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ABSTRACT  

Outcomes in the form of counts are becoming an increasingly popular metric in a wide variety of fields. 
For example, studying the number of hospital, emergency room, or in-patient doctor’s office visits has 
been a major focal point for many recent health studies. Many investigators want to know the impact of 
many different variables on these counts and help describe ways in which interventions or therapies 
might bring those numbers down. Traditional least squares regression was the primary mechanism for 
studying this type of data for decades. However, alternative methods were developed some time ago that 
are far superior for dealing with this type of data. The focus of this paper is to illustrate how count 
regression models can outperform traditional methods while utilizing the data in a more appropriate 
manner. Poisson Regression and Negative Binomial Regression are popular techniques when the data 
are overdispersed and using Zero-Inflated techniques for data with many more zeroes than is expected 
under traditional count regression models. These examples are applied to studies with real data. 

INTRODUCTION  

Outcomes in the form of counts are becoming an increasingly popular metric in a wide variety of fields. In 
the health sciences examples include number of hospitalizations, chronic conditions, medications, and so 
on. Many investigators want to know the impact of many different variables on these counts and help 
describe ways in which interventions or therapies might bring those numbers down. Standard methods 
(regression, t-tests, ANOVA) are useful for some count data studies.  The methods are robust and tend to 
give valid results in exploring or examining associations. But many of those methods were developed to 
look at outcomes that run on a ‘true’ continuum (height, weight) or scores that run across a long range. 
They are not as good at handling count data where the counts do not go very high. Alternatives to the 
traditional modeling framework include nonparametric statistics that rank the data and help researchers 
look at high counts versus low counts are useful. But the methods described in this paper were 
specifically designed for count data. 

COUNT DISTRIBUTIONS 

The Poisson distribution expresses the probability of that a set number of events will occur in a fixed time 
or space interval.  Examples include number of hurricanes in a year or location or number of calls in a call 
center per hour. Whereas the normal distribution is explained through the mean and standard deviation 
(denoted µ and σ) the Poisson distribution is denoted by one parameter λ.  For Poisson data, the mean 
and standard deviation are the same.  

An example of how the probability distributions vary with different values of λ can be given by Lavery 
(2010).  We see λ>0 and for small values we have a skewed distributions and as the value increases, the 
distribution becomes more bell shaped and we sometimes approximated it with the normal distribution.   
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Figure 1 – Examples of Poisson Distributions 

The major limitation of the Poisson distribution is that the mean and variance are equal and many 
practical problems with count data do not have distributions where one can reasonably make this 
assumption.  It is usually the case that the data are ‘over-dispersed’ in that the variance is much larger 
than the mean.  This happens in many count data scenarios where it is usually the case  

Overdispersion is a real problem in working with count data.  Most real working examples have mean and 
variances nowhere near the same.  A common method for dealing with overdispersed Poisson data is to 
fit a negative binomial regression model. The negative binomial distribution is another statistical 
distribution for count data. The negative binomial distribution looks at the number of failures before 1 or 
more wins (say X failures until you win one time). The negative binomial distribution can be thought of 
statistically as a mixture distribution of Poisson and gamma Distributions.  The reader should see Pedan 
(2001) for a review of the theory of negative binomial distributions. 

GENERALIZED LINEAR MODELS AND ZERO INFLATION 

Regression models are among the best frameworks for exploring the association between multiple 
variables and an outcome of interest.  Generalized linear models (GLM) provide the framework by which 
regression models can capitalize on the use of alternative distributions such as the Poisson and negative 
binomial distributions in outcome modeling.  They rely on specifying a distribution of interest and a link 
function (usually specified as a log-link for count regression models) to aid in modeling the data.  The 
interested reader should see Ngo (2016) for an overview of generalized linear models. 

Finally, generalized linear models can be augmented to account for so-called zero-inflation which can 
occur in count data where there are more zero values in the data than would occur naturally in count 
distributed data.  Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) models exist as 
zero inflated analogs for the generalized linear models that use the Poisson and negative binomial 
distributions for outcomes (respectively).  Zero-Inflated models in SAS® take a two stage modeling 
approach where the data are first modeled for the probability of a zero value to explain the extra zeroes in 
the data and a second stage model where the data are modeled using a count regression.  Erdman 
(2008) has a soft introduction into the theory of zero-inflated count models. 

The task here is to help the reader elucidate which model should be used in which scenario.  For that we 
ask a series of questions based on the distribution of our count outcome.  In scenarios where the count 
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data has a large mean and the data ‘look’ bell shaped, then Poisson Regression (Poisson distribution 
based GLM) work well.   

