
1

SESUG Paper 176-2019

Using Heat Map or GTILE: Does Size Matter in Your Graphics?

Devi Sekar, Keith Brown, RTI International, North Carolina

ABSTRACT

With SAS 9.2 and beyond, ODS Graphics brings in a new way of generating high quality graphs. Many
users still find themselves at the crossroads, trying to decide what path to follow – the traditional
SAS/GRAPH or ODS Graphics. Both can produce most of the common types of graphs, such as scatter
plots, regression plots, box plots, line graphs, bar charts, and histograms. In this paper we will share
examples to generate a heat map using SGPLOT in ODS Graphics and a GTILE graph with SAS/GRAPH
and discuss the advantages of each. With heat maps, you can display patterns in the data for a chosen
response variable for one-dimensional data (in a map) or two-dimensional data (in a table or graph). Heat
maps make tables and graphs easier to interpret, by shading the background color based on the
frequency of observations in each cell of the graph or table. Unique to GTILE, the response values are
shown by both color gradient and area. We will also show how to customize a heat map by making use
of the SAS Graph Template Language (GTL) and SGRENDER procedure. Users will appreciate how
quick and easy it is to generate sophisticated graphs with ODS graphics.

BACKGROUND

Our department generates several reports and maps for the Center for Medicare and Medicaid Services
(CMS) using Medicare claims data. One of the projects involved analyzing the Medicare population that
overlaps across different measures. This project gave us experience with the SGPLOT and GTILE
procedures.

 While RTI is involved in several studies related to opioid consumption, none of these data have
been used for this presentation. For demonstrating the techniques in this paper, we used opioid data
provided by the Drug Enforcement Administration’s Automation of Reports and Consolidated Orders
System, known as ARCOS. This database allows researchers to learn how much hydrocodone and
oxycodone went to individual states and counties, and from which companies and distributors. Examples
in this paper are limited to North Carolina counties. In this database, data is available only for the years
2006 through 2012. We have used county level population data for the state of North Carolina from the
census.gov website to calculate opioid doses per person.

From 2006 to 2012, there were 2,552,612,498 prescription pain pills supplied to North Carolina, which
amount to 268 pills for every man, woman, and child in the state. In this paper, we will analyze this data
through the heat maps in SGPLOT and GTILE graphs.

 SAS® 9.4 M3 was used to run the code in this paper in SAS/Enterprise Guide on SAS Linux Grid.

Figure 1 below is a county level map with opioid usage per person for the year 2012. This is included to
illustrate geographic distribution of opioid consumption in the state of North Carolina. While neither GTILE
or heat map table can fully display the spatial relationship as well as a map, we would need six additional
maps like Figure 1 to display the data for the years 2006 through 2011.

2

Figure 1 County level opioid consumption per person, 2012

TOPICS COVERED IN THIS PAPER

• SGPLOT heat maps with code via ODS GRAPHICS

• GTILE graphs with code via SAS/GRAPH

• Customized heat map using Graph Template Language (GTL) and SGRENDER Procedure

WORKING WITH ODS GRAPHICS

ODS Graphics is available in Base SAS (version SAS 9.3 and beyond). In ODS Graphics, each graph is
created based on a compiled graph template – a SAS program written in GTL.

You can generate graphs using ODS Graphics in three ways:

1. Graphs from SAS/STAT, SAS/ETS, and SAS/QC procedures and some Base SAS Procedures
such as FREQ, UNIVARIATE, and CORR

2. SG Procedures

➢ SGPLOT

➢ SGPANEL

➢ SGSCATTER

3. Customized Graph Template Language (GTL) and SGRENDER Procedure

Of these, we will demonstrate SGPLOT and GTL techniques.

