
1

SESUG Paper 152-2019

Integrate Python with SAS® using SASPy for a
Simpler, More Effective Script

John Vickery, North Carolina State University

ABSTRACT
Why write two scripts in two different languages when you can get it done in one? By using the SASPy
module, you can easily move data between SAS and Python sessions giving you the best of both worlds.
At the NC State University Libraries, we need to manage a dynamic, million plus e-book collection with
on-demand purchasing and auto-upgrade options. It is common for a publisher to release an e-book
across multiple platforms each having differing access rights. In order to prevent duplicate auto-
purchases we regularly combine data from SAS data sets and our catalog web services. In this case
study, we show how Python handles the web service and SASPy allows us quick access to large data
sets on disk. This paper will do a deep dive into the script and will show how effective an open analytics
combination can be. In addition to SASPy this paper also shows examples of a few common Python
modules such as Pandas, Requests and ElementTree.

INTRODUCTION
Why write two scripts in two different languages when you can get it done in one? By using the SASPy
module, you can easily move data between SAS and Python sessions giving you the best of both worlds.

This paper discuses a case study at the North Carolina State University Libraries where we are using
SASPy with Python to access a large SAS dataset on disk while other modules of Python handle a call to
our catalog web service.

At the Libraries, we need to manage a dynamic, million plus e-book collection with on-demand purchasing
and auto-upgrade options. It is common for a publisher to release an e-book across multiple platforms
each having differing access rights. In order to prevent duplicate auto-purchases we regularly combine
data from SAS data sets and our catalog web services.

In this paper, we show how Python handles the web service call and SASPy allows us quick access to
large data sets on disk. This paper begins with a brief introduction of SASPy. Next using code from the
complete script, the paper touches on three common Python modules: Pandas, Requests and
ElementTree. The final section steps through the script line by line.

While there is much more related to Python and SASPy than is covered here, this paper may appeal to
experienced and newer SAS programmers who are interested in integrating Python into their toolkit.

SAS DATA SETS USED IN THE SCRIPT
The script shown in this paper references the following three SAS data sets in a library named SIRSI:

• SIRSI.ITEMS is a 4.2 million observation (1.9 GB) data set of item level detail for each record in the
Libraries’ catalog. An observation in the ITEMS data set has many-to-one relationship to the TITLES
data set.

• SIRSI.TITLES is a 2.9 million observation (6.6 GB) data set of title level bibliographic data. An
observation in the TITLES data set has a one-to-many relationship to the ITEMS data set.

• SIRSI.ISBN is a 2.7 million observation (62 MB) data set of print and e-book ISBNs. An observation in

2

the ISBN data set has a many-to-many relationship to the ITEMS data set.

SASPY BASICS
SASPy is a Python module that allows SAS 9.4 and above to interface with a Python process. In order to
use the SASPy module, you must have both Python 3.x or above and SAS 9.4 or above. While it is not
the focus of this article, SASPy is included in the current SAS University Edition.

STARTING A SAS SESSION
The first step to using SASPy in a Python script is to import the module and initialize a SAS session. The
following code uses Python’s IMPORT statement and the saspy.SASsession() method to get started.
We also use the SASPy SASLIB() method to assign a SAS LIBREF.

 import pandas as pd
 import saspy
 import requests
 import xml.etree.ElementTree as ET

 sas = saspy.SASsession()

 sas.saslib(libref="sirsi", path="D:\\Sirsi_data\\current")

In this snippet:

Lines 1 – 4 import each of the modules used in the script. SASPy is imported in line 2. It is standard to
include a separate IMPORT statement on a new line for each module imported. The Pandas, Requests
and ElementTree modules are discussed in sections below.

Line 5 initializes a SAS session named sas. The variable sas is used throughout the script to refer to the
SAS session.

Line 6 uses the saslib() method to assign a SAS libref. Note that we reference the SAS session using
the sas variable name from line 5. The first parameter libref= is the valid SAS libref. The second
parameter is the path to the library.

SD2DF METHOD
Within the context of the case study and script discussed in this paper, the primary benefit of SASPy is
the ability to access SAS data sets from within a Python session. The sd2df()method makes this a
simple process. Note that sd2df() is an alias for sasdata2dataframe(). The method returns a
Pandas data frame.

