
SESUG Paper 245-2019

Should I Wear Pants?
And Where Should I Travel in the Portuguese Expanse?

Automating Business Rules and Decision Rules Through Reusable
Decision Table Data Structures that Leverage SAS Arrays

Troy Martin Hughes
Louise Hadden, Abt Associates Inc.

ABSTRACT

Decision tables operationalize one or more contingencies and the respective actions that should be taken
when contingencies are true. Decision tables capture conditional logic in dynamic control tables rather than
hardcoded programs, facilitating maintenance and modification of the business rules and decision rules
they contain—without the necessity to modify the underlying code (that interprets and operationalizes the
decision tables). This text introduces a flexible, data-driven SAS® macro that ingests decision tables—
maintained as comma-separated values (CSV) files—into SAS to dynamically write conditional logic
statements that can subsequently be applied to SAS data sets. This metaprogramming technique relies on
SAS temporary arrays that can accommodate limitless contingency groups and contingencies of any
content. To illustrate the extreme adaptability and reusability of the software solution, several decision
tables are demonstrated, including those that separately answer the questions Should I wear pants and
Where should I travel in the Portuguese expanse? The DECISION_TABLE SAS macro is included and is
adapted from the author’s text: SAS® Data-Driven Development: From Abstract Design to Dynamic
Functionality. [1]

INTRODUCTION

The International Organization for Standardization (ISO) defines a decision table as a “table of all
contingencies that are to be considered in the description of a problem together with the action to be taken.”
[2] For example, a coworker may wash his hands after using the restroom only when the restroom has
other occupants, but when he is alone, he chooses not to wash his hands because he’s a dirty boy. In this
example, the filthy coworker has only one decision point with two contingencies—the mutually exclusive
presence or absence of coworkers. This single decision point (i.e., independent variable) drives the
dichotomous outcome (i.e., dependent variable), the decision of whether to wash or not to wash one’s
hands. The ISO defines a decision outcome as the “result of a decision (which therefore determines the
control flow alternative taken).” [2] The examples in this text demonstrate one or more mutually exclusive
decision points that prescribe a single outcome (e.g., hand washing); however, more complex decision
tables could yield multiple decision outcomes (e.g., hand washing and post-micturition hair combing).

Decision outcomes are driven by decision rules, which are the conditional logic statements that prescribe
some predetermined outcome based on dynamic inputs. ISO defines a decision rule as a “combination of
conditions (also known as causes) and actions (also known as effects) that produce a specific outcome in
decision table testing and cause‐effect graphing.” [3] In a concrete design paradigm, decision rules are
hardcoded, whereas data-driven software design extracts decision rules from code and maintains them
instead within external data structures—control tables that can be modified by stakeholders (including
nontechnical ones) when decision rules need to be altered.

The DECISION_TABLE macro demonstrated in this text can flexibly accommodate decision tables of
varying size (including both the number of decision points and the respective contingencies thereof) and
content, and its reusability is highlighted by the diverse examples in this text. The flexibility of this solution
is delivered through temporary SAS arrays (that invoke the _TEMPORARY_ option), which allow values to
be assigned dynamically to the arrays that are created. Although decision tables may be insufficient for
complex, algorithmic logic and statistical models, they are useful in simpler cases.

Decision tables are especially preferred in environments in which decision rules must be malleable and in
which individual stakeholders might maintain disparate decision rules. Thus, rather than maintaining

2

multiple versions of code (containing hardcoded conditional logic or other data models), stakeholders can
maintain one program that is fed different decision tables to effect diverse, dynamic outcomes. This data-
driven design approach also facilitates modification of decision tables by nontechnical personnel. For
example, a business analyst with no expertise in SAS software development can maintain a decision table
within an Excel spreadsheet and can alter and apply this data model whenever necessary—as well as best
decide when and where to wear pants!

SHOULD I WEAR PANTS?

In some cases, yes. At the moment while writing this text, no. This simple example introduces the concepts
of decision tables, decision rules, and decision outcomes by demonstrating some circumstances for which
pants probably should be worn. It is not intended to demonstrate all circumstances for which pants should
be worn.