SGPLOT - HEAT MAPS VIA ODS GRAPHICS

SGPLOT supports HEATMAP and HEATMAPPARM statements starting with the release SAS 9.4M3. Heat maps
use colors to communicate numeric data by varying the underlying values that represent red, green, and

3

blue (RGB) as a linear function of the data. Heat maps make tables easier to interpret since the cells are
shaded with a color gradient based on the data value. You can use heat maps to display spatial data, plot
big data, and enhance tables. With big data, patterns in heat maps are clear, because colors are used to
display the frequency of observations in each cell of the graph. Figure 2 below, displays the highest
quartile of counties based on opioid usage and uses color to highlight opioid usage across all seven years
of data. This allows for multi-year data unlike the map shown in Figure 1. We can see the opioid usage
trend rising over the years in the heat map.

Figure 2 County level Heat Map for the top quartile counties

Dataset to create the heatmap above is generated from the program code in Appendix I. A few
observations from the county_opioid_sales_by_quartile dataset is displayed below:

Output 1: county_opioid_sales_by_quartile datase

4

Below is the code to generate the heat map above (in Figure 2):

%let colormodel = (cxFAFBFE cx667FA2 cxD05B5B);

proc sgplot data=county_opioid_sales_by_quartile(where=(quartile=4))

 ❸tmplout="&pgmpath/opioidslstmplt_htmapparm.sas";

 ❶heatmapparm y=buyer_county x=trans_yr colorresponse=dosage_sold_pp /

 name='lgnd' colormodel=&colormodel discretex NOMISSINGCOLOR

 ;

 text y=buyer_county x=trans_yr text=dosage_sold_pp/

 textattrs=(size=10 weight=bold) ❹url=url1;

 ❷gradlegend 'lgnd'/integer title='Dosage Per Person' extractscale;

 title1 "Opioid Consumption Per Person by Year for Counties with high

 dosage per person - North Carolina State";

 format dosage_sold_pp comma12.1;

 label trans_yr="Transaction Year" buyer_county= "County";

run;

In the code above, we used the COLORMODEL= option to specify the three colors as a color ramp from
the htmlblue style: from the lowest levels of dosage per person in the neutral color (gray), to (blue), and
then the highest levels of dosage per person in the color (red).

Explanation of the above code:

1. HEATMAPPARM statement generates table of cells based on the trans_yr and county variables.

It colors the cells base on the response variable, dosage_sold_pp values.

2. GRADLEGEND statement generates gradient scale on the right side of the graph.

3. Tmplout =” filename” option in the PROC SGPLOT statement generates a SAS program with the
template code behind this SG procedure.

4. Variable url1 specified in the HEATMAPPARM statement makes the cells as hyperlinks in the
heat map for drill down capability, when used with the ODS HTML destination. This variable is
created in the dataset used for the heat map and has the value county name.html. Each county
needs to have its own .html file with its name.

GTILE GRAPH

We can drill down into each cell in the heat map table in Figure 2 above and analyze the data for each
county and the year using GTILE graphs.

The GTILE procedure creates charts that consist of rectangles or squares that are divided into tile-shaped
segments. These charts are sometimes referred to as rectangular tree maps. The GTILE charts represent
the relative sizes of tiles to one another and to the whole. The GTILE procedure provides three
statements that you can use to define the layout in order to visualize your data – FLOW, TILE, and
TOGGLE. FLOW creates a chart that honors data order and can be read from left to right, while TILE
creates a chart that orders data by value, descending from bottom left to top right. TOGGLE creates a
chart that honors data order and can be read from left to right. When changing levels, the display toggles
from one row to one column; with two TILEBY variables, TOGGLE resembles a stacked bar chart. We
show FLOW as an example, since it provides the most intuitive layout.

5

The code below will generate a GTILE chart for each county in our dataset, using data on opioid doses
sold by each distributor. Within the FLOW statement, two parameters are required: a numeric variable to
determine the size of the tiles (DOSAGE_SOLD in our example), and a TILEBY parameter with at least
one variable to order the layout. Since our code specifies TILEBY (TRANS_YR, DISTRIBUTOR), our
graphs will consist of a major tile for each year, subdivided by the company distributing the opioid doses.
The number of doses sold determines the size of both the major and minor tiles.

