SESUG Paper HP-120-2019

Pooled Database Loader (PDL)

From Document to Code to Deliverable: a streamlined process of
combining documentation and SAS code to produce a pooled
database

David Hartman, UCB Biosciences, Raleigh NC, USA,Pranjali Dafe, Covance Inc., Cary,
NC, USA

ABSTRACT

The combining of 2 or more studies into a single database is very difficult and labor intensive. While it is
virtually impossible to eliminate human intervention, a process has been created where documentation
containing everything from what studies are to be pooled to the mapping rules that are to be used to
convert data from multiple studies into a common structure. This information (in the form of
spreadsheets) is then executed via a tool called PDL (Pooled Database Loader) to produce the pooled
database. This process is completely data independent and can pool data from multiple studies together
regardless of the structure of the “original” data. The purpose of this paper is to illustrate how a user of
PDL goes from individual study data to a final pooled dataset. Included in this paper will be examples of
the information contained in the spreadsheets as well as the various calls to PDL that will create the
pooled dataset.

INTRODUCTION

The common procedure for building pooled datasets is to work from documents including the Statistical
Analysis Plan (SAP) and table shells written for the purpose of analyzing integrated data for such things
as safety signal detection or submission packages. Based upon those documents, a set of specifications
is written, usually in the form of a Data Definition Table (DDT). Once the DDT is written then a
programmer begins the task of writing code to create the pooled dataset. Depending on the complexity of
the structure of the pooled dataset and the degree in which each study has to be mapped to the pooled
structure, this could take dozens of pages of code. Adding new studies or just going back at a later time
to understand what exactly was done in that process can require a very long learning curve, especially if
the programmer doing the follow-up is not the original author. The solution to this problem is the
development of a new tool known at UCB Biosciences as the Pooled Database Loader (PDL). This tool
combines the documentation regarding all aspects of the data from the source to the final pooled
database with SAS® code that takes the information provided by the documentation and builds the
dataset.

D
Study
1 /\
N
) Define Create
St;dv Mapping Pooled
—_—)
- Rules Database
N
Study
3
N

THE INTERFACE

There is a series of 4 spreadsheets used in this process beginning with the spreadsheet containing the
list of studies to be pooled and the location of their data and ending with the spreadsheet containing the
mapping rules for each individual study. Once the final spreadsheet is completed then loading of the data
is performed.

THE TOOL

PDL is a program written entirely in SAS®. The front end (macro call) appears as follows:

$pdbload (loadfunc=PDB function (task) ,
xlspath=path to spreadsheets,
pdbpath=path to project database,
pgmpath=path to customized functions,
loadmac=1ist of customized functions to be loaded,
domlst =1ist of domains to be mapped and loaded into
project database,
sasopts=valid SAS option(s))

PDL is very modular in its design, making it adaptable to any structure of data for any project.

THE STEPS

There are 4 steps to building a pooled dataset using this tool beginning with identifying what studies are
to be included in the pool to the eventual loading of the data.

Step 1 — Creating the study library spreadsheet (studylib.xlsx)

This step involves the creation of a spreadsheet that contains information regarding the studies to be
pooled and the location of the data for those studies.

studylib.xlsx
A B C D E
1 |studyid study index studylib load
2 Study First Study Kstudyadidata
3 |Study@2 Second Study Kstudyiadidata
4 Study3 Third Study Kstudy3adidata
5 Studyd Fourth Study #studyd\ad'data

Column A (studyid): contains the list of studies to be pooled

Column B (study): contains the text which describes the study

Column C (index): is used if data to be pooled for a study is coming for 2 or more folders

Column D (studylib): contains the path to where the data for each individual study is stored

Column E (load): used to indicate which study is to be loaded into the pooled database. An ‘X’ tells

the tool to load that study.

Example of data coming from 2 different folders:

studylib.xlsx

A B C D E
1 |studyid study index studylib load
2 Study1 First Study X\study1\ad\data
3 Study2 Second Study sd X\study2\sd\data
4 Study?2 Second Study ad Xstudy2\ad\data
5 Study3 Third Study X\studyIad\data
6 Studyd Fourth Study Xstudyd\ad\data

In this example, Study2 will be pooled from 2 different folders for at least one of the datasets to be
created. Index id’s of “sd” and “ad” are defined but any values can be placed here.

