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ABSTRACT

Outcomes in the form of counts are becoming an increasingly popular metric in a wide variety of fields.
For example, studying the number of hospital, emergency room, or in-patient doctor’s office visits has
been a major focal point for many recent health studies. Many investigators want to know the impact of
many different variables on these counts and help describe ways in which interventions or therapies
might bring those numbers down. Traditional least squares regression was the primary mechanism for
studying this type of data for decades. However, alternative methods were developed some time ago that
are far superior for dealing with this type of data. The focus of this paper is to illustrate how count
regression models can outperform traditional methods while utilizing the data in a more appropriate
manner. Poisson Regression and Negative Binomial Regression are popular techniques when the data
are overdispersed and using Zero-Inflated techniques for data with many more zeroes than is expected
under traditional count regression models. These examples are applied to studies with real data.

INTRODUCTION

Outcomes in the form of counts are becoming an increasingly popular metric in a wide variety of fields. In
the health sciences examples include number of hospitalizations, chronic conditions, medications, and so
on. Many investigators want to know the impact of many different variables on these counts and help
describe ways in which interventions or therapies might bring those numbers down. Standard methods
(regression, t-tests, ANOVA) are useful for some count data studies. The methods are robust and tend to
give valid results in exploring or examining associations. But many of those methods were developed to
look at outcomes that run on a ‘true’ continuum (height, weight) or scores that run across a long range.
They are not as good at handling count data where the counts do not go very high. Alternatives to the
traditional modeling framework include nonparametric statistics that rank the data and help researchers
look at high counts versus low counts are useful. But the methods described in this paper were
specifically designed for count data.

COUNT DISTRIBUTIONS

The Poisson distribution expresses the probability of that a set number of events will occur in a fixed time
or space interval. Examples include number of hurricanes in a year or location or number of calls in a call
center per hour. Whereas the normal distribution is explained through the mean and standard deviation
(denoted p and o) the Poisson distribution is denoted by one parameter A. For Poisson data, the mean
and standard deviation are the same.

An example of how the probability distributions vary with different values of A can be given by Lavery
(2010). We see A>0 and for small values we have a skewed distributions and as the value increases, the
distribution becomes more bell shaped and we sometimes approximated it with the normal distribution.



Percent of observations where the random variable X is expected
to have the value x, given that the Poisson distribution has a mean
of i= P(X=x,n)=(e"" * L™IX
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Above: an illustration of how the shape of a Poisson distribution
changes as lambda (its mean) changes
X axis is observed counts - Y axis is the percent of total N

Figure 1 — Examples of Poisson Distributions

The major limitation of the Poisson distribution is that the mean and variance are equal and many
practical problems with count data do not have distributions where one can reasonably make this
assumption. It is usually the case that the data are ‘over-dispersed’ in that the variance is much larger
than the mean. This happens in many count data scenarios where it is usually the case

Overdispersion is a real problem in working with count data. Most real working examples have mean and
variances nowhere near the same. A common method for dealing with overdispersed Poisson data is to
fit a negative binomial regression model. The negative binomial distribution is another statistical
distribution for count data. The negative binomial distribution looks at the number of failures before 1 or
more wins (say X failures until you win one time). The negative binomial distribution can be thought of
statistically as a mixture distribution of Poisson and gamma Distributions. The reader should see Pedan
(2001) for a review of the theory of negative binomial distributions.

GENERALIZED LINEAR MODELS AND ZERO INFLATION

Regression models are among the best frameworks for exploring the association between multiple
variables and an outcome of interest. Generalized linear models (GLM) provide the framework by which
regression models can capitalize on the use of alternative distributions such as the Poisson and negative
binomial distributions in outcome modeling. They rely on specifying a distribution of interest and a link
function (usually specified as a log-link for count regression models) to aid in modeling the data. The
interested reader should see Ngo (2016) for an overview of generalized linear models.

Finally, generalized linear models can be augmented to account for so-called zero-inflation which can
occur in count data where there are more zero values in the data than would occur naturally in count
distributed data. Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) models exist as
zero inflated analogs for the generalized linear models that use the Poisson and negative binomial
distributions for outcomes (respectively). Zero-Inflated models in SAS® take a two stage modeling
approach where the data are first modeled for the probability of a zero value to explain the extra zeroes in
the data and a second stage model where the data are modeled using a count regression. Erdman
(2008) has a soft introduction into the theory of zero-inflated count models.

The task here is to help the reader elucidate which model should be used in which scenario. For that we
ask a series of questions based on the distribution of our count outcome. In scenarios where the count



data has a large mean and the data ‘look’ bell shaped, then Poisson Regression (Poisson distribution
based GLM) work well.

In cases where the data are skewed (Poisson data that has not converged to Normal distributions) then
Poisson Regression may still be viable. Here, two additional questions are asked,; first if the variance is
larger than the mean, then the data are likely over-dispersed and Negative Binomial Regression (hegative
binomial based GLM) may work well. If the data have many zero values then ZIP should be considered.
In cases where the data have many zero values and a long tail (high variance) then the ZINB may be
your best fit.

