
 

1 

SESUG Paper 190-2019 

Conditionally Executing Data Steps and Statements Based on the Presence 
of Variables in a SAS® Dataset 

Charles D. Coleman, US Census Bureau 

DISCLAIMER 

Any views expressed are those of the author and not necessarily those of the Census Bureau. The 
Census Bureau has reviewed this product for unauthorized disclosure of confidential information. 
(Approval ID: CBDRB-FY19-ESMD-B00019.) 

ABSTRACT  

Sometimes a data step should only be executed if one or more variables are present in the input dataset.  
The same is true of statements within data steps.  This paper provides several macros to detect the 
presence of variables and counts of the present variables.  Examples show how these macros can be 
used to accomplish conditional execution for many scenarios.  These macros have the advantage of only 
using macro statements, thus avoiding the costs of opening datasets. 

INTRODUCTION  

Conditional execution is familiar to all programmers.  The classic method is the if/then/else construct, 
which is limited to the context of a program environment.  Programs in Base SAS® and the SAS® Macro 
Language are two examples of these environments.  Conditional execution using information external to a 
particular environment is generally not supported.  For example, Base SAS® has no means for the 
programmer to determine what variables are in a dataset once it is loaded. 

This paper uses information external to a data step to support conditionally running that data step and 
selected statements within it.  The external information consists of input dataset variables.  This paper 
presents macros to create macro variables that flag the existence of variables in a dataset, to count the 
number of such variables and a macro to do both.  In addition, a required utility macro is presented.  This 
utility macro creates a macro variable containing a list of all of the variables in the target data set.  The 
other macros essentially sequentially test each of the test variables for its presence in the data set and 
perform actions based on the results. 

After the macros are presented, examples are shown of their use.  The last macro demonstrates the 
power of this approach: it loops through a large number of datasets to ascertain the existence of a 
variable in each.  The examples are by no means exhaustive: the reader is encouraged to customize the 
use of the macros to his problem. 

EXTRACTING DATA SET VARIABLES: MACRO %GETVARS 

Macro %GETVARS queries DICTIONARY.COLUMNS to create macro variable &vlist containing all of the 
variables in datasest &lib..&dsn, as specified by its arguments.  Library DICTIONARY consists of in-
memory views that assemble run-time snapshots of the session properties when queried (SAS 2016, 
149-155).  This library can only be accessed using PROC SQL. 

The code for getvars.sas is: 

   %macro getvars(lib,dsn); 
      /*  Based on 
 https://communities.sas.com/t5/SAS-Tips-from-the-Community/SAS-Tip-
Easy-Way-to-Get-All-Variable-Names-From-a-Dataset/td-p/475815 
      */ 
      %global vlist; 
      proc sql noprint; 
         select upcase(name) into :vlist separated by ' ' 



 

2 

         from dictionary.columns 
         where memname = upcase("&dsn") and libname = upcase("&lib"); 
      quit; 
   %mend getvars; 

Arguments &LIB and &DSN specify the library and dataset, respectively.  The use of the colon in the 
select clause indicates that VLIST is a macro name rather than a dataset.  The “separated by” 
qualification assures that each variable name is separated by a blank. 

COUNTING SELECTED VARIABLES IN A DATASET: MACRO %COUNTDSVARS 

Macro %COUNTDSVARS counts the number of variables.  It puts the count of the variables listed in 
argument &var in dataset &lib.&dsn into global macro variable &ndsvars. 

The code for countdsvars.sas is: 

   %macro countDSVARS(LIB,DSN,VARS); 
      /* Input variables: 
         LIB:   Input library    
         DSN:   Input dataset name 
         VARS:  Variables whose presence is to be counted with blank 
separations 
 
         Output variable: 
         &NDSVARS:  Number of &VARS present in &LIB.&DSN 
 
         Programmed by: 
 
         Chuck Coleman 
         Economic Statistical Methods Division 
         U.S. Census Bureau 
         July 12, 2019 
     */ 
  
      %global NDSVARS;      *  Export &NDSVARS; 
 %local I J NVARS NVLIST; 
      %getvars(&lib,&dsn);   *  Put list of variables in &lib..&dsn into 
&VLIST; 
      %let VARS = %upcase(&VARS);  *  Make &VARS uppercase like the &VLIST&J; 
 %let NDSVARS = 0;   *  Initialize &NDSVARS to 0.  If no matches, 
will remain 0.; 
 %let NVARS = %sysfunc(countw(&VARS,%str( )));  *  Count elements of 
&VARS; 
 %let NVLIST = %sysfunc(countw(&VLIST,%str( )));  *  Count elements of 
&VLIST; 
 