The Pants decision table (pants_decision_table.xlsx) is demonstrated in Figure 1.

Figure 1. Pants Decision Table

The spreadsheet should be exported to a comma-separated values (CSV) file (pants_decision.table.csv):

Activity,,,,Action

act,,,,Action

SAS conference,sleeping,working,swimming,Action

yes,no,no,no,pants

no,yes,no,no,no pants

no,no,yes,no,pants

no,no,no,yes,no pants

Decision tables can be represented myriad ways, with the spreadsheet in Figure 1 demonstrating only one
method. However, as the decision table also represents a user-defined data structure, it is worthwhile to
define some data rules for this data structure usage. This data structure template definition increases the
ease with which decision table instances can be implemented in the future with unrelated content:

• The decision table is stored in a tabular format (e.g., Excel, CSV).

• Each row must have the same number of columns.

• Each column must have the same number of observations.

• The first row contains labels that can be optionally applied, with each label appearing in the column
of its first option; the rightmost column must be ACTION.

• The second row contains variable names for each decision point, with each name appearing in the
column of its first option; the rightmost column must be ACTION.

• The third row contains a list of contingencies (i.e., case-insensitive values) that correspond to the
decision points/variables above; the rightmost column must be ACTION.

• The fourth and subsequent rows contain case-insensitive values of YES or NO, depicting whether
the above option is active or inactive for a specific rule. As each decision point contains mutually

3

exclusive contingencies, only one YES contingency is allowed per decision points with the
remaining contingencies indicating NO.

• Data types for all cells are character.

• All column widths have a maximum number of 32 characters (which can be increased in the ARRAY
statements).

• A total number of 50 columns (across all variables and their respective options) can be processed
(which can be increased in the ARRAY statements).

Note that the rules speak only to the data structure and its format; they explicitly do not allude to how the
data are interpreted by SAS or the content (i.e., knowledge domain) of the data. This ensures that end
users or subject matter experts (SMEs) who may be maintaining the decision table are focused on entering
accurate data in the correct format, whereas developers are focused on understanding the structure so that
they can implement an appropriate solution to interpret and operationalize the decision rules (i.e., control
data) within the data structure.

The decision table in Figure 1 can be distilled to the following decision rules:

• If I am at a SAS conference, I should wear pants.

• If I am sleeping, I should not wear pants.

• If I am working, I should wear pants.

• If I am swimming, I should not wear pants.

As mentioned previously, more complex decision tables might include multiple outcomes that can be
achieved based on underlying decision rules.

The Pants decision table is ingested into a SAS data set by invoking the DECISION_TABLE macro,
included in the subsequent section. Note that a user-specified file location (&LOC) must be selected in
which the decision_table.sas program file and all decision tables should be saved:

%let loc=d:\sas\; * USER MUST CHANGE LOCATION *;

%include "&loc.decision_table.sas";

%decision_table(csv=&loc.pants_decision_table.csv);

When the Pants decision table is ingested, DECISION_TABLE dynamically creates the &DECISIONRULES
global macro variable (in which indentation has been added to improve readability):

if upcase(act)="SAS CONFERENCE" and upcase(act)^="SLEEPING" and

 upcase(act)^="WORKING" and upcase(act)^="SWIMMING" then action="pants";

else if upcase(act)^="SAS CONFERENCE" and upcase(act)="SLEEPING" and

 upcase(act)^="WORKING" and upcase(act)^="SWIMMING" then action="no pants";

else if upcase(act)^="SAS CONFERENCE" and upcase(act)^="SLEEPING" and

 upcase(act)="WORKING" and upcase(act)^="SWIMMING" then action="pants";

else if upcase(act)^="SAS CONFERENCE" and upcase(act)^="SLEEPING"

 and upcase(act)^="WORKING" and upcase(act)="SWIMMING" then action="no pants";

This conditional logic can be subsequently applied to a data set by executing the &DECISIONRULES macro
variable. For example, the Activities data set contains three observations—one that results in a “pants”
action, one in a “no pants” action (ooh la la!), and one that results in an undefined action:

data activities;

 length act $32;

 label act='Activity';

 act='sleeping';

 output;

 act='working';

 output;

 act='laughing';

 output;

run;

When a DATA step invokes the &DECISION_RULES global macro variable, the Action variable is created
based on the decision rules contained in the referenced decision table:

4

data activities_rules;

 set activities;

 length action $32;

 &decisionrules;

run;

Table 1 demonstrates the resultant Activities_rules data set that includes the Action variable.