%let colormodel = (cxFAFBFE cx667FA2 cxD05B5B);

options device=javaimg;

proc gtile data=SASdataset;

 flow dosage_sold

 tileby=(trans_yr,distributor) /

 colorramp=&colormodel colorvar=trans_yr

 labellevel=2 detaillevel=2;

by county_name;

label trans_yr="Year";

run;

Figure 3 GTILE Graph for Columbus County

While only those two parameters (TRANS_YR, DISTRIBUTOR), are required to structure a GTILE chart,
much of the impact comes from the optional parameters. COLORRAMP determines which colors will be
used in our chart, and we have been consistent with the SGPLOT heat maps shown earlier. COLORVAR
defaults to the numeric size variable; by specifying TRANS_YR, the groupings are more distinct, and we
overcome the lack of size specificity by including the dosage sold as part of the distributor’s name. Since
DISTRIBUTOR is the second variable in our TILEBY parameter, LABELLEVEL and DETAILLEVEL are

6

both set to 2 to give us the maximum amount of information for this chart; setting either of them to 1 result
in a chart that is much less useful.

ENHANCED TABLES

What if we want to highlight the cells with top five and bottom five values in the above heat map in Figure
2? We can accomplish this task by overlaying two scatter plots, one for the top five counties and another
one for the bottom five counties to the table in Figure 2.

This task is accomplished with the code below:

First, identify the top five and bottom five cells in the data and then create two variables top_dose_cnty
and bottom_dose_cnty in the dataset.

proc sort data=county_opioid_sales_by_quartile(where=(quartile=4)) out=

 top_quartile_counties;

 by dosage_sold_pp;

run;

data _null_;

 set top_quartile_counties nobs=n;

 if _n_ = 5 then do;

 call symput("bottom5" , put(dosage_sold_pp, 5.2));

 end;

 if _n_ = (n-5) then do;

 call symput("top5" , put(dosage_sold_pp, 5.2));

 end;

 run;

/* Create two variables top_dose_cnty and bottom_dose_cnty in the dataset */

data counties_with_top_bottom_doses;

 set county_opioid_sales_by_quartile(where=(quartile=4));

 if dosage_sold_pp >= &top5 then top_dose_cnty = buyer_county;

 else top_dose_cnty = " ";

 if dosage_sold_pp <= &bottom5 then bottom_dose_cnty = buyer_county;

 else bottom_dose_cnty = " ";

run;

/* Now overlay two scatter statements to the SGPLOT procedure as below*/

%let colormodel = (cxFAFBFE cx667FA2 cxD05B5B);

proc sgplot data=counties_with_top_bottom_doses(where=(quartile=4))

 tmplout="&pgmpath/tmplt_htmap_scatter.sas" noautolegend;

 heatmapparm y=buyer_county x=trans_yr colorresponse=dosage_sold_pp /

 name='lgnd'

 colormodel=&colormodel discretex NOMISSINGCOLOR;

 ❶scatter y=top_dose_cnty x=trans_yr/ filledoutlinedmarkers

 markerfillattrs=(color=red)

 markeroutlineattrs=(color=red thickness=2)

7

 markerattrs=(symbol=starfilled size=15);

 ❷scatter y=bottom_dose_cnty x=trans_yr/filledoutlinedmarkers

 markerfillattrs=(color=yellow)

 markeroutlineattrs=(color=yellow thickness=2)

 markerattrs=(symbol=squarefilled size=15);

 text y=buyer_county x=trans_yr text=dosage_sold_pp /

 textattrs=(size=10 weight=bold) url=url1;

 gradlegend 'lgnd'/integer title='Dosage Per Person' extractscale;

 title1 "Opioid Consumption Per Person by Year for the Top Quartile Counties

- North Carolina State";

 format dosage_sold_pp comma12.1;

 label trans_yr="Transaction Year"

 buyer_county= "County";

run;

By inserting the two scatter statements to the SGPLOT procedure, a heat map table highlighted with top
five and bottom five cells is generated as below:

Figure 4 Heat map with squares and stars for the bottom and top cells, respectively

8

GRAPH TEMPLATE LANGUAGE (GTL)

In the above examples, as we have seen with the SGPLOT procedure, we can do a simple plot (Figure 2)
or overlay multiple plots (Figure 4). Once we start building graphs and tables with the SG procedures, we
quickly realize the need to include additional features to our graphs and tables and we realize that the SG
procedure options are not enough. This requires learning Graph Template Language (GTL).