Where is the center?

How extreme is it?
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How many zeroes?

Figure 2 — Determining Count Regression Model
EXAMPLE - AFFAIRS
Fair (1978) did a study on extramarital affairs. Suppose we want to examine the impact of children,

religiousity, happiness, and time in marriage on the number of admitted marital affairs. The main
outcome (NAFFAIRS) has the following distribution and summary statistics:

Moments
N 601 Sum Weights 601
Mean 1.45590682  Sum Observations 875
Std Deviation 3.29875773  Variance 10.8818026
Skewness 2.34699789  Kurtosis 4 25688176
Uncorrected 55 7803  Corrected S5 6529.08153
Coeff Variation | 226.577531 | Std Error Mean 0.13455913

Figure 3 — Univariate Output

The skew in this data illustrates that the data does not run over the typical range of normal type data.
There are an unusually high number of observations that are in the seven and 12 count columns. Count



regression models are good at capitalizing on things like this. Note that the mean here is 1.45 and the
standard deviation is 3.3 (variance=10.9).

We will focus our analysis on the impact of marriage rating (RATEMARR) on expected number of affairs.
We start the analysis by comparing SAS code (here the dataset is called sample) using the same
covariates but fitting ordinary least squares (OLS or traditional regression) to Poisson regression GLM.

*traditional regression estimates;
“lproc glm data=sample;
class MALE RATEMARR EIDS RELIG:
model NAffairs = YRSMARE MALE RATEMARR KIDS RELIG/sclution:
lsmeans RATEMARR/cl;
ran;

*Poisson regression estimates;
-lproc genmod dataz=sample;
class MALE RATEMARR EKIDS RELIG:
model NAffairs = YRSMARR MALE RATEMARR KIDS RELIG/dist=poisson;
lsmeans RATEMARR/cl;
ran;

Figure 4 — SAS Code for OLS and Poisson Regression

We use the LS means statement to provide least square means as a way to compare model based
estimates for the expected number of affairs for each marriage rating after adjusting for years of marriage,
gender, whether there are children, and religiousity. Figure 5 below shows partial GLM output of the OLS
model.

Source DF | Type lll 55 | Mean Square F Value Pr=F
YRSMARR 11400209330 140.0209330 14.84 | 0.0001

MALE 1 1.2456570 1.2456570 013 0.7164
RATEMARR | 4 45263539242  113.1589810 12.00 | =.0001
KIDS 1 3.8877359 3.8877359 041 05211
RELIG 41 241.4478853 60.3619713 6.40 <0001

RATEMARR | NAFFAIRS LSMEAN | 95% Confidence Limits
1 3.591451 2.05603% | 5.126862
3.927564 3131669 | 4723460
1.618354 | 0.956928  2.279779
1435747 0.948738 1.922755

&n £ G P

1.097238 | 0.660390 1.534085




LR Statistics For Type 3 Analysis

Source DF | Chi-Square | Pr = ChiSq
YRSMARR 1 101.09 < 0001
MALE 1 1.35 0.2458
RATEMARR 4 231.42 < 0001
KIDS 1 0.26 0.6099
RELIG 4 17435 < 0001

RATEMARR Least Squares Means
Log Log Log Estimate Lower Upper
Estimate Lower Upper

1 1.0275 07633 1.2917 2794072 214534 363897
2 1193 1.0427 1.3432 3.296957 2.83687 3.83128
3 0205 0.1104 04795 1.343126 1.11672 1.61527
4 0.1502 0.00418 0.2961 1.162067 1.00419 1.3446
5 -0.244 -0.4018 -0.0862 0.783488 066911 091746

Figure 5 — Partial OLS and Poisson Regression Output

We see that the models have very different output in terms of the p-values for type 3 (last variable in
the model) and we see different estimates for least square means. There are also smaller confidence
intervals for the Poisson model. However, figure 3 suggested that the Poisson Regression output may
not be the best fit given the difference in the mean (1.46) and variance (10.88). We compare fit using
AIC below. First, we explore a negative binomial fit with code listed in Figure 6.

*MB regression estimates;
-lproc genmod data=sample;
class MALE RATEMARE EIDS RELIG:
model WAffairs = YRSMARR MALE RATEMARR KIDS RELIG/dist=nb;
l=means RATEMARR/cl;
Tan;

Figure 6 — Negative Binomial Regression SAS Code

We transform the output into what we see in Figure 7 below. Note that the big difference in confidence
limits

RATEMARR Least Squares Means

Estimate Lower Upper
2 B8752577 073956 11274
3.01078246 1.48795 6.09214
1.06932756 057764 1.97941
1.07071859 066074 173499
5 071720039 047783 1.07654

Figure 7 — Transformed Least Square Means
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So how do we ascertain the ‘best’ option for modeling? Goodness of fit measures such as Akaike’s
Information Criterion (AIC) provide a reasonable bell-weather for which model would be preferable. In
scenarios where the same model is fit with different assumptions (here OLS versus Poisson versus NB)
one can look at AIC values to determine ‘best’ fit. Figure 8 below has AIC values for all three models, it is
clear that the OLS model has better fit (AIC = 1963) versus Poisson Regression (AIC = 2852). However,
the negative binomial model was fit and we see a reduction of AIC around 25% (from 1963 to 1478).

