SESUG Paper 214-2019

When fuzzy matching doesn’t work: using the CONTAINS and JOIN
functions through SAS EG to find foreign words in text strings

Arthur Laciak, U.S. Consumer Product Safety Commission

ABSTRACT

I have found that fuzzy matching functions in SAS, such as SOUNDEXand SPEDIS, are not effective in
matching foreign words, especially Chinese words. When transliterated into the Latin alphabet, too many

syllables are similarly spelled that fuzzy matching is ineffective, even with strict parameters. Many
Chinese words are unintentionally matched, resulting in more complications.

This paper explores a work-around approach, using the CONTAINS and JOIN functions in SAS EG
through PROC SQL to search for keywords from a reference table in text strings of a given data set. In
this procedure, each text string is compared against keywords and matched keywords are displayed in a
new column, resulting in clean data for further analysis. The example given in this paper matches
Chinese addresses written in a text string to Chinese cities and provinces.

INTRODUCTION

Fuzzy matching functions are critical tools when trying to match unstructured text data, especially given
misspellings due to human error. However, through my experience, | found that fuzzy matching is
ineffective with Chinese. Although Chinese characters are transliterated into the Latin alphabet, fuzzy
matching results in too many false matches. In particular, Soundex was developed to match similar-
sounding English surnames, so the function does not factor Chinese phonetics (Sloan and Laffler, 2018).

Take for example the city Nanjing. Its SOUNDEX code is N5252; the same for Nanchang and Nanchong.
Consider also the city Quanzhou. When using COMPLEYV, it has a Levenshtein Edit Distance of less than

three with Guangzhou, Taizhou, Suzhou, and many other cities.! Using SPEDIS and COMPGED has
similar results.

In this paper, | present an alternative approach that first involves creating a reference table and then
using the CONTAINS and JOIN functions in PROC SQL to search for the Chinese names in text strings of

a given data set. | will also show how to use SAS EG to query results. Although my example uses
Chinese city names, this approach can be applied to different languages.?

CREATING A REFERENCE TABLE

The SAS code, which is presented in the next section, uses the JOIN function to merge a table containing
text strings (in this case, Chinese addresses) with a reference table containing a list of keywords (in this
case, Chinese cities). The end result is a dataset with added columns of matched keywords. However,
the first step is to create a reference table and to understand postal address hierarchy in China.

China has three lewvels of cities — in ascending order, county-level, prefectural-level, and provincial-level.
Additionally, there are two administrative regions, Hong Kong and Macau.® When creating my reference
table in Excel, | created a separate table for county-level and prefectural-level cities, even though
prefecture-level cities are made up of multiple county-level cities. This is because | found, through
experience, that an address listing a county-level city may not always have a prefecture-level city listed. |

! The Levenshtein Edit Distance is a count of “the number of single character deletions, insertions, or substitutions
required to transform one string into [another].” (Moler, 2017).

2 The sample Chinese addresses used in this paper w ere dow nloaded from the Violations page of the U.S. Consumer
Product Safety Commission’s public w ebsite, found at: https://cpsc.gov/Recalls/violations. The addresses are of firms
that w ere found to be in violation of a mandatory consumer product standard.

3 Alist of Chinese cities can be easily found on Wikipedia at: https://en.w ikipedia.org/w iki/List of cities in China.

https://cpsc.gov/Recalls/violations
https://en.wikipedia.org/wiki/List_of_cities_in_China

also created an additional table containing only the provinces. Since | will run my SAS code with each of
the three reference tables, | will reduce the number of non-matches. In the end, if | am unable to match
an address to a city, | will at least attempt to match it to a province, which will still allow for some form of
analysis afterwards.

For both of the city reference tables, | created four columns: City_Ref, Prefecture_Ref, Province_Ref, and
Country_Ref, as shown in Display 1 below. For the prefecture-level cities reference table, | repeated their
name in both of the first two columns for the ease of appending tables later. | did the same for provincial-
level cities (not shown in code), such as Beijing, where | repeated the name across the first three
columns. Additionally, due to the special nature of Hong Kong, | listed it as a province and country and its
subdivisions, such as Kowloon, as a city and prefecture.

