
1

SESUG Paper AT-279-2019

Discovering the Power of SAS® Metadata:
An Introduction to Dictionary Tables and Views

Frank C. DiIorio, CodeCrafters, Inc.

ABSTRACT
All SAS® programs, regardless of size or complexity, create and populate dozens of metadata files,
commonly known as Dictionary Tables. These Tables are filled with information that is often difficult, and
sometimes impossible, to obtain through other means. Any programmer who develops even simple
general-purpose programs should be familiar with the Tables’ organization, content, and potential uses.

This paper describes Dictionary Tables and their associated SASHELP library views. It:

1. Presents scenarios that show how they can be used

2. Gives high-level descriptions of some of the more important Tables

3. Identifies features of SQL and the macro language that are commonly used when writing programs
that effectively use the Tables

4. Shows examples of the Tables’ use, emphasizing the use of SQL and the macro language interface

The reader should come away from the discussion with an understanding of the Tables as well as a
checklist of SQL skills that are required to use the Tables most effectively.

INTRODUCTION
A well-designed, general-purpose SAS utility needs to know the current state of the execution
environment. For example, what global macro variables are defined? What are their values? Which
datasets are in a library? Are required variables present and populated in a group of datasets? A
program that blindly assumes resources are available is bound to fail unexpectedly at some point. It can
inadvertently overwrite settings or datasets, produce inaccurate results, and generate errors that could
have been avoided had more thought been put into its design.

Much of this information is readily and reliably available, stored in metadata referred to as SAS Dictionary
Tables. All that is required for their use is knowledge of how the Tables are stored and the preferred
techniques for accessing them. The Tables’ structure and usage toolset are the focus of this paper.
Topics include:

• A brief discussion of metadata

• An overview of the Tables, identifying common features and describing how they are defined and
maintained

• A discussion of content, structure, and quirks of some of the more commonly used Tables

• The case for generalization. While the Tables can be used on an ad hoc basis, they are most
effective when used in general-use tools such as SAS macros.

• Examples of use. Most of these are simple, straightforward, and supplemented with ways that their
scope can be expanded.

These topics, resources discussed in “Recommended Reading,” and the detailed reference material in
the Appendix will give the reader a clear understanding of the Tables’ contents and potential range of
applications.

2

A WORD ABOUT METADATA
Consider anything stored in digital format – photographs, music, Web pages, and so on. We consume
these in two ways. The first, and most obvious, is the putative use: looking at the picture, listening to the
music, and scrolling through content on the web page.

The second part of the consumption process is more subtle and less direct. You viewed the picture on
Instagram because it had an interesting location tag. You listened to the music because you applied a
“classic rock” filter to your iTunes library. The web page you selected came from a list suggested by
Google. What guided your consumption of these media was descriptive data attached to the JPEG, MP4,
and HTML files. These indirectly consumed data points are examples of metadata.

The canonical definition of metadata is “data about data.” That’s catchy, and was sufficiently descriptive
for the mainframe-dominant era in which it was coined. But as will be seen shortly, that definition should
be expanded, possibly to “data about data and processes.” That is, data that describes traditional data
sources as well as the environment in which data is captured, processed, and consumed.

Dictionary Tables are stores of metadata that describe every aspect of the SAS environment. The Tables
are transparently updated as options, datasets, and other aspects of the SAS session are added,
modified, or deleted. They are an information-rich resource, and form the basis for a wide variety of
general-purpose tools.

FEATURES OF THE TABLES
Before delving into the contents of individual Tables, let’s review some background and discuss some
common features:

• Notable for Their Longevity. The Tables are not leading-edge technology. Eight Tables were
available in the early 1990’s, in SAS Version 6.07. Subsequent releases of Base SAS software have
added Tables, and variables have been added to existing Tables (to date, Tables have never been
removed or renamed). These enhancements mean that being aware of Version “x” Tables is no
guarantee you’ll be equally savvy in subsequent versions.

• Always Present. The Tables are always created during initialization of every SAS program. This is
true whether you run batch, Enterprise Guide®, SAS Studio, or a desktop version. Even if you don’t
use them, SAS does, so there is no way to not create them.

• Cannot Be Altered. The Tables are read-only. You cannot alter their structure or directly modify
values for example, in a DATA step. Indeed, that is contrary to the primary function of the Tables – to
accurately and transparently reflect the current state of the SAS environment.

• Automatically Refreshed. Access to the Tables is read-only to the user, but read/write to SAS
software. As events occur during the SAS session, the relevant Tables are updated automatically.
The user never has to say “I just changed the DATE option, now update the OPTIONS Table.”
Instead, SAS detects the change and automatically updates the OPTIONS Table.

• Can Update Multiple Tables. A single event can, and often does, result in updates to multiple
Tables. If, for example, a DATA step creates an indexed dataset and a macro variable, the TABLES,
COLUMNS, INDEXES, and MACROS Tables will be updated.

• Not Always Populated. Some features such as security, encryption, and data source prevent
population of some fields. This is frequently the case when dealing with non-native data sources.

• Accessible in SQL. The Tables are accessible only from SQL using a LIBNAME of DICTIONARY
(yes, a 10-character LIBNAME). This LIBNAME is visible only to SQL and cannot be successfully
reference in other PROCs, DATA steps, or interactive SAS tools.

• Use Anywhere with Views. The Tables are indirectly accessed anywhere by views that are defined
during session initialization. The views are virtual datasets that contain the location of the Tables and
how to read them. Each Table (with the inexplicable exception of VIEW_SOURCES) can be
accessed by one or more views stored in LIBNAME SASHELP. Views to the Tables always start with

3

V, and are usually followed by the singular form of its Table (VCOLUMN, for example, is the view to
Table COLUMNS).

• Efficiency Matters. It is usually more efficient to read a Table rather than its view. Since the Tables
are indexed, programs should avoid altering index fields (upper-casing, substringing, etc.) since this
effectively removes the index’s functionality. If processing scenarios permit, using a snapshot of a
Table rather than reading it multiple times can result in noticeable reductions in CPU and elapsed
time. This decision to use a static copy of a Table is an experience-based, rather than a rule-based,
process.

