
1

SESUG Paper 211-2019

When in Doubt, Shell It Out

Timothy Egan, IQVIA

ABSTRACT

Sometimes a table shell appears simple at first glance, but can quickly grow complicated when it comes
time to program. Inconsistent blank lines that are needed within and between sections of the table,
unpopulated categories that will not be produced with the FREQ procedure but still need to appear in the
final table, future visits that still need to be presented, and inconsistent indentations are all subtle details
that can challenge a programmer when they sit down to knock out a table. While the DATA step and
REPORT procedure are perfectly valid approaches to create these tables, there are simpler methods in
SAS® that will allow a programmer to easily build these obscure or repetitive table structures. A key
advantage to using these methods is that if the table structure needs to be updated at a later time, the
program is already in a ready-to-update state for either the original programmer or someone else who has
inherited the program.

This paper will show how to utilize the DATA step, DATALINES, or the SQL procedure to create a
complicated or repetitive table structure with a simple and easy to read program. It will also examine
strengths and weakness of the different methods which will enable programmers to select the more
efficient choice on a case-by-case basis.

INTRODUCTION

The main goal of writing any program is to simply create something that works. Once a programmer is
able to achieve this task, other goals present themselves. Is this program robust? Could it require
updates if the data changes? If updates are required, is it clear where the updates are needed? The list
goes on. Creating a table applies to many if not all SAS® programmers in any field. Regardless of the
complexity of the table, a majority of the effort put into writing the program should focus on presenting the
correct numbers. While spacing, line breaks, and other formatting can be immensely important to the
final product, there is no need to over-complicate a table program when the correct numbers are just one
or two SAS procedures away.

This paper will cover various simple methods to create table shells that will allow you to focus on the
important part of a table, the numbers. These tables are created by creating the appropriate shell, pulling
the desired numbers from the data, and then merging or joining the numbers onto the shell at the end of
the program. The main engines that will be used to create these shells will be the DATALINES
statement, the SQL procedure, and the FREQ procedure. It should be noted that the purpose of this
paper is not to teach the syntax of these engines. These methods can be used by programmers of any
skill level, in any field. The examples in this paper will be pulled from the clinical trial.

THE MOTIVATION BEHIND PROGRAMMING TABLE SHELLS

When considering tables, there are two main types: static and dynamic. A static table is a table whose
structure will never change regardless of the data cut. The number of rows and columns will be the same
for each run of the table. An example of a static table is a demographic table that presents descriptive
statistics on the population of interest. If the number of subjects in the table increases, the number of
rows and columns will not increase. Instead, the subjects will just be counted into the rows and columns
that already exist. On the other hand, a dynamic table can change with each run of the table. Most of the
time the number of columns will not change, but it is very common for the number of rows to increase as
more data gets recorded throughout the study. Dynamic tables very often present event-based data,
meaning the data is only recorded when the event takes place. Take for example a table that is
supposed to display descriptive statistics for laboratory parameters. If the table is programmed at the
beginning of the study, it is likely that only a fraction of the scheduled visits will have occurred at that point
in time. However, a well-written program should not need to be updated as more visits appear in the

2

data. Using a dynamic shell for these tables is an effective way to ensure that a program written at the
beginning of the study will still work correctly by the end of the study.

One very powerful way to program any table is to start by creating a table shell. The purpose of this shell
is to create a dataset that contains the total number of sections and rows that are expected in the final
table. Once this shell is created in one dataset and the numbers of the table are stored in one or more
additional datasets, the actual numbers of the table can be merged or joined onto this table shell and your
table will be ready for the REPORT procedure. When you take the techniques from this paper and apply
them to your table programming, the main steps will be:

1. Program the table shell with the methods from this paper.

2. Program the actual numbers of the table.

3. Merge or join the numbers of the table with the table shell.

CREATING A STATIC TABLE SHELL

The first example in this paper will show how to create a static table shell. Take for example Table 1
below. This table needs to display a number of statistics for an individual parameter. Although more data
will be collected throughout the course of the study, the number of rows and columns within this table will
never change based on the data. As a result, a static table shell would be the shell of choice for creating
this table. Two methods for creating a static shell are the DATALINES statement and PROC SQL. Each
method has strengths and weaknesses that will be covered.