County-Level Cities

A B E D
1 |City_Ref Prefecture_Ref Province_Ref Country_Ref
2 |AKSU AKSU XINJIANG CHINA
3 |ALASHANKOU BORTALA XINJIANG CHINA
4 ALTAY ALTAY XINJIANG CHINA
5 |ANDA SUIHUA HEILONGJIANG CHINA
6 ANGUO BAODING HEBEI CHINA
7 |ANLU XIAOGAN HUBEI CHINA
& ANNING KUNMING YUNMAN CHINA
9 |ANQIU WEIFANG SHANDOMG CHINA
10 |ARTUX KIZILSU XINJIANG CHINA Prefecture-Level Cities
11 |ARXAN A B & D
12 BARKAM 1 |City Ref Prefecture_Ref Province Ref Country_Ref
13 |[BAZHOU 2 |ANKANG AMNKANG SHAANXI CHINA
14 |BEIAN 3 ANQING AMQING ANHUI CHINA
15 |BENING 4 ANSHAN AMSHAN LIAQNING CHINA
16 |BEILIU 5 |ANSHUN ANSHUN GUIZHOU CHINA
17 |BEIPIAD 6 ANYAMG AMNYANG HEMAN CHINA Provinces Only
18 |BEIZHEN 7 |BAICHENG BAICHENG JILIN A B
19 |BINZHOU & |BAISE BAISE GUANGXI 1 |Province_Ref Country_Ref
20 |BOLE 9 |BAISHAN BAISHAN JILIN 2 |ANHUI CHINA
21 |BOTOU 10 |BAIYIN BAIYIN GANSU 3 |BEUING CHINA
22 |CENXI 11 [BAODIMNG BAODING HEBEI 4 |CHONGQING CHIMNA
23 |[CHANGGE 12 |BAOJ BAOH SHAANXI 5 |FUJIAN CHINA
24 [CHANGII 13 |BAOSHAN BAOSHAN YUNMAN 6 |GANSU CHINA
25 |CHANGNING 14 |BAOTOU BAOTOU INNER MONGOLIA 7 |GUANGDONG CHIMNA

Display 1. Reference Tables

SAS CODE

The SQL procedure for merging the tables is rather short, as shown below. In this example, | am merging

my dataset, WORK.ADDRESS_LIST, with one reference table, WORK.COUNTY _CITIES, to create
WORK.MATCHED_COUNTY_CITIES.

PROC SQL;
CREATE TABLE WORK.MATCHED_ COUNTY_CITIES AS
SELECT t1.FIRM NAME,
t1.FIRM ADDRESS,
t2.City Ref,
t2.Prefecture Ref,
t2.Province Ref,
t2_.Country Ref,
(COUNT(*)) AS Count
FROM WORK.ADDRESS LIST t1
LEFT JOIN WORK.COUNTY_CITIES t2 ON

(compress(tranwrd(tl.FIRM ADDRESS,","," '),,"P') CONTAINS
cat(® ",trim(t2.City_Ref)," ™))
GROUP BY t1.FIRM NAME
ORDER BY t1.FIRM_NAME;
QUIT;

The critical element of this PROC SOL code is the LEFT JOIN statement. In this step, the reference table
is being joined to the address list table, using the CONTAINS function. This function searches the
WORK.ADDRESS LIST data table line-by-line for each city in the reference table. Whenever there is a
positive match, then the city, prefecture, province, and country reference variables are ioined to that
address. Acknowledging that there may be multiple matches per address, the Count variable is added.
Alona with the GROUP BY statement, the variable Count lists the number of times the FIRM NAME
variable appears. When the count is areater than 1, then that means there were multiple matches for a
single address. Those results can then be filtered out.

The TRANWRD, COMPRESS, TRIM, and CAT functions are used to clean the data before joining the
tables and are optional:

¢ TRANWRD renlaces all commas with spaces. This is useful in cases when a comma was used
as a delimiter instead of a space.

e COMPRESS with the “P” option removes all punctuation, because some city and province names
have apostrophes.

¢ TRIM remowves anv leadina or trailing blanks. This is useful to ensure that there are no hidden
blanks in the reference tables.

e CAT adds aleadina and trailina blank. This seems contradictory with the TRIM function, but if the
reference data is not perfectly clean, then there can be many non-matches due to a hidden blank.
These two functions toaether ensure that only the reference city (or province) is matched in its
entiretv to a citv name in the address and not to a portion of a name (i.e., prevents a city such as
Jian from being matched with Zhejiang).

The output results in seven columns, with the last one being the Count column, as shown in the display
below.

