
1

SESUG Paper 192-2019

Three Ways to Transform Your Code into PROC SQL®

Charity Wilson, Cobb EMC

ABSTRACT

Does learning PROC SQL® seem overwhelming? Or maybe you feel that it is not necessary? But did you
know that PROC SQL is a powerful tool used to manipulate data in a dataset all in one procedure? This
paper will introduce PROC SQL and demonstrate how to easily transform common DATA and PROC Steps
you already use into PROC SQL code.

Why would you want to use PROC SQL instead of DATA and PROC Steps you may ask? You can
accomplish multiple tasks in one SELECT statement, easily join and append datasets, automatically print
results without the use of a PROC Print and utilize a time saving secret weapon – no presorting your
dataset. Topics covered are great for novice SAS users to legacy DATA Step programmers.

INTRODUCTION

SQL, Structured Query Language, has emerged as one of the most popular programming languages used
by analyst to find answers in data. PROC SQL must begin with a SELECT statement that includes the
column name(s) and the FROM clause that references the source table(s). Several sub-clauses can be
used, but they are optional. Sub-clauses are used to subset, group and sort the final output.

This paper will present three business scenarios using the CARS dataset from the SASHELP library. This
allows you to utilize the same code and practice when you go back to your company. Solutions to the
scenarios will be shown using DATA/PROC Steps. Then, the same results will be accomplished with PROC
SQL to demonstrate efficiencies gained with fewer Steps.

BASIC PROC SQL SYNTAX

The code below is basic syntax for PROC SQL:

 PROC SQL;

 SELECT column-1, …, column-n

 FROM table-name

 WHERE expression

 GROUP BY column(s)

 ORDER BY column(s);

 QUIT;

PROC SQL Statement/ Clause Description

SELECT Statement Indicates the column(s) and rows of data retrieved from the source
table

FROM Clause Source table

WHERE Clause Specifies conditions that each row must met to be included in the
result table

GROUP BY Clause Groups the data for summarizing or aggregating

ORDER BY Clause Orders the rows of the result table by specified column(s)

QUIT Statement Ends the SQL procedure

Table 1 Description of PROC SQL® statements and clauses.

2

ADDITIONAL PROC SQL SYNTAX

Additional options of PROC SQL that will be used in this paper.

PROC SQL Statement/ Clause Description

CREATE TABLE Statement Creates a table with desired results

Asterisk (*) on SELECT Statement Selects all columns from the Source table

CASE Clause Allows conditional processing

DESC in ORDER BY Clause Specifies descending order for sorting

UNION Operator Appends the rows of two or more tables

Table 2. Additional description of PROC SQL statements and clauses.

DIFFERENCES IN PROC SQL AND DATA/PROC STEPS

Understanding key difference between DATA Steps and PROC SQL will help ensure your success as you
venture into the world of PROC SQL. Below are a few important differences in terminology and syntax
structure, but they both have the same meaning.

DATA/PROC Step PROC SQL

Dataset Table

Variable Column

Observation Row

RUN Statement QUIT Statement

Semicolon at the end of each statement Semicolon listed at the end of a SELECT statement

Table 3 Differences between DATA Step and PROC SQL.

SCENARIO 1: IN OPERATOR WITH SORT OPTION

The IN operator allows for filtering a dataset that can have many possible values in a single column. In
PROC SQL, sorting the data is performed using the ORDER BY clause. Ascending order is designated
with ASC, but it is the default sort order and does not need to be specified. While descending order is
designated with DESC and placed after the column name.

Suppose you need to create a report that list all the SUVs with a Make of Ford, GMC and Dodge. The goal
is to find which Model has the lowest MSRP and gets the most miles per gallon in the City. The data needs
to be sorted in ascending order by MSRP and descending order by MPG_City.