Table 1 needs to display multiple statistics for a single parameter.

CREATING A SHELL WITH THE DATALINES STATEMENT

The first way to create a static shell is with the DATALINES statement. While some programmers view
DATALINES as a primitive way of inputting data into SAS, it can be used as a sneaky way to create a
static shell with ease. The code below will create the shell that you will need for this table:

Table 1. Table of statistics for one parameter

3

data shell1_nortf;

 length col2 col3 $200;

 infile datalines delimiter='|';

 input sort subsort col2 $ col3 $;

 datalines;

1 | 1 | AIC = |

2 | . | Slope for: |

2 | 1 | Baseline Score |

3 | . | Covariates in the Final Model |

3 | 1 | Age (Years) |

3 | 2 | Gender |

3 | 3 | Center | AUS vs USA

3 | 4 | | CHE/DEU vs USA

3 | 5 | | GBR vs USA

;

run;

data shell1;

 set shell1_nortf;

 col2=tranwrd(col2,"Baseline","&_LineIndent1.Baseline");

 col2=tranwrd(col2,"Age","&_LineIndent1.Age");

 col2=tranwrd(col2,"Gender","&_LineIndent1.Gender");

 col2=tranwrd(col2,"Center","&_LineIndent1.Center");

run;

The final shell, work.shell1, contains two numeric variables and two character variables. The numeric

variables will not appear in the final table and have only been added for sorting purposes. It is worth
noting that the sorting of this final table can easily be accomplished with only one numeric variable. The
reason that two variables are used is because Table 1 has multiple sections that are separated by line
breaks. In the code above, the first sort variable sort differentiates the sections of the table and will

simplify the code needed to create line breaks in the final output. While sort establishes the different

sections of the table, subsort creates an additional sort within each section of the table. Again, it should

be noted that while some rows have subsort set to missing, setting it to zero would be just as effective

for the final sorting of the table.

As mentioned, using DATALINES has its strengths and weaknesses. An advantage of this method is that
it is easy to visualize the final shell as you build it. While loops can be used to build repetitive shells, this
particular table shell is short but complex so the DATALINES method is an excellent way to picture the
final shell as you build it. A disadvantage of this method is that the DATALINES statement cannot be
used within a macro. Additionally, if you are trying to include macro variables within your table shell, such
as the RTF indentation code above, they will not resolve as expected. Instead, the macro variables must
be added in later, which is why this piece of code requires a DATA step after work.shell1_nortf.

CREATING A SHELL WITH THE SQL PROCEDURE

You can also use PROC SQL in a manner similar to DATALINES to create the same table shell. This
method uses PROC SQL to create an identical table shell that again includes two numeric variables and
two character variables:

4

proc sql;

create table shell2 (sort num, subsort num, col2 char(200), col3

char(200));

 insert into shell2

 values(1,1,"AIC =", "")

 values(2,.,"Slope for:", "")

 values(2,1,"&_LineIndent1.Baseline Score", "")

 values(3,.,"Covariates in the Final Model","")

 values(3,1,"&_LineIndent1.Age (Years)", "")

 values(3,2,"&_LineIndent1.Gender", "")

 values(3,3,"&_LineIndent1.Center", "AUS vs USA")

 values(3,4,"", "CHE/DEU vs USA")

 values(3,5,"", "GBR vs USA")

 ;

quit;

Similar to the DATALINES method, PROC SQL is an excellent way to picture the final shell as you build
it. An improvement from the DATALINES method is that this piece of code can be included in a macro,
and your macro variables will resolve as expected. The main disadvantage to this method is that most
programmers are less comfortable with PROC SQL, so the syntax may be unfamiliar. However, for less
experienced SQL users who are looking to use more SQL code, this method can be a great starting point.

