinyApp(ui = ui, server = server)

CONCLUSION

The paper aims to demonstrate the benefit of reactive data using R and R-Shiny. The vision is to have
various application that involve inter departmental collaboration be built in this concept. This will help
achieve the idea of “data on demand”.

13

RECOMMENDED READING

 R-shiny:

https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/

 R-Basics online course

https://online-learning.harvard.edu/course/data-science-r-basics

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Please contact me at:

<Pavan Vemuri>
<Alkermes
<sripavanv@gmail.com >

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