 /*  Create macro variables VLIST&J to hold elements of &VLIST for ease 
and efficiency  */ 
 
 %do J = 1 %to &NVLIST; 
    %let VLIST&J = %scan(&VLIST,&J); 
 %end; 
 
 /*  Test for presence of &VARS in &lib..&dsn via &VLIST.  Increment 
&NDSVARS when one is found  */ 
 
 %do I = 1 %to &NVARs; 
    /*  Select test variable &I  */ 



 

3 

    %let CURRENTVAR = %upcase(%scan(&VARS,&I)); 
    /*  Loop through &VLIST via the &&VLIST&J  */ 
    %do J = 1 %to &NVLIST; 
  %if &CURRENTVAR = &&VLIST&J %then %let NDSVARS = %eval(&NDSVARS + 
1); *  If match, increment &NDSNVARS; 
    %end; 
      %end; 
 
   %mend COUNTDSVARS; 
 
Macro %COUNTDSVARS is straightforward.  It creates global macro variable &DSNVARS to hold the 
number of variables in argument &VARS found.  After a call to %getvars and some initializations, it 
creates macro variable &VLIST&J to hold the &J’th variable in &VLIST for each variable in &lib..&dsn.  It 
then loops through the variables contained in &VARS and the variables &VLIST&J to find matches.  The 
syntax &&VLIST&J forces the macro processor to return the value of &VLIST&J.  When a match is found, 
&NDSVARS is incremented.  If no variable is found, &NDSVARS remains 0. 

FLAGGING SELECTED VARIABLES’ EXISTENCE: MACRO %EXISTDSVARS 

Macro %EXISTDSVARS creates a variable &exist&VAR for each variable &VAR in argument &VARS.  
These variables take the value 1 if the corresponding variable is present, 0 otherwise. 

The code for existdsvars.sas is: 

   %macro existDSVARS(LIB,DSN,VARS); 
 /* Input variables: 
    LIB: Input library    
    DSN:    Input dataset name 
         VARS:   Variables whose presence is to be counted 
 
         Output variables: 
         &NDSVARS:  Number of &VARS present in &DSN 
    &exist&VAR:  Existence flags for each &VAR in &VARS: 1 if if &VAR 
exists on &lib.&dsn.  0 otherwise. 
 
         Programmed by: 
 
         Chuck Coleman 
         Economic Statistical Methods Division 
         U.S. Census Bureau 
         July 12, 2019 
    */ 
 
 %local I J NVARS NVLIST; 
 %getvars(&lib,&dsn);  *  Put list of variables in &lib..&dsn into 
&VLIST; 
 %let VARS = %upcase(&VARS); *  Make &VARS uppercase like the 
&VLIST&J; 
 %let NVARS = %sysfunc(countw(&VARS,%str( )));   *  Count elements of 
&VARS; 
 %let NVLIST = %sysfunc(countw(&VLIST,%str( ))); *  Count elements of 
&VLIST; 
 
 /*  Create macro variables VLIST&J to hold elements of &VLIST for ease 
and efficiency  */ 
 
 %do J = 1 %to &NVLIST; 
  %let VLIST&J = %upcase(%scan(&VLIST,&J)); 



 

4 

 %end; 
 
 /*  Test for presence of &VARS in &lib..&dsn via &VLIST.  Increment 
&NDSVARS when one is found  */ 
 
 %do I = 1 %to &NVARs; 
  /*  Select test variable &I  */ 
  %let CURRENTVAR = %scan(&VARS,&I); 
  /*  Initialize and make global &exist&CURRENTVAR    */ 
  %global exist&CURRENTVAR; 
  %let exist&CURRENTVAR = 0; 
  /*  Loop through &VLIST via the &&VLIST&J  */ 
  %do J = 1 %to &NVLIST; 
   %if &CURRENTVAR = &&VLIST&J %then %let exist&CURRENTVAR = 
1;  *  Raise existence flag if &CURRENTVAR is found in &VLIST; 
  %end; 
 %end; 
 
   %mend existDSVARS; 
 
Macro %EXISTDSVARS is nearly identical to macro %COUNTDSVARS.  The differences are that 
%EXISTVARS does not create &NDSVARS, instead creating one macro variable 
(&exist&CURRENTVAR) for each variable in &VARS in &lib..&dsn. 