In cases where the data are skewed (Poisson data that has not converged to Normal distributions) then 
Poisson Regression may still be viable.  Here, two additional questions are asked; first if the variance is 
larger than the mean, then the data are likely over-dispersed and Negative Binomial Regression (negative 
binomial based GLM) may work well.  If the data have many zero values then ZIP should be considered.  
In cases where the data have many zero values and a long tail (high variance) then the ZINB may be 
your best fit.   

 

Figure 2 – Determining Count Regression Model 

EXAMPLE - AFFAIRS 

Fair (1978) did a study on extramarital affairs.  Suppose we want to examine the impact of children, 
religiousity, happiness, and time in marriage on the number of admitted marital affairs.  The main 
outcome (NAFFAIRS) has the following distribution and summary statistics: 

 

Figure 3 – Univariate Output 

 

The skew in this data illustrates that the data does not run over the typical range of normal type data.  
There are an unusually high number of observations that are in the seven and 12 count columns.  Count 
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regression models are good at capitalizing on things like this.  Note that the mean here is 1.45 and the 
standard deviation is 3.3 (variance=10.9).   

We will focus our analysis on the impact of marriage rating (RATEMARR) on expected number of affairs.  
We start the analysis by comparing SAS code (here the dataset is called sample) using the same 
covariates but fitting ordinary least squares (OLS or traditional regression) to Poisson regression GLM. 

 

Figure 4 – SAS Code for OLS and Poisson Regression 

We use the LS means statement to provide least square means as a way to compare model based 
estimates for the expected number of affairs for each marriage rating after adjusting for years of marriage, 
gender, whether there are children, and religiousity. Figure 5 below shows partial GLM output of the OLS 
model. 

 

 

 



5 

 

 
Figure 5 – Partial OLS and Poisson Regression Output 
 
We see that the models have very different output in terms of the p-values for type 3 (last variable in 
the model) and we see different estimates for least square means.  There are also smaller confidence 
intervals for the Poisson model.  However, figure 3 suggested that the Poisson Regression output may 
not be the best fit given the difference in the mean (1.46) and variance (10.88).  We compare fit using 
AIC below.  First, we explore a negative binomial fit with code listed in Figure 6. 
 

 
Figure 6 – Negative Binomial Regression SAS Code 
 
We transform the output into what we see in Figure 7 below.  Note that the big difference in confidence 
limits 
 

 
Figure 7 – Transformed Least Square Means 
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So how do we ascertain the ‘best’ option for modeling?  Goodness of fit measures such as Akaike’s 
Information Criterion (AIC) provide a reasonable bell-weather for which model would be preferable.  In 
scenarios where the same model is fit with different assumptions (here OLS versus Poisson versus NB) 
one can look at AIC values to determine ‘best’ fit.  Figure 8 below has AIC values for all three models, it is 
clear that the OLS model has better fit (AIC = 1963) versus Poisson Regression (AIC = 2852).  However, 
the negative binomial model was fit and we see a reduction of AIC around 25% (from 1963 to 1478).   
 

 
Exhibit 8 – Affair Model Fit Statistics 
 
In addition, ZINB models were fit to this data and the corresponding AIC was about 1432.  So while ZINB 
does have the ‘best’ fit, the gains in AIC may not be enough to actually deploy a zero-inflated model in 
practice.  Figure 9 does show code and corresponding output that illustrates a different interpretation 
from such a model. However, there should be a little hesitation in direct comparison of ZINB and 
negative binomial models given the additional parameters introduced in a two stage model. 
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Figure 9 – Zero-Inflated Negative Binomial Code and Select Output 

EXAMPLE - NEEDLESTICKS 

Mann, Larsen, and Brinkley (2014) looked at negative binomial regression as a way to model pediatric IV 
stick attempts.  The process is actually a negative binomial distribution (count attempts to start an IV until 
a success).  Finding such a process is rare in the medical literature and figure 10 below shows that the 
data match up well with a theoretical negative binomial counts. 

 
Figure 10 – Negative Binomial Actual Versus Predicted Values 
 
Figure 11 below compares type 3 tests from an OLS model (AIC = 1932) and a Negative Binomial 
Regression model (AIC = 1533).  Clearly, the p-values and interpretation of potential model effects differ 
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between the use of OLS and NB fits.  It is important to note that ZINB were also fit with little change in the 
results. 
 
           OLS Output             Neg Binomial Output 

   
 
Figure 11 – Comparing OLS and Negative Binomial Regression Output 

CONCLUSION 

There are many different models for count regression data and it is not always clear exactly which model 
is best for each scenario.  It may be that a combination of univariate distribution analysis combined with 
multiple model fits (and comparing goodness of fit measures) is a viable avenue in exploring which count 
regression model is best equipped for exploring each specific data set.  Analysts should be aware of the 
differences in these models and that one should explore multiple fits before deciding on which one is the 
most appropriate for interpretation. 
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