Activity Action

sleeping no pants

working pants

laughing

Table 1. Activities_rules Data Set with Decision Rules Applied

Note that as “laughing” is not defined in the decision table, it produces no associated outcome.

DECISION_TABLE MACRO

The DECISION_TABLE macro should be saved in a user-specified folder as decision_table.sas:

%macro decision_table(csv= /* path and CSV file name */);

data _null_;

 infile "&csv" truncover end=eof;

 length line $10000 tot 8 i 8 rule $30000;

 format line $10000.;

 input line & $;

 array contlabel[50] $32 _temporary_;

 array contlist[50] $32 _temporary_;

 array vallist[50] $32 _temporary_;

 retain tot;

 retain rule '';

 * get contingency labels;

 if _n_=1 then do;

 do tot=1 to countw(line,',','m');

 contlabel[tot]=scan(line,tot,',','m');

 end;

 tot=tot-1;

 end;

 * get contingency groups/variables;

 if _n_=2 then do;

 do i=1 to tot;

 contlist[i]=scan(line,i,',','m');

 if missing(contlist[i]) then contlist[i]=contlist[i-1];

 end;

 end;

 * get contingency values;

 if _n_=3 then do;

 do i=1 to tot;

 vallist[i]=upcase(scan(line,i,',','m'));

 end;

 end;

 * get decision rules;

 if _n_>3 then do;

 do i=1 to tot;

 if i=tot then do;

 rule=strip(rule) || ' then action="' ||

 strip(scan(line,i,',')) || '";';

 end;

 else do;

 if i=1 then rule=strip(rule) || ifc(_n_=4,' if',' else if');

 else rule=strip(rule) || ' and ';

5

 rule=strip(rule) || ' upcase(' || strip(contlist[i]) || ')' ||

 ifc(upcase(scan(line,i,','))='YES','=','^=') || '"' ||

 strip(vallist[i]) || '"';

 end;

 end;

 end;

 if eof then call symputx('decisionrules',strip(rule),'g');

run;

%mend;

The DECISION_TABLE macro relies on temporary arrays (i.e., Contlabel, Contlist, Vallist) to hold the
contingency group (i.e., label or category), variable, and values. Each array can hold 50 elements, although
this number can be increased by modifying the ARRAY statements. The Pants decision table is simplistic
in that it contains only one decision point (Activity), thus it also contains only one variable (Act); there is
always a one-to-one correlation between the number of decision points and variables, as they must appear
in the same columns within the decision table spreadsheet. The Pants decision table contains four
contingencies, each of which is mutually exclusive. Thus, in this simplified data model, one cannot be both
swimming and at a SAS conference (despite the significant swimming, hot tubbing, and skinny dipping that
occurs at SAS conferences).

The Rule variable is incrementally built (and retained) as the DECISION_TABLE macro iterates across
each observation within the decision table. When the end-of-file (EOF) marker is reached, the
&DECISIONRULES global macro variable is initialized to the value of Rule, which can be used in
subsequent DATA steps to execute dynamically generated conditional logic statements. The UPCASE
functions throughout DECISION_TABLE ensure that all values within the decision table are case-
insensitive when evaluated in these logic statements.

Decision table outcomes can be duplicated across observations, thus as Figure 1 demonstrates, two
pathways lead to a “pants” outcome and two pathways lead to a “no pants” outcome. However, the
arrangement of all contingency values must be unique for each observation. For example, Figure 1
demonstrates a YES-NO-NO-NO pattern that results in a “pants” outcome, thus no other row can contain
the identical YES-NO-NO-NO pattern.

WHAT PANTS SHOULD I WEAR?