COUNTING AND FLAGGING VARIABLES IN A DATASET: MACRO 
%EXISTANDCOUNTDSVARS 

Macro %EXISTANDCOUNTDSVARS combines the functions of macros %EXISTDSVARS and 
%COUNTDSVARS.  Its code is: 

   %macro existandcountDSVARS (LIB,DSN,VARS); 
      /* Input variables: 
    LIB: Input library    
    DSN:    Input dataset name 
         VARS:   Variables whose presence is to be counted 
 
         Output variables: 
         &NDSVARS:  Number of &VARS present in &DSN 
    &exist&VAR:  Existence flags for each &VAR in &VARS: 1 if if &VAR 
exists on &lib.&dsn.  0 otherwise. 
 
         Programmed by: 
 
         Chuck Coleman 
         Economic Statistical Methods Division 
         U.S. Census Bureau 
         July 12, 2019 
      */ 
 
      %global NDSVARS;   *  Export &NDSVARS; 
 %local I J NVARS NVLIST; 
      %getvars(&lib,&dsn);*  Put list of variables in &lib..&dsn into &VLIST; 
 %let VARS = %upcase(&VARS); *  Make &VARS uppercase like the 
&VLIST&J; 
 %let NDSVARS = 0;   *  Initialize &NDSVARS to 0.  If no matches, will 
remain 0.; 



 

5 

 %let NVARS = %sysfunc(countw(&VARS,%str( ))); *  Count elements of 
&VARS; 
 %let NVLIST = %sysfunc(countw(&VLIST,%str( ))); *  Count elements of 
&VLIST; 
 
 /*  Create macro variables VLIST&J to hold elements of &VLIST for ease 
and efficiency  */ 
 
 %do J = 1 %to &NVLIST; 
    %let VLIST&J = %upcase(%scan(&VLIST,&J)); 
 %end; 
 
 /*  Test for presence of &VARS in &lib.&dsn via &VLIST.  Increment 
&NDSVARS when one is found  */ 
 
 %do I = 1 %to &NVARs; 
    /*  Select tested variable &I  */ 
    %let CURRENTVAR = %scan(&VARS,&I); 
    /*  Initialize and make global &exist&CURRENTVAR  */ 
    %global exist&CURRENTVAR; 
    %let exist&CURRENTVAR = 0; 
    /*  Loop through &VLIST via the &&VLIST&J  */ 
    %do J = 1 %to &NVLIST; 
  %if &CURRENTVAR = &&VLIST&J %then %do; *  Match found; 
     %let NDSVARS = %eval(&NDSVARS + 1); *  Increment &NDSNVARS; 
     %let exist&CURRENTVAR = 1;   *  Raise existence 
flag; 
  %end; 
    %end; 
 %end; 
 
   %mend existandcountDSVARS; 
 

EXAMPLES 

EXAMPLE 1:  CONDITIONALLY RUNNING CODE BASED ON THE EXISTENCE OF ONE 
VARIABLE IN A DATASET 

This is really two examples: Example 1a uses macro %EXISTDSVARS to look for variable X in dataset 
EXAMPLE1 and creates variable &existX.  If X is found, it prints the contents of EXAMPLE1, which is 
simply the one observation variable X containing the string “Hello World!”.  Example 1b uses macro 
%COUNTDSVARS to count the number of variables found, in this case 1, to do the same thing. 

Example 1a 

The code for Example 1a is: 

   data work.EXAMPLE1; 
 length x $12; 
 infile datalines dlm=','; 
 input x $; 
 datalines; 
 Hello World! 
   ; 
 
   %existDSVARS(work,example1,x); 
 



 

6 

   %macro EXAMPLE1A; 
 
 %if &existX = 1 %then %do; 
 
    proc print data=example1; 
    run; 
 
 %end; 
 
   %mend EXAMPLE1A; 
 
   %EXAMPLE1A; 

Example 1b 

The code for Example 1b is: 

   data work.EXAMPLE1; 
 length x $12; 
 infile datalines dlm=','; 
 input x $; 
 datalines; 
 Hello World! 
   ; 
 
   %countDSVARS(work,example1,x); 
 
   %macro EXAMPLE1B; 
 
 %if &NDSVARS = 1 %then %do; 
 
    proc print data=example1; 
    run; 
 
 %end; 
 
   %mend EXAMPLE1B; 
 
   %EXAMPLE1B; 
 

An important thing to note in Example 1b is that it only works when one variable is selected.  Thus, 
Example 1a is to be preferred in this case. 

Output from Examples 1a and 1b 

Both examples produce the expected output, shown in Output 1. 