3

SOLUTION 1: DATA/PROC STEP

DATA SUVLowMSRP(KEEP=Make Model Type MSRP Invoice MPG_City);

SET SASHELP.CARS;

 IF Make IN('Dodge','Ford','GMC')

 and Type = 'SUV';

RUN;

PROC SORT DATA= SUVLowMSRP;

 BY MSRP DESCENDING MPG_City;

RUN;

SOLUTION 1: PROC SQL

PROC SQL;

 SELECT Make, Model, Type, MSRP, Invoice, MPG_City

 FROM SASHELP.CARS

 WHERE Make IN('Dodge','Ford','GMC')

 AND Type = 'SUV'

 ORDER BY MSRP, MPG_City DESC;

QUIT;

Output 1:

Make Model Type MSRP Invoice MPG (City)

Ford Escape XLS SUV $22,515 $20,907 18

Ford Explorer XLT V6 SUV $29,670 $26,983 15

GMC Envoy XUV SLE SUV $31,890 $28,922 15

Dodge Durango SLT SUV $32,235 $29,472 15

Ford Expedition 4.6 XLT SUV $34,560 $30,468 15

GMC Yukon 1500 SLE SUV $35,725 $31,361 16

Ford Excursion 6.8 XLT SUV $41,475 $36,494 10

GMC Yukon XL 2500 SLT SUV $46,265 $40,534 13

Output 1 For Scenario 1 from using a DATA Step or PROC SQL statement.

4

SCENARIO 2: APPEND DATASETS AND SORT

Suppose two stores that both sell Mercedes-Benz are closing and consolidating into one store; both stores
sell SUVs and Sedans, but Store A sells Wagons while Store B sells Sports. The goal is to create a new
table called StoreC that combine the two tables into one and removes all duplicates. You need a report that
shows a list of all the cars that will be sold at the new location sorted by MSRP in ascending order.

Note: You will see two solutions (A and B) for DATA/PROC step in this scenario.

CREATING TABLES FOR STORE A AND STORE B

You will use the code below to create two tables from the CARS: StoreA and StoreB. The two tables are a
subset of the CARS and only include vehicles with the Make Mercedes-Benz. StoreA should contain 21
rows and 15 columns. StoreB should contain 23 rows and 15 columns. An example of the CREATE TABLE
statement is used in the code below.

PROC SQL;

CREATE TABLE StoreA as

 SELECT Make, Model, Type, MSRP, MPG_City

 FROM sashelp.cars

 WHERE Type IN('SUV','Sedan','Wagon') AND Make = 'Mercedes-Benz';

QUIT;

PROC SQL;

CREATE TABLE StoreB as

 SELECT Make, Model, Type, MSRP, MPG_City

 FROM sashelp.cars

 WHERE Type IN('SUV','Sedan','Sports') AND Make = 'Mercedes-Benz';

QUIT;

SOLUTION 2A: DATA/PROC STEP

PROC SORT DATA=StoreA OUT=StoreA_sort;

 BY Model;

run;

PROC SORT DATA=StoreB OUT=StoreB_sort;

 BY Model;

run;

DATA StoreC;

 MERGE StoreA_sort StoreB_sort;

 BY Model;

RUN;

PROC SORT DATA=StoreC;

 BY MSRP;

RUN;

5

SOLUTION 2B: DATA/PROC STEP

PROC APPEND BASE=StoreA DATA=StoreB;

RUN;

PROC SORT DATA=StoreA OUT=StoreC NODUP;

 BY MSRP;

RUN;

SOLUTION 2: PROC SQL

To display all the columns of a table, you can use the asterisk (*) wildcard on the SELECT list instead of
typing the name of every column. Asterisk used in the example below:

PROC SQL;

CREATE TABLE StoreC AS

 SELECT *

 FROM StoreA

 UNION

 SELECT *

 FROM StoreB

 ORDER BY MSRP;

QUIT;

Output 2:

Make Model Type MSRP MPG (City)

Mercedes-Benz C230 Sport 2dr Sedan $26,060 22

Mercedes-Benz C320 Sport 2dr Sedan $28,370 19

Mercedes-Benz C240 4dr Sedan $32,280 20

Mercedes-Benz C240 4dr Sedan $33,480 19

Mercedes-Benz C240 Wagon $33,780 19

Mercedes-Benz C320 Sport 4dr Sedan $35,920 19

Mercedes-Benz C320 4dr Sedan $37,630 20

Mercedes-Benz C320 4dr Sedan $38,830 19

Output 2 For Scenario 2 from using a DATA Step or PROC SQL statement (partial output).