The following is an example from the full script using only two parameters:

 sasdups = sas.sd2df(table='df', libref='work')

 sasdups.info()

In line 1, the returned Pandas data frame is assigned the name sasdups. Note that the sd2df()
method is called on the SAS session named sas from line 5 in the previous section. The first parameter
table= specifies the name of the SAS data set to be exported to a Pandas data frame. The second
parameter libref= specifies the libref of that SAS data set.

Line 2 calls Pandas’ info()method. This method is useful as it “prints information about a DataFrame
including the index dtype and column dtypes, non-null values and memory usage.” Note that this line is
not included in the full script detailed below.

The sd2df() method also includes parameters that can be useful when working with larger SAS data
sets.

3

The following code (not included in the final script) uses the dsopts parameter to keep only those
variables in the SAS data set that begin with “itemcat”:

itemcats = sas.sd2df(table="items", libref="sirsi",

 dsopts={"keep": "itemcat:"})

Note the use of a colon : as a variable name wildcard. The dsopts parameter accepts a python dictionary
with any of the following SAS data set options: WHERE, DROP, KEEP, OBS, FIRSTOBS, FORMAT.

The sd2df() method also accepts a method parameter specifying either memory (the default) or csv.
CSV uses an intermediary csv file that can be faster for large data sets.

DF2SD METHOD
In order to move data from Python to SAS, SASPy provides the df2sd() method. This method imports a
Pandas data frame to a SAS data set. As with sd2df(), df2sd() is an alias for
dataframe2sasdata(). The method returns a SASdata object.

The following is an example of the method from the full script:

sas.df2sd(df, table="df", libref="work")

This example specifies three parameters. The first is the Pandas data frame to be imported. In this case,
it is a data frame named “df”. The second parameter, table=, is the name of the SAS data set to
create. Finally, libref= specifies the libref for the data set that is being created.

Note that the SASdata object is not assigned to a Python variable. In the next section, we show how the
submit() method can be used to access the SAS data set created with the df2sd() method.

SUBMIT METHOD
The submit() method is particularly helpful as it allows for any SAS code to be submitted. The method
returns the SAS log and listing output as a Python dictionary.

In the example below, a PROC SQL procedure is submitted to create a data set within the work library of
the SAS session:

 results_dict = sas.submit("""
 proc sql;

 create table controls as

 select distinct i.catkey, i.titlecontrol, i.itemid,

 t.title, t.author, t.pubyear
 from sirsi.items as i, sirsi.titles as t

 where i.catkey in (select distinct catkey_ebook from df) and

 i.titlecontrol = t.titlecontrol;

 quit;
 """)

In this example, only lines 1 and 10 contain SASPy specific code. Lines 2 through 9 contain standard
SAS Proc SQL code. The code to submitted is entered as a Python string hence the triple quotes.

In line 7, note the table named df. This is the SAS data set created using the df2sd() method from the
previous section.

4

PANDAS, REQUESTS AND ELEMENTTREE
Besides SASPy, Pandas, Requests and ElementTree are the only other Python modules used in this
case study script. While it is beyond the scope of this paper to give a complete overview of each of these
modules, this section points out a few highlights of each.

PANDAS
In many ways, you can consider Pandas the essential library for data manipulation and analysis with
Python. Full documentation on the Pandas library can be found here:

https://pandas.pydata.org/pandas-docs/stable/

Within Pandas, two data structures are particularly helpful. They are as McKinney (2018) states the “two
workhorse data structures: Series and DataFrame. While they are not a universal solution for every
problem, they provide a solid, easy-to-use basis for most applications.”

The Pandas “Comparison with SAS” documentation section provides a helpful terminology translation. A
DataFrame is the Pandas equivalent of a SAS data set. A Series can be considered analogous to a single
column of a data set.

Other Pandas to SAS terms from the “Comparison with SAS” documentation include the following:

Pandas SAS
DataFrame Data set
Series Data set column
Column Variable
Row Observation
Groupby By-group
Nan .

Table 1. Pandas and SAS terms
As with SASPy, the Pandas module must be imported. It is convention to import the Pandas module as
follows:
import pandas as pd

Among the Pandas specific code used in the script described in this paper, two are particularly useful:
DataFrame.loc and DataFrame.merge.