There are basically 2 ways in which the STUDYLIB spreadsheet can be created:

Manual — From a blank spreadsheet, the columns described above are added and then one by one, each
study ID and path to the data is entered.

Automated — The spreadsheet can be built by PDL using the function STUDYLIB. Inthe LOADFUNC
parameter, the key word STUDYLIB is used. This instructs PDL to create the STUDYLIB spreadsheet.
Along with this are 2 tasks. The first is SEARCH. With this task the path is defined telling PDL where to
begin the search for folders containing SAS datasets. The other is FILTER which provides instruction on
how to subset the list of possible folders containing SAS datasets.

lllustration of how the automation works to produce STUDYLIB spreadsheet

Example using keyword STUDYLIB:

$pdbload(loadfunc=studylib)

Example using keyword SEARCH:

$pdbload(loadfunc=studylib*search=C:\levelll\level2\level3\level4\product id

In this example you see the keyword SEARCH. This is instructing PDL to begin the search for folders at
the product_id level. PDL will search every folder under product_id looking for folders containing SAS
datasets.

Examples using keyword FILTER

With DATES
spdbload(loadfunc=studylib*search=path*filter=dates=5)

A B C D E
1 LOAD STUDYID STUDYLIB DATE BLINDED
2 Studyl M:\levell\level2\level3\leveld\levels\level6\level P\dryrunidataladam "03-Feb-19
3 Studyl M:M\levell\level2\level3\leveld\levels\level6\level A\dryrunidataladamiadam_define "05-Feb-19
4 Studyl M:\levell\level2\level3\leveld\level5\level6\spi\ADAM data\working "6-Jun-19
5 Studyl MM levell\level2\level3\leveld\levels\level6\level 7\final\data\adam "8-Feb-19
6 Studyl M:\levell\level2\level3\leveld\levels\levelg\level7\a2\data\adam\2018-12-11-fa "30-Jan-19

This is a list of the folders containing 5 most recent ADaM SAS datasets.

With STUDIES

$pdbload (loadfunc=studylib*search=path*filter=studies=Studyl Study2,

A B C D E
1 LOAD STUDYID STUDYLIB DATE BLINDED
2 Studyl M:\levell\level2\level3\leveld\levelslevel6\level T\analysis1\data\adam "05-A ug-19
3 Studyl M:\level\level2\level3\leveld\levelslevels\level P\analysis1\data\adam'2019-08-02-ssd-2019g3 "05-A ug-19
4 Study2 M:\level1\level2\level3\leveld\levelslevel6\level P\analysis1\data\adam "05- ug-19
5 Study2 M:\level1\level2\level3\leveld\levelSlevel6\level P\analysis1\data\adam'2019-07-23-ssd "05- ug-19

This is a list of the folders containing the 2 most recent ADaM SAS datasets for 2 different studies.

Step 2 — Creating and maintaining the domain mapping spreadsheet (domainmapvl.xlsx)
The first of 2 spreadsheets are created in this step. This is created by running PDL as follows:

%pdbload (loadfunc=domainmap ,

)

The DOMAINMAP spreadsheet will contain a list of all studies from the STUDYLIB spreadsheet along
with a list of all datasets that exist for each study. Appended to the name of the spreadsheet is the suffix

“vn” indicating the version of the spreadsheet. Every time DOMAINMAP is recreated using PDL, the “n” is
incremented by 1.

domain_mapv1.xlsx

A B C D E
1 PRIDOMAIN STDYStudyl STDYStudy2 STDYStudy3 STDYStudy4
2 ADAE AE_Ssd ADAE ADAE
3 ADAUEC CE_Ssd ADBILAG ADBILAG
= ADCM CM_Ssd ADCM ADCM
5 ADCO ADAE_Sad ADDV ADCSSR5
6 ADCP ADAUEC_Sad ADEG ADDV

If data comes from 2 or more folders for a study, PDL attaches * S’ to the end of the dataset name along
with the index ID. For example, ADAE for Study? is defined as ADAE_Sad. This ensures that the name
of the dataset applies to the correct library as defined in the STUDYLIB spreadsheet.