• Some Are More Helpful Than Others. There are 32 Tables in SAS Version 9.4. Some (TABLES,
COLUMNS) are extremely useful for a host of applications. Others (ENGINES, STYLES,
CHECK_CONSTRAINTS) are, to be kind, obscure. What should be done, however, is taking the time
to at least be aware of the content and structure if every Table. A good analogy is that of a master
mechanic who is familiar with all tools in the shop, even if some of them will rarely, if ever, be used.

DISCUSSION: COMMONLY USED TABLES
An exhaustive discussion of all the Tables would be both quite lengthy and mind-numbing to read. This
section presents a selection of Tables that are most likely to be used in general-purpose applications.
The presentation of each – content, associated view, granularity, and comments – can also serve as a
guide for how to approach learning about the Tables that aren’t discussed here.

DESCRIBING THE TABLES
The discussion of each Table below follows a similar format:

• Content. A brief summary of the Table’s contents.

• View. The view associated with the Table.

• Granularity. Table fields that uniquely identify a row.

• Comments. This section identifies possible uses for the Table, things to know for reliable use (i.e.,
quirks and features), and fields that may not populate as expected when processing data that is
protected or in non-native SAS formats.

• Reference card excerpt. The Appendix is a two-page summary of these Tables and additional Tables
not discussed in this paper. The Table-specific portion of the Appendix is included here for easy
reference. Refer to the first page of the Appendix for an explanation of notation.

DICTIONARIES
Content: “Data about data about data.” This Table has attributes of all Dictionary Tables.
View: sashelp.vDctnry
Granularity: memname, name
Comments: In the author’s experience, this Table’s primary use is to programmatically generate a list of
all Tables.
Appendix Excerpt:

dict.dictionaries / sh.vDctnry Dictionary Table Attributes

► memname $32 Dictionary table name [UC]

memlabel $256 Dictionary table label [CP]

► name $32 Column name [UC]

type $4 Column type [char|num]
length num Column length
npos num Column position [offset within observation. >= 0]
varnum num Column number in table [1, 2, 3, …]
format $49 Column format [may include width, period]
informat $49 Column informat [may include width, period]

4

TABLES
Content: TABLES contains information of datasets and views allocated with the LIBNAME statement or
function. The Table also includes LIBNAMEs typically allocated during initialization (SASUSER,
SASHELP, and maps).

View: sashelp.vTable

Granularity: libname, memName, memType

Comments: TABLES contains some of the information found in CONTENTS output datasets. The
advantage is that you don’t have to ask for the data to be made available. That is, you don’t have to run
PROC CONTENTS. Indeed, the nature of all Dictionary Tables is that they are available without needing
to be surfaced by any coding.

The Table has many uses, notably for generating lists and counts of datasets in a library. The process is
straightforward for native SAS datasets, but can be problematic for other data sources. Consider an
Excel file with sheet names First sheet and Second and a filter for a column in Second. MEMNAME
values are stored as:

'First sheet$'
Second$
Second$_xlnm#_FilterDatabase

The difference in notation of the first two sheet and the unexpected presence of the third sheet
underscore the need for robust coding when handling non-native SAS data sources.

Appendix Excerpt:

dict.tables / sh.vTable Attributes of Tables and Views
Typical setting for non-native (MDB, XLS, XPT) member ▼

► libname # $8 Library name [UC]

► memname # $32 Member name [UC] (SAS) [CP] (other)
► memtype # $8 Member type [DATA|VIEW]

dbms_memtype $8 If non-native engine, member type [VIEW|TABLE|LINK|…]. Otherwise,
blank

memlabel V $25
6

Dataset label [CP] missing

typemem $8 Dataset type [blank|DATA|ATTLIST|VIEW|…] DATA

crdate num Date-time created missing

modate num Date-time modified missing

nobs V num Number of observations missing

delobs V num Number of deleted observations [>= 0] 0

nlobs V num Number of logical observations [. if view, else positive integer] missing

obslen num Observation length 0

nvar num Number of variables

maxvar num Length of longest variable name

maxlabel V num Length of longest label [>=0] 0

num_character num Number of character variables

num_numeric num Number of numeric variables

protect # V $3 Password protection [position 1: -|R position 2: -|W position 3:
-|A]

compress V $8 Compression routine [NO|CHAR|BINARY] NO

encrypt V $8 Encryption [NO|YES] NO

filesize V num File size [>= 0] 0

npage V num Number of pages [0, 1, …] 0

pcompress
 V

num Percent compression [0, 1, …] [value stored is truncated integer
-can be negative]

missing

reuse V $3 Reuse space [no|yes] no

bufsize V num Buffer size 0

5

dict.tables / sh.vTable Attributes of Tables and Views
Typical setting for non-native (MDB, XLS, XPT) member ▼

indxtype V $9 Index types [blank|SIMPLE|COMPOSITE|BOTH] missing

sortname $8 Name of collating sequence missing

sorttype $4 Sorting type [S=sort verified SR=sort w. NODUPREC SK=sort w.
NODUPKEY]

missing

sortchar $8 Character sorted by [ANSI|ASCII|…] missing

encoding $25
6

Data encoding [blank if view] Default

If password protected (TABLES.PROTECT position 1 = “R”) this field will be populated

COLUMNS
Content: Each row contains attributes for all currently allocated datasets and views.

View: sashelp.vColumn

Granularity: libname, memName, memType, name

Comments: The Table contains the fields you would expect – length, type, label, et al. One of its features
that seems minor but is helpful when you use it is TYPE. Its values are stored as char or num
(contrasted with CONTENTS datasets, which use the relentlessly confusing 0 or 1). Case sensitivity
means that care must be taken when testing for the presence of a variable or building variable lists. Case
is preserved for SAS datasets, upper-cased for transport files, and preserved with blanks translated to
underscores for Oracle, Excel, and other formats. This is known and consistent behavior, and suggests
that when using COLUMNS you should convert names to the same case to ensure reliable handling.