Graph Template Language (GTL) in ODS Graphics enables you to have total control over the layout and
attributes of the graph. One can generate customized and sophisticated graphs easily with the help of
GTL. Coding style in GTL is very different from SAS/GRAPH. GTL is the heart of ODS Graphics. Graphs
in SG procedures are generated using GTL behind the scenes. GTL is structured, powerful, flexible, and
intuitive.

In GTL, graphs are built by using plot and layout statements. The plot statements determine how data are
represented in the graph, and the layout statements determine where the plots are drawn on the graph.
More advanced layouts can be used to divide the plot area into multiple independent cells. In addition,
statements can be nested so multiple plots can be arranged to create elegant visuals.

Creating a graph using GTL is a two-step process -

• Define the structure of the graph using the GTL syntax in a STATGRAPH template. Compile and save
the template.

• Generate the graph using the SGRENDER procedure by specifying the appropriate data set and the
template.

GTL CODE BEHIND AN SGPLOT PROCEDURE

In the program code for the heat map (Figure 4. above), tmplout=”filename” option saved the GTL code
behind the heat map as a SAS program : tmplt_htmap_scatter.sas. This program is listed below:

proc template;

 define statgraph sgplot;

 begingraph / collation=binary discreteAxisOffsetPad=false;

 EntryTitle "Opioid Consumption Per Person by Year for the Top Quartile

 Counties - North Carolina State" /;

 layout overlay / xaxisopts=(labelFitPolicy=Split)

 x2axisopts=(labelFitPolicy=Split);

 HeatMapParm X='trans_yr'n Y='BUYER_COUNTY'n

 ColorResponse='dosage_sold_pp'n / xBinAxis=false yBinAxis=false

 includemissingcolor=false ColorModel=(CXFAFBFE CX667FA2 CXD05B5B)

 primary=true discretex=true NAME="lgnd";

 ScatterPlot X='trans_yr'n Y='top_dose_cnty'n / subpixel=off Markerattrs=(

 Symbol=STARFILLED Size=15) filledOutlinedMarkers=true

 MarkerFillattrs=(Color=CXFF0000)

 MarkerOutlineattrs=(Color=CXFF0000 Thickness=2)

 LegendLabel="top_dose_cnty" NAME="SCATTER";

 ScatterPlot X='trans_yr'n Y='bottom_dose_cnty'n / subpixel=off

 Markerattrs=(Symbol=SQUAREFILLED Size=15) filledOutlinedMarkers=true

 MarkerFillattrs=(Color=CXFFFF00)

9

 MarkerOutlineattrs=(Color=CXFFFF00 Thickness=2)

 LegendLabel="bottom_dose_cnty" NAME="SCATTER1";

 TextPlot X='trans_yr'n Y='BUYER_COUNTY'n text='dosage_sold_pp'n /

 TextAttrs=(Size=10 Weight=bold) URL='url1'n LegendLabel="County"

 NAME="TEXT";

 ContinuousLegend "lgnd" / Location=Outside halign=right Title="Dosage Per

 Person" extractscale=true Integer=true;

endlayout;

endgraph;

end;

run;

Explanation of the above code:

This program consists of a PROC TEMPLATE statement followed by three or more nested blocks of
statements:

• DEFINE/END block. It begins with a DEFINE STATGRAPH statement followed by a template

name and ends with an END statement. This step creates a graph template called sgplot.

• BEGINGRAPH / ENDGRAPH block. It provides a place for you to specify options that affect the

graph size, the graph border, and the graph background color. Most statements that construct

the graph are specified inside this block. The graph title is specified in the ENTRYTITLE

statement is placed right after the BEGINGRAPH statement.