From this list of studies and datasets, a decision is made regarding which of the datasets will be mapped
into the pooled database. These decisions are done on a domain by domain basis.

domain_mapv1l.xlsx

A B = D E
1 PRIDOMAIN STDYStudyl STDYStudy2 STDYStudy3 STDYStudy4
2 ADSL ADSL ADSL_Sad DM_Ssd ADSL ADSL
3 ADLB ADLB ADLB_Sad ADLB ADLBECHEM ADLBHEMA ADLBOTH ADLBURIN
4 ADAE AE_Ssd ADAE ADAE

This example demonstrates how anywhere from 1 to multiple study level datasets can be defined for a
single pooled domain. The pooled ADSL domain has 2 datasets defined for Study2 while ADLB has 4
datasets defined for Study4.

Step 3 — Creating and maintaining the pooled database code list spreadsheet (pdb_codelist)

The pooled database code spreadsheet contains a list of format names, codes, and decodes that can be
applied across all studies or to individual studies depending on how the mapping rules are defined.

pdb_codelist.xlsx

A B C
1 format name value label
2 |sexnf 1 Male
3 2 Female
4 3 Missing
5
6 fsexs Male W
[Female F
M 4 » M| pooled -/ Studyl . Study2 . Study3 . Studys .~ ¥J

In this example, the tab labeled “pooled” contains a list of formats that can be applied across all studies.
Prior to loading the study level data into the pooled database, PDL is run with LOADFUNC=fmtload.

$pdbload (loadfunc=fmtload ,

)

This will load the formats defined in this tab into a SAS® dataset. Upon loading of the data into the pool,
the format SAS® dataset is converted into a FORMAT catalog where it becomes available for formatting
as needed during the loading process.

pdb_codelist.xlsx

A B C D E
1 recode fmt old value old label new value new label
2 tri01af 1 Dose 1 2 Low Dose
3 2 Placebo 1 Placebo
4 9 Screen Failure 0 Screen Failure
5
6 Bracef WHITE 5
7 OTHER/MIXED 6
M 4+ ¥ | pooled | Studyl . Study2 . Study3 - Studyd T

In this example, the tab labeled “Study1” contains a list of formats that can be applied to a specific study
(in this case, Studyl). Columns A, B, and D contain the information used by PDBLoader to produce a
FORMAT catalog. This gets appended to the “pool” formats as each study is loaded into the pool.
Columns C and E are for documentation purposes only. These columns serve as a reminder as to what
the original labels to the codes were (Column C) and what they have been converted too (Column E).

Step 4 — Creating and maintaining the variable mapping spreadsheet DOMAINdomain_var_mapv1)

This is the step where the work of mapping begins. First, PDL is run with LOADFUNC=varmap.

$pdbload (loadfunc=varmap ,
domlst=name of dataset to be created,

Running this function produces the DOMAINdomain_var_mapv1.xIsx spreadsheet. The DOMAIN refers
to the name of the pooled dataset that is to be created. In addition to LOADFUNC, DOMLST must be
defined, letting PDL know what dataset is about to be created .

ADSLdomain_var_mapv1l.xlsx

A B - D E F G H 1 1 K L M
1 PRIDOMAIN PRIVAR PRITYP PRILEN PRILBL PRIFMT PRIKEY STDTAStudyl STVARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
2 ADSL ADSL ACTARM char 200 Description of Actual Arm
3 ADSL ADSL ACTARMCD char 20 Actual Arm Code
4 ADSL ADSL AGE num 8 Age BEST12.
5 ADSL ADSL AGECAT char 200 Age Category
6 ADSL ADSL AGEU char 6 Age Units
7 ADSL ADSL AGE_CALC num 8 Age calculated BEST12.
8 ADSL ADSL AGGDRC char 200 Gender,Age,Race, Weight({kg) combined
9 ADSL ADSL AGGRC char 200 Gender,Age,Race combined
10 ADSL ADSL ARM char 200 Description of Planned Arm