Appendix Excerpt:

dict.columns / sh.vColumn Variable Attributes

► libname $8 Library name [UC]

► memname $32 Member name [UC]
► memtype $8 Member type [DATA|VIEW]

► name $32 Column name [CP] (except for transport files, always [UC]). Can contain
blanks. Non-native engines: blanks translate to underscore; names can be
truncated.

type $4 Column type [char|num]

length num Column length

npos num Column position [offset within obs., e.g., 0, 1, 20]

varnum num Column number in table [1, 2, 3, …]
label NN $256 Column label. [CP]
format NN $16 Column format [DATE9. $HEX22.]

informat
 NN

$16 Column informat [MMDDYY10. 8.2]

idxusage NN $9 Column index type [SIMPLE|COMPOSITE|BOTH]

sortedby num Key sequence order [0, 1, …] Negative if descending

NN: field whose value may be missing for non-native SAS file types (including SAS Transport files)

MACROS
Content: Content of macro variables

View: sashelp.vMacro

Granularity: scope, name, offset

Comments: If a variable is longer than 200 characters, it is split into multiple rows in the Table (OFFSET
value 0 for the first 200 characters, 200 for next 200, and so on). Therefore, OFFSET is needed to
uniquely identify a variable. Handling variables with length over 200 comes with a caveat: the first 200
characters are not always stored with OFFSET=0.

Since %put _global_; does not present the variables in alphabetical order, MACROS is a good source
for a workaround, filtering with a WHERE or similar statement for OFFSET=0. This is demonstrated in
Example 5, later in this paper.

6

Appendix Excerpt:

dict.macros / sh.vMacro Macro Variable Attributes
► scope $9 Macro variable scope [GLOBAL|AUTOMATIC|macro name (if local)]
► name $32 Macro variable name [UC]

► offset num Offset into macro variable [0, 200, …]. The beginning of a value spanning
observations may not always be stored with OFFSET=0.

value $200 Macro variable value [case, spacing are preserved]

TITLES
Content: Contains text of current titles and footnotes

View: sashelp.vTitle

Granularity: type, number

Comments: ODS formatting options (height, bold, etc.) are not preserved in the title or footnote text.
Macro variable references are resolved before being stored (e.g., 18AUG2019 will be stored, not
&sysdate9).

One use of this Table is to check for the presence of required text such as a copyright notice or program
reference in a title or footnote (see Example 9).

Appendix Excerpt:

FORMATS
Content: Attributes of system and user-defined formats

View: sashelp.vFormat

Granularity: Source-dependent – see Reference Card excerpt, below

Comments: Data exchange standards sometimes specify that SAS datasets must not reference user-
defined formats or informats. The FORMATS Table is a resource for identifying these objects (filter with
SOURCE=”C”). Note that FORMATS honors the path defined by the SASAUTOS option, so if user-
defined format REGION is defined in two currently allocated format catalogs, the lone reference to
REGION will be to the first occurrence in the path. To locate all instances of REGION, use the
CATALOGS Table (described in the Appendix).

Appendix Excerpt:

dict.formats / sh.vFormat Format and Informat Attributes
► libname $8 Library name [UC] [when SOURCE=’C’]

►memname $32 Member name [UC] [when SOURCE =’C’]

► path $1024 Path name [UC] [when SOURCE =’U’]

► objname $32 Object name [UC] [e.g. GROUP, TYPE] [when SOURCE =’U’, ‘C’]

► fmtname $32 Format name [UC] [e.g., GROUP, $TYPE]

► fmttype $1 Format type [F (format) I (informat)]
source $1 Format source [U (system) B (built-in) C (catalog, i.e., created by PROC

FORMAT)]
minw num Minimum width [>= 0]
mind num Minimum decimal width [>= 0]
maxw num Maximum width [>= 0]
maxd num Maximum decimal width [>= 0]

defw num Default width [>= 0]

dict.titles / sh.vTitleTitle and Footnote Attributes
► type $1 Title location [T|F]

► number num Title number [1, …, 10]
text $256 Text [CP] Rendering information (h=1 j=l etc.) is removed. Macro variables are

resolved.

7

XATTRS
Content: New to Version 9.4, the XATTRS Table contains values of metadata attached to individual SAS
datasets. These values can be assigned at both the dataset and variable levels.

View: sashelp.vXattr

Granularity: libname, memname, name, xattr, xoffset

Comments: Extended attributes are an interesting addition to the SAS programmer’s toolbox. They are
user-defined metadata (not a new concept) maintained by Base SAS software (definitely a new concept).
As is often the case with significant changes to the SAS toolbox, evaluating the innovation’s benefits and
assessing its costs will take both time and an open mind. Meanwhile, see “Recommended Reading,”
below, for documentation.

Appendix Excerpt:

dict.xattrs / sh.vXattr Extended Attributes (added in V9.4)

► libname $8 Library name [UC]
► memname $32 Member name [UC]

► name $32 Variable name [UC] Blank if dataset-level.
► xattr $32 Attribute name [CP]
xtype $4 char|num

► xoffset num
Offset into XVALUE value [0, 200, …] (Note: no interaction with PROC DATASETS
SEGLEN option)

xvalue $200 Attribute value [CP]

OPTIONS, GOPTIONS
Content: Graphics (GOPTIONS) and other (OPTIONS) option settings

Views: sashelp.vGopt (GOPTIONS), sashelp.vOpt (OPTIONS), sashelp.vAllopt (contents of both
OPTIONS and GOPTIONS)

Granularity: optName, level, offset

Comments: You can retrieve individual, groups (variable GROUP), or all option settings from these
Tables and views. When filtering or retrieving individual values, use the full name of the option rather
than its alias (e.g., LINESIZE rather than LS).