The DataFrame.loc method is used to select “a group of rows and columns by label(s) or a boolean
array” (Pandas docs). In the example below, the .loc method is applied to a DataFrame named
“sasdups” to select rows where the “provider_group” column is null. In this case, the input in the []
brackets is a boolean series:
sasdups.loc[sasdups['provider_group'].isnull()]

The DataFrame.merge method is used to “merge DataFrame or named Series objects with a database-
style join” (Pandas docs). The merge method is analogous to a SAS DATA STEP MERGE or a PROC
SQL join.

The following simple example from the full script merges two DataFrames using the how= and on=
parameters:
dups = pd.merge(EBSISBN, ebookISBN, how="inner", on="isbn")

The method can also perform left, right and outer merges by replacing “inner” on the how= parameter.

https://pandas.pydata.org/pandas-docs/stable/

5

REQUESTS
A significant portion of the script discussed in this paper involves accessing the libraries’ web service. The
Requests module for Python makes it very simple to send HTTP/1.1 requests. In fact, the script in this
paper only uses five lines of Requests specific code. You can find the full documentation for the Requests
module here: https://2.python-requests.org/en/master/

As shown in the “Starting a SAS Session” section above, the first requirement is to import the module:
import requests

Next, it’s as simple as passing a URL to the get()method. In the line below, the URL is an XML
response from the libraries’ web service:
r = requests.get(‘https://sirsi.lib.ncsu.edu/cgi-bin/retrieve_marc?key=2123464’)

The response object is named “r” and you can use other Requests module methods to get additional
information. For example, you can access the response object content as bytes with the r.content. In
the following line, the response content is used as an argument to a method from the ElementTree
module:
tree = ET.fromstring(r.content)

The web service described in this paper returns XML content. If your response is JSON, the Requests
module provides a built in JSON decoder: r.json()

The Requests module also makes it simple to handle errors and exceptions:

r.raise_for_status() will raise an HTTPError if the HTTP request returns an unsuccessful status
code.

Used within a Python Try-Except block, these lines from the full script will print out any HTTP errors to the
terminal:
except requests.exceptions.HTTPError as e:

 print("Error: " + str(e))

ELEMENTTREE
The web service described in this paper only returns an XML response. The xml.etree.ElementTree
module is a simple solution to parse XML data. Just as with the Pandas and Requests sections, this
section barely scratches the surface of the module. You can access the full documentation for the module
API here: https://docs.python.org/3.7/library/xml.etree.elementtree.html

The main requirement for the script described in this paper is to parse an XML document response and
access specific elements within its hierarchical structure.

As always, the module must be imported. It is convention to import the ElementTree module as follows:
import xml.etree.ElementTree as ET

ElementTree is actually a sub-module of the xml package. Additional XML processing interfaces are also
grouped in the xml package. You can find those modules here:
https://docs.python.org/3.7/library/xml.html

To parse XML content directly from a string, you can use the ET.fromstring()function:

tree = ET.fromstring(r.content)

Note that this is the same line shown above in the Requests section. This function will return an “Element”
instance. In the line above, this Element instance is assigned to a variable named “Tree”. Various objects
can be accessed within the Element instance. In this script, the following objects are used to extract data
from the XML response:
findall()

https://2.python-requests.org/en/master/
https://docs.python.org/3.7/library/xml.etree.elementtree.html
https://docs.python.org/3.7/library/xml.html

6

- Finds all matching subelements by tag name or path and returns a list in document order
attrib

- Python dictionary containing the elements attributes this Python.
text

- The text attribute holds either the text between the element’s start tag and its first child or end tag,
or None

LINE-BY-LINE THROUGH THE CODE
This section puts together the pieces discussed above and looks at the code line by line. Lines that
produce output other than the final excel spreadsheet such as the DataFrame.info() method have
been removed.

The following is the complete script:

1. import pandas as pd
2. import saspy

3. import requests

4. import xml.etree.ElementTree as ET

5. # start SAS session

6. sas = saspy.SASsession()

7. # assign siri libref

8. sas.saslib(libref="sirsi", path="D:\\Sirsi_data\\current")

9. # submit SAS PROC SQL to get ISBNS for EBS and NON-EBS items

10. results_dict = sas.submit("""

11. proc sql;

12. /* EBS ISBNs */
13. create table EBSISBN as

14. select isbn.*

15. from sirsi.items as i,

16. sirsi.isbn
17. where i.itemcat3 = 'LEASED' and

18. i.itemtype = 'EBOOK' and

19. i.catkey = isbn.catkey

20. order by isbn;