This spreadsheet can be broken down into 2 sections:

Section 1: The template

ADSLdomain_var_mapv1.xlsx
A B C D E F G
PRIDOMAIN PRIVAR PRITYP PRILEN PRILBL PRIFMT PRIKEY
ADSL
ADSL
ADSL
ADSL
ADSL
ADSL
ADSL
ADSL
10 | ADSL

LY== NI = R R SRR N

This is where the “target” dataset is to be defined including the variables and their attributes (Columns B
through F). Column G (PRJKEY) defines how the “target” dataset is to be sorted. There are 3 ways in
which the template can be populated.

Option 1: Manually enter the variable names and their attributes.
Option 2: At UCB there is a workbook called the UCB metadata collector. This contains the list of the
possible variables for many domains as defined by the CDISC ADaM Implementation guide.

PDL reads this information in using the DDT parameter.

ucb_metata_collector.xlsx

(] uep-metadata-collector-2017Q4.xisx

A B C D E F G H 1) K L M N o P Q R
studyid/ level of CURRENT ADaM ADaM Variable Label Key Type Length/ Controlled Terms Origin Role Source/ Derivation/ Derivation UCB flag
pool|an standard STANDARD type Display or Format Comment Name core
alysis/ @UCB Format

2 ucs CDISC Y adsl adsl | all_ STUDYID Study Identifier 1text SDTM Study Ider Predecessor: DM.STUDYID Req 1
3 ucs CDISC Y adsl adsl | all_ USUBJID Unigue Subject Identifier 2|text SDTM Study Ider Predecessor: DM.USUBJID Req 1
4 ucs CDISC Y adsl adsl | all_ SUBIID Subject Identifier for the Study text SDTM Study Iden Predecessor: DM.SUBJID Req 1
5 UCB CDISC Y adsl adsl | _all_ SITEID Study Site Identifier text SDTM Study Iden Predecessor: DM.SITEID Req 1
4 ¥ ¥ [version history datasets | adam tf “uch-ct lsts . columnlegend . ¥J M4l [

The “flag” column enables the project programmers to select the variables from the list that applies to a
specific study or pool of studies. PDL using the flag to obtain the list of variables required for the pooling.

Here is an example of running PDL with the DDT parameter defined to pull in the information from the
metadata collector.

%pdbload (loadfunc=varmap ,
domlst=adsl,
ddt=x:\pool\spreadsheet\ucb metadata collector.xlsx,

The result of running PDBLoader with DDT pointing to the metadata collector is seen below.

ADSLdomain_var_mapv1l.xlsx

A B C D E F G
1 |PRIDOM PRIVAR PRITYP PRILEN PRILBL PRIFMT PRIKEY
2 ADSL STUDYID char 200 Study Identifier 1
3 ADSL USUBJID char 200 Unigue Subject Identifier 2
4 |ADSL SUBJID char 200 Subject Identifier for the Study
5 |ADSL SITEID char 200 Study Site Identifier
6 ADSL REGIONy char 200 Geographic Regiony
7 ADSL REGIONYN num 8 Geographic Regiony (N)

With the metadata collector, there is no variable length provided, so PDL populates PRILEN with 200 if
the variable is character and 8 if the variable is numeric. These can be changed to best fit the data to be
pooled.