OLS Poisson NB
Criteria For Assessing Goodness Of Fit iteri i =
Root MSE 3.07123 == 9 Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF Criterion DF Value Value/DF
Dependenl Mean 1.45591 Deviance 589 2334 475 39643 Deviance 589 403148 05778
Scaled Deviance 589 2334 9475 39643 i 7
R-Square 0.1491 Scaled Devionce 589 3403148 05778
Pearson Chi-Square 589 39502486 67067  poprson Chi-Squore 589 5744757  0.9753
Adj R-Sq 0.1332 Scaled Pearson X2 589 39502486  6.7067 Scaled Pearson X2 589 5724757 09753
Log Likelihood 251.0708 iroli
AIC 1963.61475 : - - Log Likelihood 436 9640
Full Log Likelihood ~1434.4651 Full Log Likelihood 7264339
AICC 1964.23485 AIC (smaller is better) 2852 9374 AIC (smaller is better) 1478 8678
AICC (smaller is better) 26534690 AICC (smaller is better) 1479 4879
SBC 1413.39789 > .
BIC (smaller is better) 2905.7206 BIC (smaller is botter) 1536 0495

Exhibit 8 — Affair Model Fit Statistics

In addition, ZINB models were fit to this data and the corresponding AIC was about 1432. So while ZINB
does have the ‘best’ fit, the gains in AIC may not be enough to actually deploy a zero-inflated model in
practice. Figure 9 does show code and corresponding output that illustrates a different interpretation
from such a model. However, there should be a little hesitation in direct comparison of ZINB and
negative binomial models given the additional parameters introduced in a two stage model.

#Zero Inflated NB regression estimates;

Hproco gemnmod dataz=sample:

class MALE RATEMARR KIDS RELIG:

model HNAffairs = YRSMARE MALE RATEMARR KIDS RELIG/dist=zinb;
zeromodel kids relig ratemarr;

lsmeans RATEMRRR/cl:

run;




LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq
YRSMARR 1 12.39 0.0004
MALE 1 0.97 0.3237
RATEMARR 4 720 0.1258
KIDS 1 1.06 0.3041
RELIG 4 8.34 0.0800

LR Statistics For Type 3 Analysis
of Zero Inflation Model

Source DF Chi-Square Pr > ChiSq
KIDS 1 542 0.0199
RELIG 4 18.49 0.0010
RATEMARR 4 26.35 <0001

Figure 9 — Zero-Inflated Negative Binomial Code and Select Output

EXAMPLE - NEEDLESTICKS

Mann, Larsen, and Brinkley (2014) looked at negative binomial regression as a way to model pediatric 1V
stick attempts. The process is actually a negative binomial distribution (count attempts to start an IV until
a success). Finding such a process is rare in the medical literature and figure 10 below shows that the
data match up well with a theoretical negative binomial counts.

Actual vs. Predicted Values under the Negative Binomial Assumption
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Figure 10 — Negative Binomial Actual Versus Predicted Values

Figure 11 below compares type 3 tests from an OLS model (AIC = 1932) and a Negative Binomial
Regression model (AIC = 1533). Clearly, the p-values and interpretation of potential model effects differ



between the use of OLS and NB fits. Itis important to note that ZINB were also fit with little change in the
results.

OLS Output Neg Binomial Output
Type 3 Tests of Fixed Effects LR Statistics For Type 3 Analysis
Effect Num DF | Den DF | F Value | Pr>F . DF | Chi-Square | Pr> ChiSq
SHIFT 1 547 13.30 | 0.0003 SHIET 1 15,01 0.0001
DIFF1 2 547 1345 | <.0001 DIEE1 2 24 09 <0001
Dehydrated 1 547 28.69 <0001 Dehydrated | 1 20.75 <.0001
COOPCH1 1 547 12.37 | 0.0005 COOPCHA1 9 12.73 0.0004
Nurse1Exp 1 54T 11.82  0.0006 Murse1Exp 1 10.16 0.0014
OSBDM 1 547 3.08 0.0798 0SBDM 1 1.36 0.2429

Figure 11 — Comparing OLS and Negative Binomial Regression Output

CONCLUSION

There are many different models for count regression data and it is not always clear exactly which model
is best for each scenario. It may be that a combination of univariate distribution analysis combined with
multiple model fits (and comparing goodness of fit measures) is a viable avenue in exploring which count
regression model is best equipped for exploring each specific data set. Analysts should be aware of the
differences in these models and that one should explore multiple fits before deciding on which one is the
most appropriate for interpretation.
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