SAS provides several tools to save and restore option settings. The GETOPTION function is best suited
for retrieval of individual options, although it can be used in programs that restore values as well. The
OPTSAVE and OPTLOAD procedures can save and restore all or individual option settings. These
PROCs are easy to use, but come with a caveat about coverage: in Version 9.4 Enterprise Guide,
OPTSAVE captures values for 289 options. By contrast, VALLPOT, the union of OPTIONS and
GOPTIONS, has values for 611 options. The save/restore process is easy to code when using
OPTSAVE and OPTLOAD. But keep in mind that using the OPTIONS and GOPTIONS Tables for the
same purpose, while requiring more coding, will be more thorough.

Appendix Excerpt:

dict.options / sh.vOpt
dict.goptions / sh.vGopt
 / sh.vAllopt

 Option Settings

► optname $32 Full name (not alias) of the option [UC]
setting $1024 Option setting [CP]
optdesc $160 Option description
level $8 Option location

GOPTIONS: [GRAPH]
OPTIONS: [Portable|Host]

group $32 OPTIONS only: option group [UC] [MACRO|SORT|ENVFILES|…]
► offset $200 Offset into SETTING value [0, 200, …].
opttype $8 Option type [boolean|char|num]

8

THE CASE FOR GENERALIZING
As noted earlier, the Tables and their views can be used for specific, ad hoc inquiries (“how many
variables end with _E?”; “is variable SUBJID in every dataset in the library,” etc.). However, the utility of
the Tables’ contents is greatly enhanced when generalized. Let’s take a brief look at what can be gained
by abstracting specific, hard-coded tasks into macros.

A design consideration in any general-use program is that it can fail gracefully. If a resource is not
available, the execution environment is incorrect, or some other condition is not met, the program should
react by detecting this, issuing a message, and bypass some or all of the remaining steps. Not
programming for failure conditions usually results in SAS errors and warnings. This is unpleasant for the
program’s users and doesn’t reflect well on the program’s author.

A common condition to test is whether a dataset is populated. If it isn’t, one or more steps may need to
be bypassed. This code snippet in a macro obtains the observation count by querying TABLES:

%local dsetN;
proc sql noprint;
select nobs into :dsetN
from dictionary.tables
where libname=’WORK’ & memname=’SUBSET1’ & memType=’DATA’
;
quit;

With this simple coding, branching within the program can be based on values of DSETN. It’s useful, and
can be used in other programs. But any programmer with a modicum of self-awareness knows that when
this snippet is copied to another program, at least one of the following will occur:

• LIBNAME or MEMNAME will not be changed

• MEMTYPE might be omitted, allowing the possibility for views to be evaluated (and, by definition,
returning a missing value)

• The %local statement might be omitted, possibly causing &dsetN’s scope to be Global

These and similar missteps can be avoided by making the code a generalized macro. Macro
COUNTOBS accepts a one- or two-level dataset name, and allows the user to override the default name
of the global macro variable containing the observation count. The result is both an effective use of the
Tables and a glimpse into the power and flexibility of the macro language:

%macro countObs(data=, n=dsetN);
%global &dsetN.;
%let &dsetN = -1;
%let data = %upcase(&data.);
%if %index(&data., .) > 0 %then %do;
 %let lib = %scan(&data., 1, .);
 %let mem = %scan(&data., 2, .);
 %end;
 %else %do;
 %let lib = WORK;
 %let mem = &data.;
 %end;

proc sql noprint;
select nobs into :&n.
from dictionary.tables
where libname=”&lib.” & memname=”&mem.” & memType=’DATA’
;
quit;
%mend countObs;

9

This code is more robust than the earlier version, and will available to any program if COUNTOBS.SAS
resides in an autocall directory. This code snippet demonstrates COUNTOBS’ use:

… macro statements …
%countObs(data=subset1, n=tCount)
%if &tCount. = 0 %then %do;
 %put Filtering created an empty dataset. Execution terminating.;
 %end
… macro statements …

We will revisit this macro in Example 4 in the next section. For now, though, simply reflect on the coding
simplicity made possible by using both the Tables and the macro language.

PUTTING THE TABLES TO WORK: EXAMPLES
So far, we have presented an overview of the Tables, given details on some of the more frequently used
Tables, and demonstrated the benefits of providing access to them via the macro language. This section
presents practical applications of the Tables’ use.

Each example contains a usage scenario and a code snippet. Most examples also suggest how the
snippet could be further developed into a general-purpose utility macro. Note that the focus of the code
snippets is using the Table, not writing a production-quality macro. They omit coding conventions that
you would normally follow: a comment header, parameter checks, cleanup prior to terminating, and so on.
See “Recommended Reading,” below, for macro design references.

EXAMPLE 1: DESCRIBE EACH TABLE
Background. Earlier, we described the DICTIONARIES Table as “data about data about data.” You can
get an idea of which Tables are available by building a list of metadata table names, then using PROC
SQL’s DESCRIBE statement for each Table:

%macro dictInfo;
proc sql noprint;
 select distinct memname into :tables separated by ‘ ‘
 from dictionary.dictionaries;
 %let dictN = &SQLobs.;
 %do idx = 1 %to &SQLobs.;
 %let tableName = %scan(&tables., &idx.);
 describe table dictionary.&tableName.;
 %end;
quit;
%mend;

Enhancements/Comments: DESCRIBE output is rather meager, only displaying variables in order, along
with their type, length, and label. The Appendix has a more content-rich and nuanced description of the
Tables.

EXAMPLE 2: DETECT USER-WRITTEN FORMATS AND INFORMATS
Background. Data exchange standards may limit variable formats and informats to those found in Base
SAS software. This code snippet creates macro variables FMT and INFMT, blank-delimited lists of user-
defined formats and informats, respectively. Once the variables are defined, downstream processing can
read variable attributes, possibly from the COLUMNS Table, and flag instances of formats or informats
being found in the two lists.