Option 3: If a dataset does not exist in the metatdata collector then it is possible to get the list of
variables and their attributes from an existing dataset that would be considered close in
structure to what is needed for the pool. This is done using the DDT parameter in the

following way:

%pdbload (loadfunc=varmap ,
domlst=adsl,
ddt= library=x:\studyl\dataladam * file= adsl

The result of populating the template using and existing dataset is as follows:

ADSLdomain_var_mapv1l.xlsx

A B C D E F G
1 PRIDOMAIN PRIVAR PRITYP PRILEN PRILBL PRIFMT PRIKEY
2 ADSL STUDYID char 10 Study Identifier
3 ADSL USUBJID char 20 Unigue Subject Identifier
4 |ADSL SUBJID char 5 Subject Identifier for the Study
5 |ADSL SITEID char 5 Study Site Identifier
6 ADSL SITESUBIJ char 11 Site-Subj Number
7 |ADSL RCSSUBJ char 40 Region/Country/Site-Subject Number
8 ADSL BLGARW char 100 Gender/Age(years)/Race/Weight{kg)
9 |ADSL INVMNAM char 50 Investigator Name
10 |ADSL RFICDT num 8 Informed Consent Date EBB01DA.

In this example, all of the variables and their attributes (including labels, lengths and formats) from the
existing dataset appear in the template.

Section 2: The study level mapping

The study level mapping section contains 6 columns with each column header containing a 5 letter prefix
followed by the study ID.

ADSLdomain_var_mapv1l.xlsx

B G H I] K L M
1 |PRIVAR PRIKEY [STDTAStudyl STWARStudyl STTYPStudyl STLENStudyl STLBLStudyl STEMTStudyl |

The 5 letter prefixes are defined as follows:

STDTA — Name of the study level dataset.

STVAR - List of variables in the study level dataset
STTYP - Variable type (i.e. char,num)

STLEN - Length of each variable

STLBL - Label for each variable

STFMT — Formats for each variable if applied

Normally, the template is built at the same time as at least one study is loaded into the VARMAP
spreadsheet. When this is done, PDL does 2 things:

1. If a study level variable is of the same name as the template variable, PDL will automatically populate
the template level rows under that study.

ADSLdomain_var_mapv1l.xlsx

B G H 1 1 K L M
1 |PRIVAR PRIKEY |STDTAStudyl STWARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
2 |STUDYID 1jADSL STUDYID char 10 Study Identifier
3 |USUBJID 2J|ADSL UsuBJID char 20 Unique Subject Identifier
4 (SUBJID ADSL SUBJID char 10 Subject Identifier for the Study
5 |SITEID ADSL SITEID char 5 Study Site Identifier
6 |REGIONy

2. The study level variable list now appears after the list of variables has been defined for the template.
The list of study level variables will appear in alphabetical order.

ADSLdomain_var_mapv1.xlsx
A B G H I 1 K L M
1 PRIDOMZPRIVAR PRIKEY STDTAStudyl STWARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
39 |ADSL PROTDATE
60 |ADSL PROTVERS

61 |ADSL ADSL ACTARM char 200 Description of Actual Arm

62 [ADSL ADSL ACTARMCD char 20 Actual Arm Code

63 [ADSL ADSL AGE num 8 Age BEST12.
64 |ADSL ADSL AGECAT char 200 Age Category

For those variables that do not match up with the template variables in terms of the variable names, they
can be copied.

ADSLdomain_var_mapv1l.xlsx

A B H I il K L M
1 PRIDOMAIN PRIVAR STDTAStudyl STVARStudyl STTYPStudyl STLEMStudyl STLBLStudyl STFMTStudyl
71 |ADSL ADSL BMI_CALC num 8 BMI (kg/m?) calculated at Screening BEST12.

The copied variable is then pasted in the row that applies to the variable of the template:

ADSLdomain_var_mapv1.xlsx
A B H I il K L M
1 PRIDOMAIN PRJVAR STDTAStudyl STVARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
27 |ADSL BMI ADSL BMI_CALC num 8 BMI (kg/m?) calculated at Screening |

This process is done for every variable where there is a one to one match between the study and
template variable. For those variables that require additional processing, there are 2 levels from which
modification to variables or derivations can be done.

Level 1 — Variable level:

Creating values using formats from the PDB_codelist spreadsheet and the RECODE function.