The two previous methods will both create the table shell found in Output 1. As mentioned earlier in this
paper, this shell will be responsible for creating the structure of the table. Once the actual statistics are
created appropriately, you can easily merge or join them onto this table shell with the sort and subsort

variables to create the final output. It should be noted that each row has a distinct combination of sort

and subsort. This is very important because if the row combinations are not distinct, the statistics will

not merge onto the table shell properly.

Output 1 shows a print of the final shell created by the previous two methods.

CREATING A DYNAMIC, DATA-DRIVEN TABLE SHELL

The following two examples will cover how to create a dynamic table shell that will not require updates
throughout the study as new data continues to grow. By nature, these dynamic shells will need to be
data-driven because unlike static shells, you do not always know how many rows you will need in the final
table.

Consider Table 2 below. It does not indicate the number of expected parameters or the number of
expected visits. In the clinical trial setting, this information can be found in other documentation which
can clarify the ambiguity. In some cases you may want to present all parameters, but only a prespecified

Output 1. Static table shell created with DATALINES or PROC SQL

5

number of visits. At other times, you may want to write a program that will present all parameters and all
visits that are found within the data.

Table 2 needs to display multiple statistics for each parameter-visit combination.

CREATING A SHELL WITH THE FREQ PROCEDURE AND A DATA STEP

One way to create a dynamic shell for this table is to use PROC FREQ paired with a DATA step. The
following code demonstrates this approach:

proc freq data=adam.advs noprint;

 tables paramcd*param / list missing out=shell3_par(drop=count percent);

run;

data shell3;

 set shell3_par;

 do i=1 to 3;

 avisitn=i;

 output;

 end;

run;

This method is a simple but elegant way to capture all parameters found within the data and then create a
prespecified number of visits for each parameter. Using PROC FREQ, all distinct parameters are output
into the dataset work.shell3_par. In the ensuing DATA step, a DO loop containing an OUTPUT

statement is used to create one row for each visit, for each parameter. The total number of rows will be
the number of parameters found by PROC FREQ multiplied by the i visits that are defined in the DO

loop.

The method above has several strengths. For one, it is very data-driven. Each time this program is run,
the table will reflect which parameters are found within the data. Another advantage is that it is very easy
to control the number of visits that are displayed. This is helpful because throughout the life-cycle of a
study, it is beneficial to be able to control the number of visits displayed in tables. With the code above, it
is a matter of updating one character to increase or decrease the number of visits displayed. Finally, the
code is very succinct and does not have many moving parts, making it simple for another programmer to
confidently update.

Table 2. Table of multiple statistics for unknown number of parameters/visits

6

CREATING A SHELL WITH THE SQL PROCEDURE AND A NATURAL JOIN

With the previous example in mind, this next method will operate similarly. However, the exception is that
this method will be completely based on the data, and the number of visits will not be explicitly defined:

proc sql;

 create table paramcds as

 select distinct(paramcd), param

 from adam.advs;

 create table avisitns as

 select distinct(avisitn)

 from adam.advs

 ;

 create table shell4 as select a.*, b.*

 from paramcds as a natural join avisitns as b

 order by a.paramcd, b.avisitn

 ;

quit;

The basic idea behind this code is to select all parameters found in the dataset, select all visits found in
the dataset, and then join them together with a NATURAL JOIN to create a row for every possible
combination of parameter and visit. This method produces almost the same results as the following:

proc freq data=adam.advs noprint;

tables paramcd*param*avisitn / list missing out=shell4(drop=count

percent);

run;

With this in mind, you may ask, ‘Instead of using PROC SQL to create two datasets and then join them
together, why not just use PROC FREQ? It is a fraction of the code.’ For many cases these 2 pieces of
code will indeed produce the same results. However, the whole point of creating table shells in general is
to create rows for the events that may not have occurred yet. If you use only PROC FREQ, it is possible
that there will be a parameter-visit combination that does not exist within the data, but it still should be
presented in the table. If this is the case for your data, using the longer section of SQL code will be the
better option.