• LAYOUT OVERLAY/ENDLAYOUT block. Statements that create the graph are placed in this

block. There is no limit to the number of graph statements that you can place, in this block. The

HEATMAPPARM statement, two SCATTERPLOT statements for top five counties and bottom

five counties, and TEXTPLOT statement are placed within the LAYOUT OVERLAY block in the

above code.

Now, use the template sgplot in PROC SGRENDER with the dataset counties_with_top_bottom_doses
as below, to create the heat map in Figure 4.

proc sgrender data= counties_with_top_bottom_doses(where=(quartile=4))

 template=sgplot;

 format dosage_sold_pp comma12.1;

 label trans_yr="Transaction Year"

 buyer_county= "County";

run;

INCLUDE BORDERS AND LEGEND FOR THE TOP AND BOTTOM ENTRIES

Let us make some modifications to the above GTL code above to include

• Borders for each cell in the table

• Instead of hard coding the colors for the color ramp, use the style-element: attribute to derive the

colors from the style colors.

• Include legend for the bottom and top cells.

10

proc template;

 define statgraph mytmplt;

 begingraph / collation=binary discreteAxisOffsetPad=false;

❶* Add legend items;

 legendItem type=marker name="b_marker" /

 markerattrs=(color=yellow symbol=squarefilled)

 label="bottom 5 " ;

 legendItem type=marker name="t_marker" /

 markerattrs=(color=red symbol=starfilled)

 label="top 5 " ;

 layout overlay / xaxisopts=(labelFitPolicy=Split)

 x2axisopts=(labelFitPolicy=Split);

 HeatMapParm X='trans_yr'n Y='BUYER_COUNTY'n

ColorResponse='dosage_sold_pp'n / xBinAxis=false yBinAxis=false

includemissingcolor=false

❷ColorModel=(GraphWalls:Color ThreeColorRamp:StartColor) display=all

includemissingcolor=false

❸outlineattrs=graphdata2(thickness=1) primary=true discretex=true

NAME="lgnd";

 ScatterPlot X='trans_yr'n Y='top_dose_cnty'n / subpixel=off

Markerattrs=(Symbol=STARFILLED Size=15) filledOutlinedMarkers=true

MarkerFillattrs=(Color=CXFF0000) MarkerOutlineattrs=(Color=CXFF0000

Thickness=2) LegendLabel="top_dose_cnty" NAME="SCATTER";

 ScatterPlot X='trans_yr'n Y='bottom_dose_cnty'n / subpixel=off

Markerattrs=(Symbol=SQUAREFILLED Size=15) filledOutlinedMarkers=true

MarkerFillattrs=(Color=CXFFFF00) MarkerOutlineattrs=(Color=CXFFFF00

Thickness=2) LegendLabel="bottom_dose_cnty" NAME="SCATTER1";

 TextPlot X='trans_yr'n Y='BUYER_COUNTY'n text='dosage_sold_pp'n /

TextAttrs=(Size=10 Weight=bold) URL='url1'n LegendLabel="County"

NAME="TEXT";

 ContinuousLegend "lgnd" / Location=Outside halign=right

Title="Dosage Per Person" extractscale=true Integer=true;

 * include the legend;

 ❶discretelegend "b_marker" "t_marker" /

 autoitemsize=true;

 endlayout;

 endgraph;

 end;

run;

11

In the above code:

• Statements marked 1 inserted the legend items.

• Option marked 2 used colors from white (GraphWalls:Color) to blue
(ThreeColorRamp:StartColor)

• Option marked 3: outlineattrs=graphdata2(thickness=1) outlined the borders for each cell.

Now run the SGRENDER procedure using the template mytmplt to generate the table in Figure 5.

proc sgrender data= counties_with_top_bottom_doses(where=(quartile=4))

 template=mytmplt;

 title1 "Opioid Consumption Per Person by Year for the Top Quartile Counties

- North Carolina State";

 format dosage_sold_pp comma12.1;

 label trans_yr="Transaction Year"

 buyer_county= "County";

run;

The code above generates the heat map table shown in Figure 5 below.