/i FIRM_NAME |/, FIRM_ADDRESS /A City_Ref |, "' | 4 Province Ref /A Country Ref (@) Count
[R[=0NEKY; AMA_] 1101 ROOM 89 BUILDING DALANG 9 SHENZHEN, GUANGDONG CN, 518001
2 | ASHERANGEL. 6/F BLD ZONE A INTERNET PARK, XI XIANG BADAN, SHENZHEN, GUAN
3 | AURIENT INT.. ROOM 1-3, 6/F WELL TECH CENTRE KOWLOON, HONG KONG, KOWLOON ~ KOWLOON — HONGKONG HONG KONG
4 | AVANA DIGIT. ROOM B,15FL, 23-25A GOLD MULLE TSIM SHATSUI, HONG KONG
5 | BAIHUMIA/ A NAN TLAN DA SHA S DONG 10 CENG GUANGDONG, CN, 518000
6 | BADHULU WO. FLOOR 3. EAST BUILDING 7.LLJIN SHENZHEN. GUANGDONG . CN. 5181
7 | BELUCE, LIEN. ROOM 201-1, BLOCKA, NO.731, D YIWU CITY, ZHEJIANG PROVI, 322 YU JINHUA ZHEJIANG CHINA
B | BROTHERFLL. UNIT 047 BRAIHJY vIAY TOWER NO HONG KONG, FN,
3 | COZZYLFE SUZHOU RUICHENG HE SHIYE YO JIANGSU, CN, 215021
10 | CREATIVESTO SHANGDONG QU HUAFU B DONG D402 SHENZHEN, GUANGDONG 518104 CHI
11 | DIAMOND JUP.. 32 HOLLYWOOD ROAD CENTRAL CENTRAL, HONG KONG
12 | DOLPHINGFISH SANMING, FLJIAN CHINA, 385101
13 | DWAYNE JEF.. 151 GLOUCESTER RD WANCHAI HONG KONG, FN 338077
14 | EC2TOY #12, 24 XIANG, JISHANG XIA JIE GUANGZHOU, GUANGDONG, CN, 5106
15 | ETENG TECH.. RM.15C LOCKHART CRT. 301-307 WANCHAI WANCHAI 0
16 | EWORLDHOM... RM1505 15FL HING YIP COM CENTRAL HONG KONG
17 | FARRAG HOL. 301-307 LICKHART RD WAN CHAI FN
18 | FLYING SUN L. RM 1308 18/F TUNG CHE COMM CTR CENTRAL, HK, 0852
18 | FUZHOU HUA. ROOM 201,171 - 817 NORTH ROAD FUZHOU, CHINA
20 | FUZHOU YOU.. FUZHOU CHINA (MAINLAND). FUZHOU CHINA (MAINLAND).

Display 2. Output of PROC SQL Code

USING SAS ENTERPRISE GUIDE TO QUERY RESULTS

To examine the output at each step, | use SAS Enterprise Guide to query the results. In the previous
section, | only matched the address list with the county lewel cities, so | would have to repeat the same

PROC SQL code with the prefecture level cities and province, if no cities are matched. Therefore,
between each step, | need to query the output and remove any matched cities.

The figure below displays the process flow taken in SAS EG to achieve my final output of matched
Chinese cities. Since I run my PROC SQL sequence three times (for county lewel cities, prefecture level
cities, and provinces), | query the results for matches and non-matches three times. | only apply the
PROC SQL sequence a second or third time to the non-matched output of the previous query. Once |
exhaust all reference tables, | append all of the matched outputs into one dataset. (Note — you can link
tables to any SAS program, by right clicking the desired table and selecting “Link ‘table name’ to....” This
will ensure that the project runs in order.)

& H [o]
CDUNTYC\TY MATCHED_CO! Query for MATCHED_CIT Append Table FINAL_MATCH
IATCH UNTY_ CITIES Matches IES_1
£ -~ & i
Non Matches NDNM-’«TCHED’ PREFECTURE MATCHED_P GQuery for MATCHED_CIT
_CITIESA CITY MATCH EFECTURE_CI Maiches IES 2
TIES
H——E—8- i
Non Matches NDNM{'«TC’HED PROVINCE MATCHED_PI Query For MATCHED_CI
_-ITIES_2 MATCH OVINCES Matches IES 3
-

Non Maiches NON_MATCHE
D_CITIES 3

Display 3. SAS EG Process Flow
QUERYING FOR MATCHES AND NON-MATCHES

After each PROC SQL sequence, the results are queried for matches and non-matches, using the
COUNT variable. Each query for matched addresses is identical. Using Query Builder, | filter the PROC
SQL output, where t1.Count = 1 AND t1.City_Ref NOT IS MISSING. The first filter identifies the
addresses that have at most one matched city; and the second filter identifies the addresses that actually
have a matched city. The AND statement ensures that both criteria are met. These steps are repeated for
prefecture-level city and province matches. The output of each query will display the original firm name
and address and the city, prefecture, province, and country reference.

iy Quiery for Matches for SASApp: WORK.MATCHED COUNTY_CITIES

Query name: |O|.|eryfor Matches COutput name: |WOHI{.MATCH ED_CITIES_1 Change

E Computed Columns @ Prompt Manager ﬂpreview E&Tools ~ | [options ~

P Add Tables X Delete 2 JoinTables | Select Data
B]E_a t1{ MATCHED_COUNTY_CITIES)