%let fmt = ;
%let inFmt = ;
proc sql noprint;
 select fmtName into :fmt separated by ‘ ‘ /* list of formats */
 from dictionary.formats

10

 where source=”C” & fmtType=”F” ;
 select fmtName into :inFmt separated by ‘ ‘ /* list of informats */
 from dictionary.formats
 where source=”C” & fmtType=”I” ;
quit;

Enhancements/Comments: A simple extension would be to make the code a macro that resides in an
autocall library. The macro’s parameters would allow the user to change the default output variable
names.

EXAMPLE 3: XPT DATASET COMPATABILITY
Background. A vital feature of macro design is identifying and reacting to problematic conditions during
execution. As noted earlier, rather than letting a DATA step or PROC fail, a well-designed macro will
anticipate and react appropriately when failure conditions are encountered.

This example identifies variable attributes that are incompatible with the SAS XPT specification. The
code could be at the end of the program creating the dataset or, with some modification, be part of a
generalized XPT creation macro.

Notice PROC SQL’s creation of dataset ATTRIBS. We probably could have used a CASE expression to
identify the error conditions, thus keeping all processing within SQL. The extra DATA step coded here
allows more flexibility than SQL for messaging. While more verbose than a pure-SQL solution, it is likely
easier to read and maintain:

proc sql noprint;
 create table attribs as
 select libname, memname, name, length, label from
 dictionary.columns
 where libname=’ANALYSIS’ & memname=’ADAE’ ;
quit;

%let OKforXPT = t;
data _null_;
 set attribs end=eof;
 retain ok ‘t’;
 if index(name, ‘ ‘) > 0 then do;
 ok = ‘f’; put “Name contains a blank: “ name;
 end;
 if length > 200 then do;
 ok = ‘f’; put “Variable length exceeds 200: “ name;
 end;
 if length(name) > 8 then do;
 ok = ‘f’; put “Variable name exceeds 8 characters: “ name;
 end;
 if length(label) > 40 then do;
 ok = ‘f’; put “Variable label exceeds 40 characters: “ name;
 end;
 if eof then call symput(‘OKforXPT’, ok);
run;

Enhancements/Comments: Innumerable improvements can be made to this program. It could be
converted into a macro with parameters that specify LIBNAME and dataset name. If dataset name is null,
all datasets in the library identified by the LIBNAME parameter would be processed. Another parameter
could specify whether to test for the presence of user-written formats and informats (a process described
in Example 2, above).

11

EXAMPLE 4: OBSERVATION COUNTER REVISITED
Background. “The Case for Generalizing,” above, suggested that the Tables are most effectively used
when they are read as part of parameterized macros. The code below builds on that section’s
%countObs macro:

%macro tableStats(data=, prefix=);
%global &prefix.Nobs &prefix.Nvars &prefix.Nchar &prefix.Nnum;
%let &dsetN = -1;
%let data = %upcase(&data.);
%if %index(&data., .) > 0 %then %do;
 %let lib = %scan(&data., 1, .);
 %let mem = %scan(&data., 2, .);
 %end;
 %else %do;
 %let lib = WORK;
 %let mem = &data.;
 %end;

proc sql noprint;
select nobs into :&prefix.N,
 nvar into :&prefix.Nvars,
 num_character into :&prefix.Nchar
 num_numeric into :&prefix.Nnum
from dictionary.tables
where libname=”&lib.” & memname=”&mem.” & memType=’DATA’
;
quit;
%mend tableStats;

Several output variables were added to the original macro, and the new name – tableStats – accurately
reflects its expanded scope. Rather than creating separate macros for the number of observations,
number of variables, etc., all the functionality is bundled into one macro.

Enhancements/Comments: An obvious extension is to add other values found in the TABLES Table, e.g.
CRDATE and MEMLABEL. A tempting, but counterproductive, modification would be adding a parameter
specifying which variables should be created, e.g., CREATE=N NVARS. This theoretically, would ensure
that the only variables produced are those that were actually requested by the user. However, this
approach would clutter the code due to the parsing of the CREATE parameter. It would also require
conditional execution of %global and SQL statements to control variable creation. Finally, this approach
would require the user to remember valid values for CREATE. As long as the macro’s variable output is
clearly documented, it is simpler to create all variables, even if some will not be used.

EXAMPLE 5: CLEAN DISPLAY OF MACRO VARIABLES
Background. Anyone who has run %put _global_; to display values of global macro variables knows that
the Log output can be confusing. Variables are not listed in alphabetical order, nor are name-value pairs
arranged in columnar format. A good solution is to use the MACROS Table to create a display tool:

proc sql noprint;
 create table _macvars_ as
 select name, offset, scope, value
 from dictionary.macros
 where offset=0 and scope='GLOBAL' /* Pay attention to filters! */
 order by name
 ;
quit;

12

data _null_;
 set _macvars_;
 put name $20. +1 value $80.;
run;

Enhancements/Comments: The hard-coded widths in the DATA step will inevitably create confusing or
erroneous output (e.g., when NAME length exceeds 21). Assigning NAME and VALUE widths can be be
determined programmatically (determine the maximum length of NAME, use the LINESIZE option to
determine VALUE’s width). Another enhancement, of course, is to store the code in a macro autocall
library.

EXAMPLE 6: LIST AND COUNT OF DATASETS IN A LIBRARY
Background. A macro often needs to perform a similar set of tasks for each dataset in a library. The
basis for this processing, a list and count of the datasets, is created below:

proc sql noprint;
 select memname into :datasets separated by ‘ ‘
 from dictionary.members
 where memtype = ‘DATA’ & libname = ‘PROD’
 ;
 %let datasetsN = &SQLobs.;
quit;

Enhancements/Comments: This example hard-codes the library and macro variable names. A helpful
modification would be to create a macro with a parameter that would accept one or two-level dataset
names.

A usage consideration here is giving the user a reliable means to assess results. We could assign a
dataset count (variable DATASETSN) of -1 if the library was not allocated. Examining this variable rather
than the list itself (variable DATASETS) is more robust since the list would be null regardless of whether
the library was not allocated or it was allocated but empty.