Figure 5: Heat map with squares and stars for the bottom and top cells, respectively

12

CONCLUSION

Datasets are getting larger and heat maps are a great way to display a large amount of data either in a
map or a table. Heatmap and heatmapparm statements are a great addition to the SGPLOT procedure. It
is easy to identify key values or problematic values in the data through heat maps and GTILE graphs.
Each of these techniques, heat maps using ODS graphics as well as GTILE, has its place. Heat maps
make tables and graphs interpret with the shaded background color, whereas the GTILE graphs make
use of shaded color and area to display the response values. Graph Template Language (GTL) with the
SGRENDER procedure makes these graphs even more sophisticated and powerful. In this paper, we
have only scratched the surface of GTL.

REFERENCES

Kufeld, Warren F. (2017) “Heat Maps: Graphically Displaying Big Data and Small Tables” Proceedings of
the 2017 SAS Global Forum Conference. Available at
https://support.sas.com/resources/papers/proceedings17/SAS0312-2017.pdf

Matange Sanjay, “Getting Started with the Graph Template Language in SAS, Examples, Tips, and
Techniques for Creating Custom Graphs”

Kufeld, Warren F. “Basic ODS Graphics Examples”
(http://support.sas.com/documentation/prod-p/grstat/9.4/en/PDF/odsbasicg.pdf).

Kufeld, Warren F. “Advanced ODS Graphics Examples” (http://support.sas.com/documentation/prod-
p/grstat/9.4/en/PDF/odsadvg.pdf).

Matange, Sanjay’s blog Graphically Speaking on tips, tricks, and the latest developments in ODS
Graphics
(http://blogs.sas.com/content/graphicallyspeaking/) .

SAS® 9.4 ODS Graphics: Procedures Guide

ACKNOWLEDGMENTS

The authors are grateful to Sarah Lein, RTI and Kavya Sekar, Analyst in Health Policy, Congressional
Research Service for their valuable time in editing this paper and providing helpful suggestions.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Devi Sekar
Center for Health Data Analytics
RTI International
3040 East Cornwallis Road
Research Triangle Park, NC 27709
Email: dsekar@rti.org

Keith E. Brown
Center for Health Data Analytics
RTI International
3040 East Cornwallis Road
Research Triangle Park, NC 27709
Email: kebrown@rti.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

https://support.sas.com/resources/papers/proceedings17/SAS0312-2017.pdf
http://support.sas.com/documentation/prod-p/grstat/9.4/en/PDF/odsbasicg.pdf
http://support.sas.com/documentation/prod-p/grstat/9.4/en/PDF/odsadvg.pdf
http://support.sas.com/documentation/prod-p/grstat/9.4/en/PDF/odsadvg.pdf
mailto:dsekar@rti.org
mailto:kebrown@rti.org

13

Other brand and product names are trademarks of their respective companies.

APPENDIX I

Program code to generate the heat map in Figure 2:

libname sesug19 "/pgm/data/dsekar/SESUG19";

%let Pathout=/pgm/data/dsekar/SESUG19/;

%let Pgmpath=/pgm/dsekar/SESUG19/opioid_programs;

data nc_population;

 set sesug19.population_data;

 if substr(stcou,1,2) = "37";

 county_name = substr(area_name,1,index(area_name,",")-1);

 county_name = upcase(county_name);

run;

data nc_opioid_data;

 set sesug19.nc_opioid_data;

 trans_yr = year(transaction_date);

 if dosage_unit ne "null" then

 dosage = input(dosage_unit, 8.);

 else

 dosage = 0;

run;

proc sql;

 create table county_opioid_sales as

 select buyer_county, buyer_state, sum(dosage) as dosage_sold

 from nc_opioid_data

 group by buyer_county, buyer_state;