Fiter Data | Sort Data |

X |- e L

@ FIRM_NAME Column Name | Source Column | Details
/b, FIRM_ADDRESS B FIRM_NAME (FIRM NAME) t1.FIRM_MAME
@ City_Ref £ FIRM_ADDRESS (FIRM ADDRESS) t1.FIRM_ADDRESS
-y Prefecture_Ref £ Cty_Ref t1.City_Ref
; @ Province_Ref @Prefedure_Ref t1.Prefecturs_Ref
@ Courtry_Ref @ Province_Ref t1.Province_Ref
@ Count £ Courtry_Ref 1 Courtry_Ref |
Select Data Fiter Dats | Sort Data |
Filter the raw data | Operator | il
= @ Where 2
1 Count = 1 AND ;l
P 1 City_Ref NOT IS MISSING ﬁl

Display 4. Query for Matches

The query for non-matched addresses is very similar. Instead, the query filters for t1.City Ref IS
MISSING OR t1.Count NOT = 1. The first filter identifies any address that does not have a matched city
and the second filter identifies any address that has multiple matches. This way, any addresses with
multiple matches can be removed from the matched city output, which will eliminate any duplication in the
final dataset. The OR statement only requires that one criterion is met. Lastly, only the original firm name

and firm address needs to be selected for this query, so the original data can be reused in the next
iteration of the PROC SQL sequence. It is important to check “Select distinct rows only,” so no duplicative
rows are in the output.

iz Non Matches for SASApp:WORK.MATCHED COUNTY_CITIES

Change... |

Query name: INon Matches Output name: IWORK. NONMATCHED_CITIES_1

ﬁ Computed Columns @ Prompt Manager E&Preview ﬁ%Tools - @ Cptions =

P4 Add Tables X Delete iy Join Tables | Select Data | Fitter Data | Sort Data |
-Eid t1(MATCHED_COUNTY_CITIES |
2 Eaéﬁf FIRM N.ﬂll’\"I_E o) Column Name | Source Column | Details &
Zb FIRM_ADDRESS A\ FIRM_NAME (FIRM NAME) t1.FIRM_NAME
2 Giy_Fet /A FIRM_ADDRESS (FIRM ADDRESS) t1.FIRM_ADDRESS ﬂl
- Prefecture_Ref il
..... % Emvriltnceﬁlzfef Select Data Fitter Data | Sort Data |
oo ourtry._|
figd) Count Fiter the raw data | Operator | ¥ |
=5 Where »
TP 1 City_Ref IS MISSING OR _|
T t1.Court NOT = 1 ﬁ}l

Display 5. Query for Non-Matches

The final step is to append all of the outputs together. Using the Append Table task, select the three
matched addresses output tables from each query and the non-matched addresses output table from the
final query to create one final output table. Now the final dataset contains the original address list with
reference cities and provinces attached. The unstructured text data is now matched with structure text
data that can be used for future analysis.

CONCLUSION

When it comes to matching Chinese words in SAS, fuzzy matching functions, such as SOUNDEXand
COMPLEV, are ineffective. The PROC SQL code and SAS EG procedure presented in this paper is a
work-around approach that can be used for other languages as well. In fact, it can also be used to search
for a list of keywords in English in a text string given a reference table. The end result is a dataset of
usable data for analysis.

REFERENCES

Moler, Cleve. August 14, 2017. “Levenshtein Edit Distance Between Strings.” Accessed September 5,
2019. https://blogs. mathworks.com/cleve/2017/08/14/levenshtein-edit-distance-between-strings/.

Sloan, Stephen and Kirk Paul Lafler. 2018. “Fuzzy Matching Programming Techniques Using SAS®
Software.” Proceedings of the Southeast SAS User Group 2018 Conference, Paper 143-2018.

U.S. Consumer Product Safety Commission. “Violations.” Accessed July 17, 2019. Available at
https://cpsc.gov/Recalls/violations.

Wikipedia. “List of cities in China.” Accessed July 17, 2019. Available at
https://en.wikipedia.org/wiki/List of cities in_China.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Arthur Laciak
U.S. Consumer Product Safety Commission
alaciak@cpsc.gov

https://blogs.mathworks.com/cleve/2017/08/14/levenshtein-edit-distance-between-strings/
https://cpsc.gov/Recalls/violations
https://en.wikipedia.org/wiki/List_of_cities_in_China

	Abstract
	Introduction
	Creating a reference table
	SAS Code
	using sas enterprise guide to query results
	Querying for matches and non-matches

	Conclusion
	References
	Contact Information