EXAMPLE 7: PRINT FROM EVERY DATASET IN A LIBRARY
Background. Example 6 and the modifications suggested for Example 4 form the basis for the following
macro. It uses PROC REPORT to display a user-controlled number of observations from datasets in a
library.

%macro printIt(lib=, obs=10);
 %memList(lib=&lib., prefix=list) /* Example 6 */
 %do idx = 1 %to &listN.;
 %let dset = %scan(&list., &idx.)
 %tableStats(data=&lib..&dset., prefix=dset_) /* Example 4 */
 proc report data=&lib..&dset. headline nowd style=journal;
 title1 “First &obs. observations from &lib..&dset.”;
 title2 “# obs=&dset_N # vars=&dset_nvars.”;
 run;
 %end;
%mend;

Enhancements/Comments: This code does not consider the possibility of empty datasets. Ideally, if
there were “n” datasets in the library there would be an equal number of reports written to the LST file.
An empty dataset report could be created by adding some branching based on &dset_N: if greater than 1,
execute the REPORT step. Otherwise, run a DATA _NULL_ that writes a message to FILE PRINT.

EXAMPLE 8: INCONSISTENT ATTRIBUTES OF LIKE-NAMED VARIABLES
Background. Pharmaceutical (and, likely, other industry) standards require that like-named variables in a
data library have identical attributes. This SQL code reads the COLUMNS Table, populating dataset
DONTMATCH with information about variables with identical names but differing type and/or length:

13

proc sql noprint;
 create table dontMatch as
 select catX(' - ', type, length) as compare,
 upcase(name) as nameUC, memname
 from dictionary.columns
 where libname="ANALYSIS"
 group by nameUC
 having count(distinct compare) > 1
 order by nameUC, memname
 ;
quit;

Comments, Enhancements: Among the many extensions to this snippet: turn it into a macro with a
parameter for the LIBNAME filter. A macro parameter could be added, giving the user control over what
should be compared (label, format, and informat would be good additions to the attribute list). Notice in
the example that variables were upper-cased before grouping. This enabled the comparison of variables
“SubjID” and “subjid”. The code could be modified to flag same-named but differently-cased variables.

EXAMPLE 9: COMPLIANT FOOTNOTES
Background. Tables and other displays usually have to comply with title and footnote content
requirements. These often include the name of the program that created the display, the date-time of
creation, and other identifying information. Such standardized content lends itself to automated creation
of titles and footnotes. The TITLES Table can be used to check for compliance, in this case to see if the
last footnote contains the data cut date:

%macro checkFoot;
 %let compliant = -1;
 proc sql noprint;
 select indexW(text, ‘Data cut date:')
 into :compliant
 from dictionary.titles
 where type='F'
 having number = max(number)
 ;
 quit;
 … Processing based on &compliant value …
%mend;

If COMPLIANT is greater than 0, the last footnote contained the required text. Values of 0 or -1 identify
conditions where the text was missing or no footnotes were specified, respectively.

CONCLUSION
The Dictionary Tables are a valuable addition the programmer’s toolbox. They are a reliable and easily
accessed source of a wealth of information (some of which in unobtainable by another any means) about
the SAS environment. To use them effectively, you must become familiar with their structure and
contents, and be aware of conditions that may result in incomplete data or seemingly anomalous results.
The utility of the Tables is fully realized when they are used in well-designed macros. The payoff is
having a library of robust, general-purpose applications.

ACKNOWLEDGMENTS
Many thanks to Greg Weller, Rho Inc., for his thoughtful review of an early draft of this paper. And, as
always, thanks to my wife, April Sansom, for her editing. Thanks to her, the Final version of this paper
became version Somewhat Final, and after much back and forth, version Finally Final. The paper is
much better off for her efforts.

14

RECOMMENDED READING
Resources abound for learning more about the Tables and getting examples of their use. Among the
best (with some noted caveats) are:

• www.LexJansen.com. This site archives decades’ worth of papers from SAS Global Forum,
PharmaSUG, PhUSE, and regional user group conferences. A search for “dictionary table” will
produce links to a host of papers.

• support.SAS.com. The SAS web site’s Base SAS Language Reference describes the Tables in
mostly general terms. It lacks reasons for missing data points, Table quirks, and other usage
features needed for application development.

• SAS Community, SAS-L. These popular forums are best suited for examples of Table use and
problem resolution. They are not a resource for orderly learning about Table structure and contents.

• Enterprise Guide, SAS Studio, or desktop. These tools, or any application that will open a SAS
view, allow ad hoc examination of the Tables’ contents.
Digging even deeper, these are also environments that let you observe the Table maintenance
process. You can start a session, examine MEMNAME values in SASHELP.VTABLE, then create a
WORK dataset. When you re-open the VTABLE display it will contain rows for the new dataset.
These simple steps demonstrate several fundamental about the Tables: the View was predefined,
and when you changed the SAS environment by adding a dataset, you could see that TABLES and
its view were automatically updated.

• Tables Reference Card. The Appendix contains a description of the Tables’ contents. It notes case-
sensitivity, typical values for fields, and how the Table is populated if a data source is password
protected, encrypted, or is not stored in a native SAS format. Note that this is a curated selection; not
all Tables are described, and some fields are omitted.

While not the focus of this paper, two related topics are also worth pursuing:

• Extended Attributes. Home-grown, user-defined metadata is nothing new. What is new is Version
9.4’s ability to add user-defined metadata to SAS datasets. Details are the online Base SAS® 9.4
Procedures Guide: documentation of PROC DATASETS (MODIFY statement).

• Macro Design. If you have read this far, it should be clear that macros afford the most reliable and
effective use of the Tables. This underscores the importance of designing macros that are flexible,
robust, extensible, and easily maintained. As with the Tables, www.LexJansen.com is an excellent
resource for papers on this topic.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Frank Dilorio
CodeCrafters, Inc.
FrankDiIorio@gmail.com

http://www.lexjansen.com/

APPENDIX: SUMMARY OF SAS V9.4 DICTIONARY TABLES AND VIEWS
Notation:
• In headers, dict indicates SQL reference (dictionary.tableName); sh indicates

SASHELP reference (sashelp.viewName); PW identifies tables with no data
displayed if member is password-protected.