Adding a second decision point to the decision table effectively adds a second independent variable that
can be altered to add variability to outcomes. For example, the decision to wear or not to wear pants is
likely determined not only by one’s activity but also by one’s company—those are, the observers of the
pants or pantsless activities. Moreover, greater granularity in resultant actions might be achieved by
expanding possible outcomes beyond the pants-no pants dichotomy. Figure 2 refactors the Pants decision
table into the more generic Clothing decision table (clothing_decision_table.xlsx).

6

Figure 2. Updated Clothing Decision Table

The Clothing decision table now has two contingency groups representing the intersection of the
independent variables What activity am I performing and Am I alone or not? Thus, it is now possible to be
alone or with peeps at a SAS conference, although “pants” are recommended in both cases—you know,
because it’s a conference. However, the Alone variable is more discriminating for other activities. For
example, pants are recommended when working with others but only a shirt (aka Donald Ducking it) might
be recommended when working alone (presumably because a Skype session only exposes the top half of
your business to coworkers). Just don’t stand up in the middle of that remote meeting to go grab a cup of
coffee or a snack!

The Clothing spreadsheet should be exported to a CSV file (clothing_decision_table.csv):

Activity,,,,Alone,,Action

act,,,,alone,,Action

SAS conference,sleeping,working,swimming,alone,with peeps,Action

yes,no,no,no,yes,no,pants

no,yes,no,no,yes,no,boxers

no,no,yes,no,yes,no,naked

no,no,no,yes,yes,no,Donald Duck

yes,no,no,no,no,yes,pants

no,yes,no,no,no,yes,pajamas

no,no,yes,no,no,yes,pants

no,no,no,yes,no,yes,board shorts

With no modification to the DECISION_TABLE macro (and thus promoting code stability and integrity,
hallmarks of software quality), the following code can be run to build the &DECISIONRULES global macro
variable:

%let loc=d:\sas\; * USER MUST CHANGE LOCATION *;

%include "&loc.decision_table.sas";

%decision_table(csv=&loc.clothing_decision_table.csv);

The &DECISIONRULES macro variable is initialized to the following code (now displayed without
indentation or carriage returns):

if upcase(act)="SAS CONFERENCE" and upcase(act)^="SLEEPING" and

upcase(act)^="WORKING" and upcase(act)^="SWIMMING" and upcase(alone)="ALONE" and

upcase(alone)^="WITH PEEPS" then action="pants"; else if upcase(act)^="SAS

CONFERENCE" and upcase(act)="SLEEPING" and upcase(act)^="WORKING" and

upcase(act)^="SWIMMING" and upcase(alone)="ALONE" and upcase(alone)^="WITH PEEPS"

then action="boxers"; else if upcase(act)^="SAS CONFERENCE" and

upcase(act)^="SLEEPING" and upcase(act)="WORKING" and upcase(act)^="SWIMMING" and

upcase(alone)="ALONE" and upcase(alone)^="WITH PEEPS" then action="naked"; else if

upcase(act)^="SAS CONFERENCE" and upcase(act)^="SLEEPING" and

upcase(act)^="WORKING" and upcase(act)="SWIMMING" and upcase(alone)="ALONE" and

upcase(alone)^="WITH PEEPS" then action="Donald Duck"; else if upcase(act)="SAS

CONFERENCE" and upcase(act)^="SLEEPING" and upcase(act)^="WORKING" and

upcase(act)^="SWIMMING" and upcase(alone)^="ALONE" and upcase(alone)="WITH PEEPS"

then action="pants"; else if upcase(act)^="SAS CONFERENCE" and

upcase(act)="SLEEPING" and upcase(act)^="WORKING" and upcase(act)^="SWIMMING" and

upcase(alone)^="ALONE" and upcase(alone)="WITH PEEPS" then action="pajamas"; else

if upcase(act)^="SAS CONFERENCE" and upcase(act)^="SLEEPING" and

upcase(act)="WORKING" and upcase(act)^="SWIMMING" and upcase(alone)^="ALONE" and

upcase(alone)="WITH PEEPS" then action="pants"; else if upcase(act)^="SAS

CONFERENCE" and upcase(act)^="SLEEPING" and upcase(act)^="WORKING" and

upcase(act)="SWIMMING" and upcase(alone)^="ALONE" and upcase(alone)="WITH PEEPS"

then action="board shorts";