21. /* NON-EBS ISBNs */

22. create table ebookISBN as

23. select isbn.*
24. from sirsi.items as i,

25. sirsi.isbn

26. where i.itemcat3 ^= 'LEASED' and

27. i.itemtype = 'EBOOK' and
28. i.catkey = isbn.catkey

7

29. order by isbn;

30. quit;
31. """)

32. # convert SAS datasets from above to dataframe

33. EBSISBN = sas.sd2df(table="EBSISBN", libref="work")
34. ebookISBN = sas.sd2df(table="ebookISBN", libref="work")

35. # rename catkey columns in dataframes

36. EBSISBN.rename(columns={"catkey": "catkey_ebs"}, inplace=True)
37. ebookISBN.rename(columns={"catkey": "catkey_ebook"}, inplace=True)

38. # merge to get dups

39. dups = pd.merge(EBSISBN, ebookISBN, how="inner", on="isbn")

40. # get unique catkeys from dups dataframe

41. ebookcats = dups["catkey_ebook"].drop_duplicates()

42. # pass catkeys to MARC retrieve API

43. # URL for MARC service

44. serviceurl = 'https://sirsi.lib.ncsu.edu/cgi-bin/retrieve_marc?key='

45. suffix = '&format=marcxml'

46. # iterate over catkeys series

47. lst = list()

48. for catkey in ebookcats:
49. datalst = dict()

50. datalst['catkey_ebook'] = catkey

51. url = serviceurl + str(catkey) + suffix

52. r = requests.get(url)
53. try:

54. r.raise_for_status()

55. tree = ET.fromstring(r.content)

56. for l in
tree.findall('.//{http://www.loc.gov/MARC21/slim}datafield'):

57. for sf in

l.findall('.//{http://www.loc.gov/MARC21/slim}subfield'):

58. if l.attrib['tag'] == '506':
59. if sf.attrib['code'] == 'a':

60. datalst['UserAccessNote'] = sf.text

61. if l.attrib['tag'] == '856':

62. if sf.attrib['code'] == 'u':
63. datalst['URL'] = sf.text

64. if sf.attrib['code'] == 'z':

65. datalst['provider'] = sf.text

8

66. lst.append(datalst)

67. except requests.exceptions.HTTPError as e:
68. print("Error: " + str(e))

69. # save as dataframe

70. df = pd.DataFrame(lst)

71. # convert to SAS dataset and add data

72. sas.df2sd(df, table="df", libref="work")

73. results_dict = sas.submit("""

74. proc sql;

75. create table controls as

76. select distinct i.catkey,
77. i.titlecontrol,

78. i.itemid,

79. t.title,

80. t.author,
81. t.pubyear

82. from sirsi.items as i,

83. sirsi.titles as t

84. where i.catkey in (select distinct catkey_ebook
85. from df) and

86. i.titlecontrol = t.titlecontrol

87. order by i.catkey;

88. quit;
89. """)

90. results_dict = sas.submit("""

91. /* merge MARC and sirsi data */
92. proc sort data=df;

93. by catkey_ebook;

94. run;

95. data df;

96. merge df(in=d rename=(catkey_ebook=catkey))

97. controls(in=c);

98. by catkey;
99. if d;

100. providerID = compress(titlecontrol,,'k d');

101. label catkey = 'Catkey';

102. run;
103. """)

104. # back to python for output

9

105. sasdups = sas.sd2df(table='df', libref='work')

106. # group providers

107. providerpairs = [('EBSCO', 'EBSCO'),

108. ('ProQuest|ebrary', 'ProQuest-Ebrary'),

109. ('Project', 'PROJECT MUSE')]

110. for pair in providerpairs:

111. sasdups.loc[sasdups.provider.str.contains(pair[0], na=False),

112. 'provider_group'] = pair[1]

113. # group null values as “OTHER”

114. sasdups.loc[sasdups['provider_group'].isnull(), 'provider_group'] =

'OTHER'

115. # date variable in YYYY-MM-DD format

116. today = pd.Timestamp('now').strftime('%Y-%m-%d')

117. # variable for output file name

118. fname = 'EBS_dups_' + today + '.xlsx'

119. # create a sorted list of provider groups
120. providergroups = sorted(sasdups.provider_group.unique().tolist())

121. # output to excel with a separate worksheet for each provider group

122. with pd.ExcelWriter(fname, engine='xlsxwriter') as writer:
123. for group in providergroups:

124. sasdups.loc[sasdups['provider_group'] == group].to_excel(

125. writer, sheet_name=group, startrow=1, header=False,

index=False)

1 – 4. Load the necessary Python modules with the import statement. Note that Pandas and
ElementTree are assigned the names pd and ET.