ADSLdomain_var_mapv1l.xlsx

A B H I J K L M
1 PRIDOMAIN PRIVAR STDTAStudyl STVARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
8 ADSL AGE ADSL AGE num 8 Age BEST12.
9 ADSL AGEU ADSL AGEU char 6 Age Units
10 | ADSL AGEGR1 ADSL
11 [ADSL AGEGRIN ADSL *recode(agegrin,age,agegrinf.] num |

10

Creating values from another variable or from scratch using the DERIVE function.

ADSLdomain_var_mapv1l.xlsx

A B H I J K L M
1 PRIDOMAIN PRIVAR STDTAStudyl STVARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
2 ADSL STUDYID ADSL STUDYID char 10 Study Identifier
3 ADSL USUBJID ADSL USUBJID char 20 Unigue Subject Identifier
4 ADSL SUBJID ADSL SUBJID char 10 Subject Identifier for the Study
5 ADSL SITEID ADSL SITEID char 5 Study Site Identifier
6 |ADSL TEST ADSL *derive(test, This is a cool tool.') char |
7 ADSL ACOUNTRY
8 ADSL AGE ADSL AGE num 8 Age BEST12.
9 ADSL AGEU ADSL AGEU char 6 Age Units

Level 2 — Data step level:

For the data step level of processing there are 2 options available.

Option 1: Defining a function in the spreadsheet

ADSLdomain_var_mapv1.xlsx

A B H | 1 K L il

1 PRIDOMAIN PRIVAR STDTAStudyl STWARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
6 |ADSL AGE ADSL AGE num 8 Age BEST12.
7 |ADSL AGEU ADSL AGEU char 6 Age Units

data fum;

et adsl;

test="This is a cool tool’

8 |[FUNCTION run;

Option 2: Defining a function as a macro

ADSLdomain_var_mapv1l.xlsx

A B H I J K L M
1 PRIDOMAIN PRIVAR STDTAStudyl STVARStudyl STTYPStudyl STLENStudyl STLBLStudyl STFMTStudyl
5 |ADSL SITEID ADSL SITEID char 5 Study Site Identifier
6 ADSL TEST ADSL *derive(test, This is a cool tool.") char
7 ADSL ACOUNTRY
8 ADSL AGE ADSL AGE num 8 Age BEST12.
9 ADSL AGEU ADSL AGEU char 6 Age Units
10 [FUNCTION 9%fun_tool

Step 5 — Loading the mapped data into the pooled dataset

The final step in the loading of study data into the pooled database is performed by defining LOADFUNC
as DTALOAD.

%$pdbload (loadfunc=dtaload ,
domlst=adsl,
pgmpath=path to where the custom pooling macros are stored,
loadmac=list of programs to be included in the pooling process

)

11

The PGMPATH tells PDL where to look for the modules that are to be included in the pooling process and
LOADMAC tells PDL what program are to be included.

THE CODE

Loading study level data into the WORK folder

When the DTALOAD function is run, PDL will process the information in VARMAP one study at a time.
With each study a unique library reference is defined and the study level data is loaded into the WORK
library. From here there is no need to worry about attaching a library references to the datasets if
additional processing is needed.

PRINT(DTALOAD) : libnanme stdyl_1 "M:\Sites‘BraineBiocdn‘Products \CDOPT6575L0013A \gsptanalysisprodiadidata®;
OTE: Libref STDY1_1 was successfully assigned as follows:
Engine:

Physical Name: M:'\Sites'Braine\Biocdn'Products \CDP7657SL0013Agsptanalysisprodiad'.data
PRINT(DTALOAD) : options fmtsearch=(stdy1_1);

PRINT(DTALOAD): ¥ Step 5.3: load study datasets into WOBK;

PRINT(DTALOAD) : data ADSL;

PRINT(DTALOAD) : set stdyl_1.ADSL (keep=ACTARM ACTARMCD AGE AGECAT AGEU AGE_CALC AGGDRC AGGRC ARM ARMCD BMI_CALC
RTHDTC BSA_CALC COUNTRY DSTRTCD DSTRTVB DTHDTC DTHFL EMBLFL ETHHIC FCDTC GEARMT ITTFL LSMEDYC PDPPSFL PKPPSFL RACE
ANDDT RANDDTC RANDND RFEMDTC RFICDTC RFPENDTC RFSTDTC RFXENDTC RFXSTDTC RSHCDBRK SAFFL SCREMI SCRBSA SCRFL SCRHGT
CANDTC SCRHGT SEX SITEID STDTC STUDYID SUBJECT SUBJID TERMSPEC TRTO1a TRTO1AN TRTOIP TRTOIPM TRTEDT TRTEDTM TRTETHM
TRTSDT TRTSDTH TRTSTH USUBJID WEIGHT);