As &DECISIONRULES now relies on both the Act and Alone variables, these two variables would need to
be found in the data set to which these rules would be applied (not demonstrated). Note that with a relatively
simple decision table, the &DECISIONRULES macro variable is already 1,602 characters in length:

%put %length(&decisionrules);

7

1602

Were the decision table complexity to continue to increase, including the number of decision points and/or
contingency values, the length of &DECISIONRULES would continue to increase—and at some point could
surpass the 30,000 character limit established in the LENGTH statement within the DECISION_TABLE
macro. A more robust version of the macro (not demonstrated) could evaluate macro variable length to
ensure it was less than 30,000 characters, and perform exception handling in the event that the length
exceeded this threshold.

The genius and power of DECISION_TABLE is its ability to flex to incorporate different or additional
contingency groups and values without any modification to the underlying code. This data-driven design
ensures that unrelated decision rules can be operationalized by leveraging the identical decision table data
structure. By utilizing this template (and the data rules prescribed on Page 2), SAS practitioners can reuse
not only the DECISION_TABLE macro but also the underlying data structure on which it relies. This
reusability—of both the macro and the decision table data structure—is demonstrated in the following
section in which unrelated decisions rules are applied to unrelated data.

WHERE SHOULD I TRAVEL IN THE PORTUGUESE EXPANSE?

Portugal is a sublime vacation destination, with sights and experiences for every type of traveler. Making a
decision as to where to spend your time is a pleasantly difficult endeavor. Enter the decision table! Decision
tables allow one to identify and rank the delicious, perhaps licentious choices involved, and formalize the
choices involved in booking travel. The decision of where to travel in the Portuguese expanse provided the
perfect opportunity to test DECISION_TABLE’s vaunted ability to incorporate new contingency groups and
values.

The first task is to define desired activities – in the case of vacation planning, what do you want to do? Is
there a particular museum, restaurant, or scenic view that you want to take in? Record those choices in
your planning spreadsheet.

IN THE BEGINNING

For my initial attempt, I limited my subordinate actions to Livraria Lello (the divine bookstore that J.K.
Rowling spent time in while writing Harry Potter and the Sorcerer’s Stone), Morroccan Castles (a la
PARQUE E PALÁCIO NACIONAL DA PENA), volcanic craters, Fado (a cross between folk music and
opera), and geocaching. As you might guess, each of these actions is most easily accessed in specific
destinations in Portugal.

Figure 3. Initial Portuguese Expanse Decision Table

The PortugueseExpants spreadsheet should be exported to a CSV file (portugueseexpants0.csv):

 Activity,,,,,Action

 act ,,,,,Action

 Livraria Lello,Moroccan Castles,Volcanic Craters,Fado,Geocaching,Action

 yes,no,no,no,no,Porto

 no,yes,no,no,no,Sintra

8

 no,no,yes,no,no,Azores

 no,no,no,yes,no,Lisboa

 no,no,no,no,Yes,Easternmost point in Europe

The entire decision-making process takes the CSV file above into memory and constructs a giant macro
variable to contain the entire decision-making process. A data set containing each of the subordinate
actions in rows is constructed, the macro is invoked, and decisions are magically made. At the last minute
I added surfing to the activities_rules0 data set shown in Table 2, but since it was not in the list of
subordinate actions, no decision is returned, and indeed, since surfing can be done at two of the decisions
/ destinations, it was out of scope for the structure of the macro.

Action Decision

Livraria Lello Porto

Moroccan Castles Sintra

Volcanic Craters Azores

Fado Lisboa

Geocaching Easternmost point in Europe

Surfing

Table 2. Activities_rules0 Data Set with Decision Rules Applied

SECONDS

Vacation plans are rarely made in a vacuum, just as the decision to wear pants (or not). An important aspect
of a choice of destination is whether or not you will be accompanied (and whether or not you’ll be wearing
pants at the destination). The next step was to add a second decision point to both the input data and the
decision file construction process. Surfing sounded pretty good to me, so I added that as a desired action,
and added a second decision point, alone or with peeps.