6. Start as SAS session with the saspy.SASsession() method. The session is assigned the name
sas.

8. Assign a SAS libref with the saspy.saslib() method. Note that saspy is referred to by the name
sas from line 6. Throughout the script, saspy is referenced using the name sas.

9 – 31. Submit SAS PROC SQL code to the SAS session by using the saspy.submit() method. Two
SAS data sets are accessed from the “sirsi” libref and two SAS data sets are created in the work library of
the SAS session.

32 – 34. The two SAS data sets created from the PROC SQL code in lines 9 – 34 are imported to Pandas
data frames using the saspy.sd2df() method.

35 – 37. Rename the column “catkey” in each of the two DataFrames created in lines 33 and 34. The
method used is the DataFrame.rename() method. The first parameter columns= takes a python

10

dictionary as the argument. This specifies the current name and the new name. The inplace=
parameter specifies whether to return a new DataFrame or not.

38 – 39. This merges the two DataFrames from lines 32 – 34 using the pandas.merge() method. This
is equivalent to a SAS DATA STEP MERGE or a PROC SQL join operation. The merge() method has
many possible configurations. In this case, it is a simple inner join (as specified by the how= parameter)
on the “isbn” columns (the on= parameter) of the two DataFrames.

40 – 41. This creates a Pandas Series of unique values from the “catkey_ebook” column of the “dups”
DataFrame created in line 41. The Series is named “ebookcats”. The drop_duplicates() method
creates the unique values.

42 – 45. These lines create two variables, “serviceurl” and “suffix” that will be used to build a valid URL to
pass to the libraries’ API.

46 – 68. This block loops through each value of the “ebookcats” series from line 41 and passes it to the
libraries’ catalog API. Lines from the loop are examined in more detail below:

47. Create and empty Python list named “lst”. This is used to hold the results of the API calls.

48. Begin a Python “for loop” to iterate over each value in the “ebookcats” series. This is
analogous to a SAS DO LOOP.

49. Create an empty Python dictionary named “datalst” to hold the data elements retrieved from
the API. This dictionary is appended to the “lst” list and overwritten with each iteration of the loop.

50. Create a key in the “datalst” named “catkey_ebook” and assign it the value of the current
catkey in the loop iteration.

51. Concatenate the URL elements from lines 44 and 45 using the + operator. The current catkey
is added between. Note that it must be converted to a string using the str() function to be used
in a concatenation operation.

52. Send a GET request to the url constructed in line 51.

53. Begin a Python TRY block. Python Try – Except blocks are used for exception handling. The
Try block tests the code while the Except block handles the error or exception.

54. Raise any stored HTTPErrors.

55. Parse the API’s XML response (r.content) with the ElementTree.fromstring()
method. The parsed XML is named “tree”.

56. Combine a “for loop” and the ElementTree.findall() method to loop through all matching sub-
elements of the “datafield” tag. Note that the XML schema is used to simplify the path.

57 - 65. Within the “for loop” from line 56, begin another loop to iterate through all matching
“subfield” tags.

58. As in SAS, the IF statement is used for conditional execution. In this line, the
condition is whether or not the value for the “tag” key in the dictionary of attributes for the
“l” elements equals “506”.

59. The same as 58 but checking the “code” key.

60. Assign the text content of the XML element to the “UserAccessNote” key of the
datalst dictionary.

61 – 65. The same process as lines 58 – 60.

66. Append the “datalst” dictionary to the end of the “lst” list. “lst” will become a list of dictionaries.

67. This Except statement saves a request HTTPError as a variable named “e”.

68. Print the error from line 67 if it exists.

11

70. Construct a Pandas DataFrame named “df” from the list of dictionaries, “lst”.

72. Import the DataFrame from line 70 to a SAS data set named “df”. The data is saved to the “work”
library.

73 – 89. Submit SAS PROC SQL code to the SAS session by using the saspy.submit() method. Two
SAS data sets are accessed from the “sirsi” libref. The SAS data set from line 72 is accessed from the
“work” library. A SAS data set is also created in the work library of the SAS session.