PRINT(DTALOAD) : run;

OTE: There were 106 obserwvations read from the data set STDY1_1.ADSL.
OTE: The data set WORK.ADSL has 106 observations and 63 variables.

Here you see a unique study library reference is defined and the data copied to the WORK library.

Running a DATASTEP level function

As mentioned earlier, PDL will execute custom designed programs written to perform various tasks. This
can be done in 2 ways.

1. Executing the code that is written directly into the spreadsheet

When running DTALOAD, the code in the VARMAP spreadsheet will be run before the “final” dataset is
created.

MPRINT(DTALDAD) : A o o o o o oo oo o o o o o o o o o o o ok o o ok ok o
MPRINT(DTALDAD) : ¥ Step 5.4: run datastep functions;
MPRINT(DTALDAD] : o R o O R o R R R

MPRINT(DTALDAD) : data fun;

MPRINT(DTALDAD) : set adsl;

MPRINT(DTALDAD) : test="This is a cool tool’;
MPRINT(DTALDAD) : run;

HOTE: There were 106 obserwvations read from the data set WORK.ADSL.
HOTE: The data set WORK.FUN haz 106 observations and 64 variables.

2. Executing the code that is written as a macro.

In this example the name of the macro appears in the .log along with the code.

12

MPRINT(DTALDAD) :
MPRINT(DTALDAD) :
MPRINT(DTALDAD) :

Wk ok ok ok ok Rk kR Rk kR ok ko ko ko kR ok ok ok ok koo sk ok ok kR ok ok koo ok ko ok ok

¥ Step 5.4: run datastep functions;
AR OK R OK R KR KR R KR K S KK R R KRR RO R RO

MPRINT(FUN_TOOL): data fun;

MPRINT(FUN_TOOL): set adsl;

MPRINT(FUN_TOOL): test="This i= a cool tool’;
MPRINT(FUN_TOOL): run;

WOTE: There were 106 observations read from the data =zet WORK.ADSL.
MOTE: The data =et WORK.FUM has 106 obszerwvationz and 64 wvariables.

Running a variable level function

The last step in the load process is the “copying” of the study level data into the pooled dataset. It is here
that the dataset is constructed using the template information and any variable level functions are
executed. This is done one study at a time. The dataset name is STUDYn where n is the number in a
sequence from 1 to the last number of the studies to be pooled. So, if there are 4 studies to be loaded
into the pooled dataset, n would be 4.

PRINT(DTALOAD) ;
PRINT(DTALOAD) :
PRINT(DTALOAD) :
PRINT(DTALOAD) :

,**

¥ Step 5.6: produce domain dataset;
**

PRINT(DTALOAD): data stdyl(keep= STUDYID USUBJID SUBJID SITEID TEST ACOUNTRY AGE ﬁGEU);

PRINT(DTALOAD]): attrib STUDYID length=$200 label="Study ldentifier” USUBJID length=5200 1abel="Unique Subject
Identifier” SUBJID length=5200 label="Subject ldentifier for the Study” SITEID length=5200 1abel="Study Site
Identifier" TEST length=%200 label=""This is Just a test" ACOUNTRY length=%$200 label=""Analysis Country” AGE length=8
label="fige"” AGEU length=%5200 label=""fige Units"

PRINT(DTALDAD):

GEU=tAGEU));
PR INT(CONVAR):

PRINT(DTALOAD J:

PR INT(CONVAR):

PRINT(DTALOAD) :

PRINT(CONVAR) :

PRINT(DTALOAD) :

PR INT(CONVAR):