• ► indicates a field used for uniquely identifying an observation
• V identifies a field whose value may be missing or 0 for SAS views
• [UC] upper-cased, [CP] case preserved

Usage Notes:
• MEMNAME: If using native SAS engines, upper-cased. Others preserve case and

spacing, possibly replacing blanks with underscores.
• Non-native files: if the data source has a name exceeding 32 characters, cannot be

read due to security restrictions, or uses syntax not understood by SAS, it will not be
presented in any Table or View.

• Not all tables and fields are shown!

dict.catalogs / sh.vCatalg Catalog Member Attributes
► libname $8 Library name [UC]
► memname $32 Member name [UC]
memtype $8 Member type [CATALOG]
► objname $32 Object name [UC]
► objtype $8 Object type [FORMAT|FORMATC|MACRO…]
objdesc $256 Object description [CP]
created num Date-time created
modified num Date-time modified
alias $8 Object alias [UC]
level num Library concatenation level [0, 1, 2, …]

dict.columns / sh.vColumn PW Variable Attributes

► libname $8 Library name [UC]
► memname $32 Member name [UC]
► memtype $8 Member type [DATA|VIEW]
► name $32 Column name [CP] (except for transport files, always

[UC]). Can contain blanks. Non-native engines:
blanks translate to underscore; names can be
truncated.

type $4 Column type [char|num]
length num Column length
npos num Column position [offset within obs., e.g., 0, 1, 20]
varnum num Column number in table [1, 2, 3, …]
label NN $256 Column label. [CP]
format NN $16 Column format [DATE9. $HEX22.]
informat NN $16 Column informat [MMDDYY10. 8.2]
idxusage NN $9 Column index type [SIMPLE|COMPOSITE|BOTH]
sortedby num Key sequence order [0, 1, …] Negative if descending
NN: field whose value may be missing for non-native SAS file types (including SAS
Transport files)

dict.destinations / sh.vDest Open ODS Destinations
► destination $100 Destination [PDF|RTF|PS|…]
style $32 One-level style name [Journal|Printer|…]

dict.engines / sh.vEngine Attributes of all available engines
► engine $8 Engine name [UC]
alias $8 Alias [UC]
description $40 Description [CP]
preferred $3 Preferred? [yes|no]

dict.extfiles / sh.vExtfl User, system external files
► fileref $8 FILEREF [UC] duplicated for concatenated files
► xpath $1024 Path. Can be [1] directory [2] directory+file

name+extension (e.g., dir\dm.xpt) [3] command if REF
is piped [4] blank. [CP]

xengine $8 Engine name [UC] [e.g., DISK, DUMMY, PIPE]
directory $3 Does FILEREF point to a directory [yes|no]
exists $3 Does the location exist? [yes|no]
fileSize num Size of file, in bytes
► level num File concatenation level (0, 1, …)
modDate num File modification date-time
temporary char Allocated as a temporary location? [yes|no]

dict.formats / sh.vFormat Format and Informat Attributes
► libname $8 Library name [UC] [when SOURCE=’C’]
►memname $32 Member name [UC] [when SOURCE =’C’]
► path $1024 Path name [UC] [when SOURCE =’U’]
► objname $32 Object name [UC] [e.g. GROUP, TYPE] [when

SOURCE =’U’, ‘C’]
► fmtname $32 Format name [UC] [e.g., GROUP, $TYPE]
► fmttype $1 Format type [F (format) I (informat)]
source $1 Format source [U (system) B (built-in) C (catalog, i.e.,

created by PROC FORMAT)]
minw num Minimum width [>= 0]
mind num Minimum decimal width [>= 0]
maxw num Maximum width [>= 0]
maxd num Maximum decimal width [>= 0]
defw num Default width [>= 0]

dict.functions / sh.vFunc Function Attributes
► fncname $32 Function name [UC]
fncargs num Argument attributes
fncprod $1 Implementation type
► fnctype $1 Function type [N|B|C]
maxarg num Maximum number of arguments to function
minarg num Minimum number of arguments to function
source $1 Function source [U|B]

dict.indexes / sh.vIndex PW Native Engine Index Attributes
► libname $8 Library name [UC]
► memname $32 Member name [UC]
memtype $8 Member type [DATA]
► name $32 Column name [CP]
idxusage $9 Column index type [COMPOSITE|SIMPLE]
► indxname $32 Index name [CP]
► indxpos num Column position (offset within obs.) in composite key.
nomiss $3 NOMISS option [yes|blank]
unique $3 UNIQUE option [yes|blank]

dict.libnames / sh.vLibnam Attributes of Allocated Libraries
► libname $8 Library name [UC]
engine $8 Engine name [UC]
► path $1024 Path name [blank for some engines: URL, …] [CP]

XPT. non-native engines include file name, extension.
► level num Library concatenation level [0, 1, 2, …]
readonly $3 Read only? [no|yes]
sequential $3 Sequential? [no|yes]
temp $3 Allocated with temporary access? [no|yes]

dict.dictionaries / sh.vDctnry Dictionary Table Attributes
► memname $32 Dictionary table name [UC]
memlabel $256 Dictionary table label [CP]
► name $32 Column name [UC]
type $4 Column type [char|num]
length num Column length
npos num Column position [offset within observation. >= 0]
varnum num Column number in table [1, 2, 3, …]
format $49 Column format [may include width, period]
informat $49 Column informat [may include width, period]

dict.macros / sh.vMacro Macro Variable Attributes
► scope $9 Macro variable scope [GLOBAL|AUTOMATIC|macro

name (if local)]
► name $32 Macro variable name [UC]
► offset num Offset into macro variable [0, 200, …]. The beginning

of a value spanning observations may not always be
stored with OFFSET=0.