90 – 103. This is the same as lines 73 – 89 except that the SAS code a PROC SORT and a DATA STEP
MERGE. Note that we are using the “df” data set from line 72.

105. Export the “df” SAS data set back to Python using the saspy.sd2df() method.

106 – 109. Create a Python list of tuples named “providerpairs”. The list is used in the following “for loop”.
Python tuples are sequences like lists but are immutable.

110 – 112. Loop through each tuple in the “providerpairs” list and use the DataFrame.loc method with
a conditional. The conditional checks if the “provider” column contains the first element in the tuple pair
and assigns the “provider_group” column the value from the second tuple element.

114. This line is essentially the same as line 111. The only difference is that the conditional checks for
null values in the “provider_group” column and assigns them the value of “OTHER”.

116. Combine Pandas Timestamp() and strftime() methods to create a date variable in the YYYY-
MM-DD format.

118. Create a variable for the output filename using the + concatenation operator and the date variable
from line 116.

120. Create a sorted list of unique values from the “provider_group” column by combining the sorted
function with the unique() and tolist() methods. The unique() method returns an array of unique
values from a Pandas series.

121 – 125. These lines create the final excel output with a separate worksheet for each “provider_group”.

122. The Pandas ExcelWriter class writes DataFrame objects into excel sheets. Using the with
statement will automatically close the writer object.

123. Start a loop to iterate over each element in the “providergroups” list from like 120.

124. Use the DataFrame.loc method to subset the “sasdups” DataFrame for the current value
of the “providergroups” list. This returns a DataFrame.

125. Continuing line 124: the to_excel() method is applied to the returned DataFrame. The
first parameter “writer” specifies the object from line 122. The sheet_name= parameter will label
each worksheet according to the current value of the “providergroups” list. startrow= indicates
the upper left cell row to start the output. The header= and index= parameters indicate whether
to write out the column names and index column.

CONCLUSION
SASPy enables you to move data between SAS and Python sessions. This paper discussed a case study
at the North Carolina State University Libraries where we are using SASPy with Python to access a large
SAS dataset on disk while other modules of Python handle a call to our catalog web service. This paper
began with a brief introduction of SASPy. Next using code from the complete script, the paper touched on
three common Python modules: Pandas, Requests and ElementTree. The final section stepped through
the script line by line.

While there is much more related to Python and SASPy than can be covered here, this paper may appeal
to SAS programmers who are interested in integrating Python into their toolkit with SASPy.

REFERENCES

12

McKinney, W. (2018). Python for Data Analysis : Data Wrangling with Pandas, NumPy, and IPython (Vol.
Second edition). Sebastopol, CA: O’Reilly Media. Retrieved from
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1605925&site=ehost-live

RECOMMENDED READING
• “10 minutes to pandas”:

https://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html#min

• “How to code in Python with SAS 9.4”:

https://blogs.sas.com/content/sgf/2018/01/10/come-on-in-were-open-the-openness-of-sas-94/

• “Introducing SASPy: Use Python code to access SAS” on The SAS Dummy blog:

https://blogs.sas.com/content/sasdummy/2017/04/08/python-to-sas-saspy/

• McKinney, W. (2018). Python for Data Analysis : Data Wrangling with Pandas, NumPy, and IPython

• Pandas “Comparison with SAS” documentation:

https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sas.html

• SASPy GitHub Repository: https://sassoftware.github.io/saspy/

• Vanderplas, J. T. (2016). Python Data Science Handbook : Essential Tools for Working with Data

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

John Vickery
North Carolina State University Libraries
(919) 513-0344
John_vickery@ncsu.edu

https://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html#min
https://blogs.sas.com/content/sgf/2018/01/10/come-on-in-were-open-the-openness-of-sas-94/
https://blogs.sas.com/content/sasdummy/2017/04/08/python-to-sas-saspy/
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sas.html
https://sassoftware.github.io/saspy/

	Abstract
	Introduction
	SAS Data sets used in the script
	SASPy basics
	starting a sas session
	sd2df method
	df2sd method
	submit method

	pandas, requests and elementtree
	Pandas
	Requests
	Elementtree

	Line-by-line through the code
	Conclusion
	References
	Recommended Reading
	Contact Information