PRINT(DTALOAD) :

PRINT(DERIVE):

PRINT(DTALOAD) :
PRINT(DTALOAD):

PR INT(CONVAR) :

PRINT(DTALOAD) :

PRINT(CONVAR) :

PRINT(DTALOAD J:
PRINT(DTALOAD) :

=et ADSL(rename=(STUDYID= +STUDYID USUBJ ID-tUSUBJID SUBJID-tSUBJID SITEID-tSITEID AGE-tAGE
STUDY ID=tr in(1eft(tSTUDYID));

ﬁSUBJ|D=trim(left[tUSUBJlD]];

éUBJ|D=trim(left(tSUBJ|D));

élTEID=trim(left(tSITEID));

l;:est=’This iz a conl tool.’;

"ACOUNTRY="";

AGE—tAGE ;
AGEU=-tr im(1cft(tAGEU));
;

run;

OTE: There were 106 obszervations read from the data set WORK.ADSL.
OTE: The data set WORK.STDY1 has 106 observations and 8 variables.

Once the mapping of all of the studies to be loaded is completed (remapped in terms of structure and
content) the STUDYn datasets are set together and the job is finished.

H LOAD ADSL DATA INTD PROJECT DATABASE H

APRINT(DTALDAD) : data ADSL;
APR INT(DTALOAD) : set stdyl stdy2 stdy3 stdyd ;
PR INT(DTALOAD) : run;

JO0TE: There were 106 obserwvationz read from the data set WORK.S5TDY1.
JOTE: There were 49 obzervations read from the data set WORK.S5TDYZ.
JOTE: There were 68 obzervationz read from the data set WORK.5TDY3.
JOTE: There were 399 ocbservations read from the data set HORK.STDY4.
YOTE: The data =zet WOBK.ADSL haz 622 observations and 39 wvariables.

13

CONCLUSION

The combining of data from 2 or more studies into a single database can never be totally automated.
However, it is possible to combine the documentation and writing of the code into a more seamless
process. The combining of the documentation in MS Excel and SAS® code is what makes this possible.

PDL begins the documentation process in the STUDYLIB.xIsx file by identifying what studies are to be
included in the pool and where the data for each study is located. This tool then drills down to the next
level of information in the DOMAINMAP.xIsx file. It is here that it is documented what study level datasets
(DOMAINS) will be used in the pool for each pooled level DOMAIN. Finally, the third level of
documentation is the DOMAIN specific spread known as the VARMAP spreadsheet
(DOMAINdomain_var_map) where the mapping of the study level variables into the pooled level variables
is stored. One additional spreadsheet is called PDB_CODELIST.xIsx which contains all of the codes and
decodes used in the resetting of many of the coded variables. In these 4 spreadsheets all documentation
needed to follow the path from original study data to final pooled data is contained.

In addition to documentation, the spreadsheets provide the information needed to build the pooled
datasets. From the STUDLIB spreadsheet the library references are defined and information is provided
(from the LOAD column) regarding which of the studies are to be loaded at any given time. From the
DOMAINMAP spreadsheet the PDL can determine what datasets will be used from each study to build
the VARMAP spreadsheet. Once all of the mapping rules are defined in the VARMAP spreadsheet and
the recoding list is defined in the PDB_CODELIST spreadsheet, the PDL converts that information into
SAS® code that can be executed to produce the pooled datasets.

The combination of the MS Excel interface and the SAS® code, otherwise known as PDL provides the
complete package to document and produce a pooled dataset of any type and structure from any study
data type and structure. If at any time in the future, there is a need to go back to what was done to build
a pooled database; one only has to go back to the spreadsheets.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author(s) at:

David Hartman

UCB Biosciences

P.O. Box 110167

Research Triangle Park, NC 27709 USA
Work Phone: +1 919-767-2597

Fax: +1 919-767-2573

Email: david.hartman@ucb.com

Pranjali Dafe

Covance, Inc.

400 Centre Green Way, Cary, NC 27513
Email: pranjali.dafe@covance.com

Brand and product names are trademarks of their respective companies.

14