Figure 4. Second Portuguese Expanse Decision Table

 The PortugueseExpants1 spreadsheet should be exported to a CSV file (portugueseexpants1.csv):

 Activity,,,,,,Alone,,Action

 act ,,,,,,Alone,,Action

 Livraria Lello,Moroccan Castles,Volcanic Craters,

 Fado,Geocaching,Surfing,alone,with peeps,Action

 yes,no,no,no,no,no,no,yes,Porto

 no,yes,no,no,no,no,yes,no,Sintra

 no,no,yes,no,no,no,no,yes,Azores

 no,no,no,yes,no,no,no,yes,Lisboa

 no,no,no,no,Yes,Yes,no,yes,Easternmost point in Europe

9

The macro variable resolves to this:

SYMBOLGEN: Macro variable DECISIONRULES resolves to if upcase(act)="LIVRARIA

 LELLO" and upcase(act)^="MOROCCAN CASTLES" and

 upcase(act)^="VOLCANIC CRATERS" and upcase(act)^="FADO" and

 upcase(act)^="GEOCACHING" and upcase(act)^="SURFING" and

 upcase(Alone)^="ALONE" and upcase(Alone)="WITH PEEPS" then

 action="Porto"; else if upcase(act)^="LIVRARIA LELLO" and

 upcase(act)="MOROCCAN CASTLES" and upcase(act)^="VOLCANIC CRATERS"

 and upcase(act)^="FADO" and upcase(act)^="GEOCACHING" and

 upcase(act)^="SURFING" and upcase(Alone)="ALONE" and

 upcase(Alone)^="WITH PEEPS" then action="Sintra"; else if

 upcase(act)^="LIVRARIA LELLO" and upcase(act)^="MOROCCAN CASTLES"

 and upcase(act)="VOLCANIC CRATERS" and upcase(act)^="FADO" and

 upcase(act)^="GEOCACHING" and upcase(act)^="SURFING" and

 upcase(Alone)^="ALONE" and upcase(Alone)="WITH PEEPS" then

 action="Azores"; else if upcase(act)^="LIVRARIA LELLO" and

 upcase(act)^="MOROCCAN CASTLES" and upcase(act)^="VOLCANIC

 CRATERS" and upcase(act)="FADO" and upcase(act)^="GEOCACHING" and

 upcase(act)^="SURFING" and upcase(Alone)^="ALONE" and

 upcase(Alone)="WITH PEEPS" then action="Lisboa"; else if

 upcase(act)^="LIVRARIA LELLO" and upcase(act)^="MOROCCAN CASTLES"

 and upcase(act)^="VOLCANIC CRATERS" and upcase(act)^="FADO" and

 upcase(act)="GEOCACHING" and upcase(act)="SURFING" and

 upcase(Alone)^="ALONE" and upcase(Alone)="WITH PEEPS" then

 action="Easternmost point in Europe";

Activity
Alone or With
Peeps Decision

Livraria Lello With Peeps Porto

Moroccan Castles Alone Sintra

Volcanic Craters With Peeps Azores

Fado With Peeps Lisboa

Geocaching With Peeps 

Surfing Alone 

Table 3. Activities_rules1 Data Set with Decision Rules Applied

I didn’t follow the mutually exclusive rules of the DECISION_TREE macro. This time, surfing still doesn’t
get a decision AND geocaching doesn’t get a decision, either – so going to the easternmost point in Europe
definitely loses out, which is a shame. The macro gets that you can’t do two activities at the same time in
the same place with peeps and alone – until we tell it so.

THIRDS

For the third round, I corrected the user input error and added a decision line for both activities in the
easternmost point in Europe with similar characteristics. The single change allows all decisions to resolve,
and is depicted in Figure 5.