6

SCENARIO 3: IF/THEN/ELSE LOGIC VS CASE OPTION

Use the CASE expression when you want to perform conditional processing within PROC SQL. It is like the
IF/THEN/ELSE logic in a DATA Step. The syntax is below:

CASE

WHEN (condition) THEN (result)

WHEN (condition) THEN (result)

ELSE (result)

END AS new column-name

If the condition in the WHEN clause is true, then the result of the THEN clause is executed for each row.
The following WHEN clause is skipped, and PROC SQL moves to the next row. If the condition in the
WHEN clause is false, Proc SQL evaluates the next WHEN clause and so on. If all the WHEN clauses are
false, PROC SQL will execute the result of the ELSE clause. The CASE option will return a missing value
if all WHEN clauses are false, and no ELSE clause is present. Lastly, use the optional AS keyword to
specify the new column name.

Suppose your company wants to direct marketing dollars to all the Mercedes-Benz cars that are less than
$50,000 and get at least 15 MPG in the city. You need to send a report to Marketing that labels which
vehicle Model gets marketing dollars. Marketing needs the report sorted by Type, MSRP in ascending order
and MPG_City in descending order.

SOLUTION 3: DATA/PROC STEP

DATA Marketing(KEEP=Make Model Type MSRP MPG_City Marketing);

SET storec;

 IF MSRP < 50000 AND MPG_City > 15 THEN

 Marketing = 'Yes';

 ELSE

Marketing = 'No';

RUN;

PROC SORT DATA=Marketing;

 BY Type MSRP DESCENDING MPG_City;

RUN;

7

SOLUTION 3: PROC SQL

PROC SQL;
 CREATE TABLE Marketing AS

 SELECT Make, Model, Type, MSRP, MPG_City,

 (CASE

 WHEN MSRP < 50000 and MPG_City > 15

 THEN 'Yes'

 ELSE 'No'

 END) AS Marketing

 FROM STOREC

 ORDER BY Type, MSRP, MPG_City DESC;

QUIT;

Output 3:

Make Model Type MSRP MPG (City) Marketing

Mercedes-Benz ML500 SUV $46,470 14 No

Mercedes-Benz G500 SUV $76,870 13 No

Mercedes-Benz C230 Sport 2dr Sedan $26,060 22 Yes

Mercedes-Benz C320 Sport 2dr Sedan $28,370 19 Yes

Mercedes-Benz C240 4dr Sedan $32,280 20 Yes

Mercedes-Benz C240 4dr Sedan $33,480 19 Yes

Mercedes-Benz C320 Sport 4dr Sedan $35,920 19 Yes

Mercedes-Benz C320 4dr Sedan $37,630 20 Yes

Output 3 For Scenario 3 from using a DATA Step or PROC SQL statement (partial output).

CONCLUSION

The three scenarios, above, have shown how a DATA/PROC Step can easily be transformed into PROC
SQL. Plus, it can be way more efficient! I hope you consider adding this tool to your programming tool belt.

PROC SQL advantages:

• used fewer lines of codes

• required no presorting

• completed multiple task in one Step

8

REFERENCES

SAS® Procedures Guide, Version 9.2; SAS Institute Inc., Cary, NC.

SAS® Language Reference: Concepts, Second Edition, Version 9.2; SAS Institute Inc., Cary, NC.

SAS® DATA Step Statements: Reference, Version 9.4; SAS Institute Inc., Cary, NC.

Kirk Paul Lafler. 2011. “Conditional Processing Using the Case Expression in PROC SQL” WUSS 2011
Conference, Software Intelligence Corporation, Spring Valley, CA.

Katie Minten, Ronk, Steve First, David Bea. 2002. “An Introduction to PROC SQL” SUGI 27 Conference,
Systems Seminar Consultants, Inc., Madison, WI.

ACKNOWLEDGMENTS

I would like to thank Kirk Lafler for his help and review of this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Charity Wilson
Cobb EMC
1000 EMC Pkwy
Marietta, GA 30060
Charity.wilson@cobbemc.com