Again, the previous two methods will create the shell displayed in Output 2. This shell contains one
record per visit, per parameter.

7

Output 2 shows a print of the final shell created by the previous two methods. Additional processing is
required to add the additional rows for statistics found in Table 2.

Looking back at Table 2, you will notice that each visit and parameter combination will need 3 rows of
statistics. This is where creativity comes into play, as there are several approaches available to turn the
shell in Output 2 into the final shell. For instance, using another DATA step, you can read in the shell and
use a DO loop combined with an OUTPUT statement (covered previously in this paper) to create three
additional rows for each parameter-visit combination. Another way to add these statistic rows would be to
create a static shell (covered in the first section of this paper) with three statistic rows, and then use a
NATURAL JOIN with work.shell4.

MAKING A STATIC SHELL DYNAMIC

The end of the last example motivates the idea that at times, you may want to begin with a static shell
and then turn it into a dynamic, data-driven shell. Take for example Table 3. If you notice, it is almost the
same as Table 1, with the exception that instead of displaying statistics for one parameter, Table 3 needs
to display the statistics for all parameters in the dataset.

Output 2. Table shell created with previous pieces of code

8

Table 3 needs to display multiple statistics for multiple parameters.

CREATING A SHELL USING A NATURAL JOIN WITH A STATIC SHELL

Conveniently, a fraction of Table 3 was already created at the beginning of this paper (see Output 1). If
you knew that n parameters need to be displayed, you could simply use a DATA step to stack
work.shell2 n times. However, the goal of creating these shells is to let the data create the shell. With

this in mind, you can combine previous techniques covered in this paper. The following code does just
that:

proc sql;

 create table paramcds as

 select distinct(paramcd)

 from adam.advs

 ;

 create table shell5 as select a.*, b.*

 from shell2 as a natural join paramcds as b

 order by b.paramcd, a.sort, a.subsort

 ;

quit;

As mentioned, the code will reference work.shell2 that was created at the beginning of this paper.

The first SQL query will create the dataset work.paramcds that contains one row for each distinct

parameter found in ADAM.ADVS. The second query will take work.shell2 and perform a NATURAL

JOIN with work.paramcds to create work.shell5. This final dataset shown in Output 3 is essentially

the same result as if you were to stack work.shell2 n times for each parameter found in ADAM.ADVS.

The key advantage here is that if new parameters show up in the dataset, future runs on the data will
create the necessary rows.

Table 3. Table of statistics for multiple parameters

9

Output 3 shows a print of the final shell created by the previous SQL join.

CONCLUSION

While programming the numbers for tables may be complicated at times, programming the actual table
structure itself never should be. With just a few techniques in your SAS toolkit, you should be able to
create almost any table structure with relative ease. These techniques include the DATALINES
statement, PROC FREQ, PROC SQL, and the DATA step. When preparing to create a table, first and
foremost you need to determine if the table structure is static or dynamic. From there, decide if your table
needs to be completely data-driven, or if certain sections will be prespecified such as the number of visits
or number of parameters. Once these two questions are answered, the examples and explanations in
this paper should help you identify exactly which method or methods you can use to create your table
shell. Using these approaches will allow for easy updates by other programmers if the table structure
needs to change in future runs. Once you have your robust table shell, you can spend the majority of
your time and energy creating the important part of your table, the numbers.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Timothy Egan
IQVIA
Timothy.Egan@IQVIA.com
https://www.linkedin.com/in/timothyegan/

Output 3. Table shell containing multiple statistics for multiple parameters