10

Figure 5. Third Portuguese Expanse Decision Table

The PortugueseExpants2 spreadsheet should be exported to a CSV file (portugueseexpants2.csv):

 Activity,,,,,,Alone,,Action

 act ,,,,,,Alone,,Action

 Livraria Lello,Moroccan Castles,Volcanic Craters,

 Fado,Geocaching,Surfing,alone,with peeps,Action

 yes,no,no,no,no,no,no,yes,Porto

 no,yes,no,no,no,no,yes,no,Sintra

 no,no,yes,no,no,no,no,yes,Azores

 no,no,no,yes,no,no,no,yes,Lisboa

 no,no,no,no,Yes,no,no,yes,Easternmost point in Europe

 no,no,no,no,no,Yes,no,yes,Easternmost point in Europe

Choices have been made for all of my activities, alone or with peeps. The fact that I can accomplish TWO
goals in the same destination is pretty tempting.

Activity
Alone or
With Peeps Decision

Livraria Lello With Peeps Porto

Moroccan Castles Alone Sintra

Volcanic Craters With Peeps Azores

Fado With Peeps Lisboa

Geocaching With Peeps Easternmost point in Europe

Surfing With Peeps Easternmost point in Europe

Table 4. Activities_rules2 Data Set with Decision Rules Applied

For the fourth and final round, I decided I really couldn’t live without more than one activity in most
destinations, so I added a third decision point to the program. The change follows the rule of mutual
exclusivity for both activities in the easternmost point in Europe with similar characteristics. The single
change allows all decisions to resolve, with the original five lines for the five destinations.

11

Figure 6. Fourth Portuguese Expanse Decision Table

The PortugueseExpants4 spreadsheet should be exported to a CSV file (portugueseexpants4.csv):

 Activity,,,,,Alone,,Addons,,,,Action

 act ,,,,,Alone,,Addons,,,,Action

 Livraria Lello,Moroccan Castles,Volcanic Craters,Fado,Geocaching,alone,with

 peeps,Whale and Dolphin Watching,Surfing,Roman Baths,Sea Otters,Action

 yes,no,no,no,no,no,yes,no,no,yes,no,Porto

 no,yes,no,no,no,yes,no,no,no,no,no,Sintra

 no,no,yes,no,no,no,yes,yes,no,no,no,Azores

 no,no,no,yes,no,no,yes,no,no,no,yes,Lisboa

 no,no,no,no,Yes,no,yes,no,yes,no,no,Easternmost point in Europe

The “Addons” decision point allows more options per choice or destination, as long the rule of mutual
exclusivity is followed: for example, you can’t be both alone and with peeps in the same destination. The
code to run the modified decision tree now includes an additional decision point (addons), but no
modifications (to the underlying code) were required to run DECISION_TREE. The perfect combinations of
geocaching and surfing; Livraria Lello and roman baths; Fado and sea otters, and volcanic craters and
whale and dolphin watching have been achieved.

%let loc=g:\pants\; * USER MUST CHANGE LOCATION *;

%include "&loc.decision_table.sas";

%decision_table(csv=&loc.PortugueseExpants4.csv);

data activities4;

 length act alone addons $32;

 label act='Activity' alone='Alone or With Peeps' addons='Additional Activities';

 act='Livraria Lello'; alone='With Peeps'; addons='Roman Baths';

 output;

 act='Moroccan Castles'; alone='Alone'; addons='';

 output;

 act='Volcanic Craters'; alone='With Peeps'; addons='Whale and Dolphin Watching';

 output;

 act='Fado'; alone='With Peeps'; addons='Sea Otters';

 output;

 act='Geocaching'; alone='With Peeps'; addons='Surfing';

 output;

run;

data activities_rules4;

 length act alone action $32;

 set activities4;

 label action='Decision';

 &decisionrules;

run;

The macro variable has increased in length due to the additional decision points, and resolves to this:

SYMBOLGEN: Macro variable DECISIONRULES resolves to:

12

if upcase(act)="LIVRARIA LELLO" and upcase(act)^="MOROCCAN CASTLES" and

upcase(act)^="VOLCANIC CRATERS" and upcase(act)^="FADO" and

upcase(act)^="GEOCACHING" and upcase(Alone)^="ALONE" and

upcase(Alone)="WITH PEEPS" and upcase(Addons)^="WHALE AND DOLPHIN

WATCHING" and upcase(Addons)^="SURFING" and upcase(Addons)="ROMAN

BATHS" and upcase(Addons)^="SEA OTTERS" then action="Porto"; else

if upcase(act)^="LIVRARIA LELLO" and upcase(act)="MOROCCAN

CASTLES" and upcase(act)^="VOLCANIC CRATERS" and

upcase(act)^="FADO" and upcase(act)^="GEOCACHING" and

upcase(Alone)="ALONE" and upcase(Alone)^="WITH PEEPS" and

upcase(Addons)^="WHALE AND DOLPHIN WATCHING" and

upcase(Addons)^="SURFING" and upcase(Addons)^="ROMAN BATHS" and

upcase(Addons)^="SEA OTTERS" then action="Sintra"; else if

upcase(act)^="LIVRARIA LELLO" and upcase(act)^="MOROCCAN CASTLES"

and upcase(act)="VOLCANIC CRATERS" and upcase(act)^="FADO" and

upcase(act)^="GEOCACHING" and upcase(Alone)^="ALONE" and

upcase(Alone)="WITH PEEPS" and upcase(Addons)="WHALE AND DOLPHIN

WATCHING" and upcase(Addons)^="SURFING" and upcase(Addons)^="ROMAN

BATHS" and upcase(Addons)^="SEA OTTERS" then action="Azores"; else

if upcase(act)^="LIVRARIA LELLO" and upcase(act)^="MOROCCAN

CASTLES" and upcase(act)^="VOLCANIC CRATERS" and

upcase(act)="FADO" and upcase(act)^="GEOCACHING" and

upcase(Alone)^="ALONE" and upcase(Alone)="WITH PEEPS" and

upcase(Addons)^="WHALE AND DOLPHIN WATCHING" and

upcase(Addons)^="SURFING" and upcase(Addons)^="ROMAN BATHS" and

upcase(Addons)="SEA OTTERS" then action="Lisboa"; else if

upcase(act)^="LIVRARIA LELLO" and upcase(act)^="MOROCCAN CASTLES"

and upcase(act)^="VOLCANIC CRATERS" and upcase(act)^="FADO" and

upcase(act)="GEOCACHING" and upcase(Alone)^="ALONE" and

upcase(Alone)="WITH PEEPS" and upcase(Addons)^="WHALE AND DOLPHIN

WATCHING" and upcase(Addons)="SURFING" and upcase(Addons)^="ROMAN

BATHS" and upcase(Addons)^="SEA OTTERS" then action="Easternmost

point in Europe";

Activity

Alone or
With
Peeps Decision Additional Activities

Livraria Lello With
Peeps

Porto Roman Baths

Moroccan
Castles

Alone Sintra

Volcanic Craters With
Peeps

Azores Whale and Dolphin
Watching

Fado With
Peeps

Lisboa Sea Otters

Geocaching With
Peeps

Easternmost point in
Europe

Surfing

Table 5. Activities_rules4 Data Set with Decision Rules Applied

CONCLUSION

Whether deciding to wear pants or where to travel in the Portuguese expanse, decision tables provide a
method to capture decision rules or business rules, including their dynamic outcomes or actions. Although
conditional logic and other hardcoded methods exist to achieve identical functionality, decision tables
represent a malleable, data-driven design solution that facilitates the reusability of not only decision table
data structures but also the underlying code that interprets these control data. This text introduced

13

DECISION_TABLE, a flexible SAS macro that can interpret and operationalize decision tables of varying
size and content.

REFERENCES

[1] T. M. Hughes, SAS(r) Data-Driven Development: From Abstract Design to Dynamic Functionality, San
Diego, California: CreateSpace, 2019.

[2] Information Processing--Specification of single-hit decision tables, vol. ISO 5806, Geneva, Switzerland:
International Organization for Standardization (ISO), 1984.

[3] Software and systems engineering--Software testing--Part 4: Test techniques., Vols. ISO/IEC/IEEE
29119-4, Geneva: International Organization for Standardization and International Electrotechnical
Commission, 2015.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

Name: Louise S. Hadden
E-mail: louise_hadden@abtasssoc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