 create table county_opioid_sales_pp as

 select a.*, b.rsdnt_popcnt_yr2010,

 round(dosage_sold/rsdnt_popcnt_yr2010,0.001) as dosage_sold_pp

 from county_opioid_sales a left join nc_population b

 on a.buyer_county=b.county_name;

 create table county_opioid_sales_by_yr as

 select buyer_county, buyer_state, trans_yr, sum(dosage) as dosage_sold

 from nc_opioid_data

 group by buyer_county, buyer_state, trans_yr;

 create table county_opioid_sales__by_yr_pp as

 select a.*, b.rsdnt_popcnt_yr2010,

14

 round(dosage_sold/rsdnt_popcnt_yr2010,0.001) as dosage_sold_pp

 from county_opioid_sales_by_yr a left join nc_population b

 on a.buyer_county=b.county_name;

quit;

/* Generate Quartiles based on the dosage_sold_pp value */

proc rank data=county_opioid_sales_pp groups=4 out=dosage_pp_quartiles;

 var dosage_sold_pp;

 ranks quartile;

run;

data dosage_pp_quartiles;

 set dosage_pp_quartiles;

 quartile = quartile+1;

run;

/* Append quartile value to the county_year sales data */

data county_opioid_sales_by_quartile;

 merge dosage_pp_quartiles(in=a keep=buyer_state buyer_county quartile)

 county_opioid_sales__by_yr_pp(in=b);

 by buyer_state buyer_county;

 if a and b;

 length url1 $30;

 /* Create variable url1 for generating hyperlinks in the heat map */

 url1="./" || compress(buyer_county) || '.html';

run;

%let colormodel = (cxFAFBFE cx667FA2 cxD05B5B);

ods graphics on / imagemap=on border=off;

ods html file="SESUG19_opioid_Sales_HeatMap.html" path="&pathout." (url=none)

nogtitle;

proc sgplot data=county_opioid_sales_by_quartile(where=(quartile=4))

tmplout="&pgmpath/opioidslstmplt_htmapparm.sas";

heatmapparm y=buyer_county x=trans_yr colorresponse=dosage_sold_pp /

name='lgnd'

 colormodel=&colormodel discretex NOMISSINGCOLOR;

text y=buyer_county x=trans_yr text=dosage_sold_pp /

textattrs=(size=10 weight=bold) url=url1;

gradlegend 'lgnd'/integer title='Dosage Per Person' extractscale;

title1 "Opioid Consumption Per Person by Year for the Top Quartile Counties -

North Carolina State";

format dosage_sold_pp comma12.1;

label trans_yr="Transaction Year"

 buyer_county= "County";

run;

ods html close;

15

ods graphics off;

Program code to generate the GTILE graph in Figure 3:

Note: This code produces an HTML page for each of North Carolina’s 100 counties.

proc sort data=sesug19.top10_distributor_sales_by_yr

 out= top10_distributor_sales_by_yr;

by buyer_county trans_yr descending dosage_sold;

run;

data top10_distributor_sales_by_yr;

set top10_distributor_sales_by_yr;

by buyer_county;

if first.buyer_county then county_num+1;

county_name=propcase(buyer_county);

if county_name=’Mcdowell’ then county_name=’McDowell’;

run;

%macro gtile1;

%do i=1 %to 100;

data gmap_temp;

set top10_distributor_sales_by_yr(where=(county_num=&i));

distributor=trim(distributor) || ' - ' ||

left(put(dosage_sold,comma12.));

call symput('county',compress(trim(buyer_county)));

run;

ods html file="&county..html" path="&pathout." (url=none) nogtitle

style=seaside;

%let colormodel = (cxFAFBFE cx667FA2 cxD05B5B);

options device=javaimg;

run;

proc gtile data=gmap_temp;

 flow dosage_sold tileby=(trans_yr,distributor) /

 colorramp=&colormodel colorvar=trans_yr

 labellevel=2

 detaillevel=2;

 by county_name;

 label trans_yr="Year";

title1 h=5 "#byval(county_name) County Opioid Sales";

;

 run;

ods html close;

%end;

%mend gtile1;

%gtile1;