value $200 Macro variable value [case, spacing are preserved]

dict.members Member Attributes
► libname $8 Library name [UC]
► memname $32 Member name [UC] (SAS) [CP] (other)

Generation datasets: name#nnnn
memtype $8 Member type [DATA|VIEW|ITEMSTOR|

CATALOG|…]
dbms_memtype $32 DBMS member type [VIEW|DATA|LINK|…]
engine $8 Engine name [UC]
index $32 Uses indexes? [yes|no] [Note: not index names!]
path $1024 Path name [CP] [concatenated paths are quoted and

enclosed in parentheses; otherwise, no parentheses
or quotes] [For most non-native engines, directory +
file name + extension; otherwise, just directory]

Views
sh.vMember All fields from dictionary.members
sh.vsAccess LIBNAME, MEMNAME (memtype=’ACCESS’)
sh.vsCatlg LIBNAME, MEMNAME (memtype=’CATALOG’)
sh.vsLib LIBNAME, PATH (unique values of LIBNAME)
sh.vsTable LIBNAME, MEMNAME (memtype=’DATA’)
sh.vsView LIBNAME, MEMNAME (memtype=’VIEW’)
sh.vsTabvw LIBNAME, MEMNAME, MEMTYPE (memtype=‘DATA’, ‘VIEW’)

dict.options / sh.vOpt
dict.goptions / sh.vGopt
 sh.vAllopt

Option Settings

► optname $32 Full name (not alias) of the option [UC]
setting $1024 Option setting [CP]
optdesc $160 Option description
level $8 Option location

• GOPTIONS: [GRAPH]
• OPTIONS: [Portable|Host]

group $32 OPTIONS only: option group [UC] [MACRO|SORT|-
ENVFILES|…]

► offset $200 Offset into SETTING value [0, 200, …].
opttype $8 Option type [boolean|char|num]

dict.tables / sh.vTable Attributes of Tables and Views
Typical setting for non-native (MDB, XLS, XPT) member ▼

► libname # $8 Library name [UC]

► memname # $32 Member name [UC] (SAS) [CP] (other)
► memtype # $8 Member type [DATA|VIEW]

dbms_memtype $8 If non-native engine, member type
[VIEW|TABLE|LINK|…]. Otherwise, blank

memlabel V $256 Dataset label [CP] missing
typemem $8 Dataset type [blank|DATA|ATTLIST|VIEW|…] DATA

crdate num Date-time created missing

modate num Date-time modified missing

nobs V num Number of observations missing

delobs V num Number of deleted observations [>= 0] 0

nlobs V num Number of logical observations [. if view, else
positive integer]

missing

obslen num Observation length 0

nvar num Number of variables

maxvar num Length of longest variable name

maxlabel V num Length of longest label [>=0] 0

num_character num Number of character variables

num_numeric num Number of numeric variables
protect # V $3 Password protection [position 1: -|R position

2: -|W position 3: -|A]

compress V $8 Compression routine [NO|CHAR|BINARY] NO

encrypt V $8 Encryption [NO|YES] NO

filesize V num File size [>= 0] 0

npage V num Number of pages [0, 1, …] 0

pcompress V num Percent compression [0, 1, …] [value stored
is truncated integer -can be negative]

missing

reuse V $3 Reuse space [no|yes] no

bufsize V num Buffer size 0

indxtype V $9 Index types
[blank|SIMPLE|COMPOSITE|BOTH]

missing

sortname $8 Name of collating sequence missing
sorttype $4 Sorting type [S=sort verified SR=sort w.

NODUPREC SK=sort w. NODUPKEY]
missing

sortchar $8 Character sorted by [ANSI|ASCII|…] missing

encoding $256 Data encoding [blank if view] Default
If password protected (TABLES.PROTECT position 1 = “R”) this field will be populated

dict.xattrs / sh.vXattr Extended Attributes (added in V9.4)
► libname $8 Library name [UC]

► memname $32 Member name [UC]
► name $32 Variable name [UC] Blank if dataset-level.
► xattr $32 Attribute name [CP]
xtype $4 char|num

► xoffset num Offset into XVALUE value [0, 200, …] (Note: no
interaction with PROC DATASETS SEGLEN option)

xvalue $200 Attribute value [CP]

Other tables
check_constraints constraint_column_usage constraint_table_usage
dataitems filters infomaps
locales (added in V9.4) prompts promptsxml
referential_constraints remember table_constraints
view_sources

dict.views / sh.vView PW View Attributes (SAS file formats only)
► libname $8 Library name [UC]

► memname $32 Member name [UC]
memtype $8 Member type [VIEW]
engine $8 Engine name [SASESQL|SASDSV|…]

dict.styles /sh.vStyle Attributes of Allocated Styles
► libname $8 Library name [UC]
► memname $32 Member name [UC]
► style $32 Style name [CP]
crdate num Date-time created

dict.titles / sh.vTitle Title and Footnote Attributes
► type $1 Title location [T|F]
► number num Title number [1, …, 10]
text $256 Text [CP] Rendering information (h=1 j=l etc.) is

removed. Macro variables are resolved.

	Abstract
	Introduction
	A Word about Metadata
	Features of The Tables
	Discussion: Commonly Used Tables
	Describing the Tables
	DICTIONARIES
	TABLES
	COLUMNS
	MACROS
	TITLES
	FORMATS
	XATTRS
	OPTIONS, GOPTIONS

	The Case for Generalizing
	Putting the tables to work: Examples
	Example 1: Describe Each Table
	Example 2: Detect User-Written Formats and Informats
	Example 3: XPT Dataset Compatability
	Example 4: Observation Counter Revisited
	Example 5: Clean Display of Macro Variables
	Example 6: List and Count of Datasets in a Library
	Example 7: Print from Every Dataset in a Library
	Example 8: Inconsistent Attributes of Like-Named Variables
	Example 9: Compliant Footnotes

	Conclusion
	Acknowledgments
	Recommended Reading
	Contact Information
	Appendix: Summary of SAS V9.4 Dictionary Tables and Views