 
Obs x 

1 Hello World! 

  
 

Output 1. Output from Examples 1a and 1b 

EXAMPLE 2:  CONDITIONALLY EXECUTING CODE WITHIN A DATA STEP. 



 

7 

Example 2 counts test variables in a dataset.  In this case, variables X and Y are tested.  If at least one of 
them is found, data step EXAMPLE2_CONDITIONAL is executed.  This data step contains one 
conditionally executed statement for both X and Y.  In each case, it is to create a new variable containing 
the original variable, rounded. 

The code for Example 2 is: 

   data work.EXAMPLE2; 
 input x y; 
 datalines; 
 1.4 2.4 
 10.1 6.9 
 8.9 3.1 
   ; 
 
   %existandcountDSVARS(work,example2,x y); 
 
   %macro EXAMPLE2; 
 
 %if &NDSVARS >= 1 %then %do; 
 
    data EXAMPLE2_CONDITIONAL; 
  set EXAMPLE2; 
  %if &existX %then 
     xr = round(x,1);; 
  %if &existY %then 
     yr = round(y,1);; 
    run; 
 
    proc print data=EXAMPLE2_CONDITIONAL; 
    run; 
 
 %end; 
 
   %mend EXAMPLE2; 
 
   %EXAMPLE2; 

Example 2 uses macro %EXISTANDCOUNTDSVARS.  It uses macro variable &NDSVARS to 
conditionally execute the data step and PROC PRINT.  Within the data step, it uses macro variables 
&existX and &existY to conditionally execute data step statements.  A slightly more verbose alternative is 
to call %EXISTDSVARS and use &existX and &existY in the %if-statement condition.  The double 
semicolon at the end of each %if statement is required to end both the data step statement and the %if 
statement. 

Example 2 produces the output shown in Output 2. 

 
Obs x y xr yr 

1 1.4 2.4 1 2 

2 10.1 6.9 10 7 

3 8.9 3.1 9 3 

     
 

Output 2. Output from Example 2 



 

8 

As expected, variables xr and yr contain the rounded values of variables x and y, respectively. 

EXAMPLE 3:  USING AN AUXILIARY VARIABLE TO CONDITIONALLY RUN CODE ON 
OTHER VARIABLES 

Example 3 shows how the presence or value of a third variable can control the execution of code on two 
other variables.  It contains two identical %if loops that call %EXISTDSVARS to flag the existence of 
variables W, X and Z.  Data step EXAMPLE3_CONDITIONAL contains an %if statement to compute 
variable ZI only if variable W is present.  The only difference between the two %if loops is the input 
dataset EXAMPLE3: The first contains W and the second does not. 

The code for Example 3 is:   

   data work.EXAMPLE3; 
 input w x y; 
 datalines; 
 1 1 2 
 1 10 5 
 0 6 3 
   ; 
 
   %macro EXAMPLE3; 
 
 %existDSVARS(work,example3,w x y); 
 
 %if &existX and &existY %then %do; 
   
    data EXAMPLE3_CONDITIONAL; 
  set EXAMPLE3; 
     z = x/y; 
     %if &existW %then 
   zi = y/x;; 
    run; 
 
    proc print data=EXAMPLE3_CONDITIONAL; 
  title 'Example 3 with Variable W Present'; 
    run; 
 
 %end; 
 
 data EXAMPLE3; 
    set EXAMPLE3(drop = W); 
 run; 
 
 %existDSVARS(work,example3,w x y); 
 
 %if &existX and &existY %then %do; 
   
    data EXAMPLE3_CONDITIONAL; 
  set EXAMPLE3; 
  z = x/y; 
  %if &existW %then 
     zi = y/x;; 
    run; 
 
    proc print data=EXAMPLE3_CONDITIONAL; 
  title 'Example 3 with Variable W Absent'; 
    run; 



 

9 

 
 %end; 
 

%mend EXAMPLE3; 
 
   %EXAMPLE3; 

The macro call %EXISTDSVARS(work,example3,w x y) flags the existence of variables w, x and y in 
dataset EXAMPLE3.  The subsequent %if statement only executes if variables X and Y are found.  In 
Data step EXAMPLE3_CONDITIONAL, statement z = x/y; unconditionally executes.  The next 
statement executes only if variable W is present, as indicated by the value of macro variable &existW.  
The %if statement is required to avoid creating variable ZI if W is absent.  This statement clearly shows 
how data step statement execution can be made conditional on the existence of a dataset variable.  
Output 3 shows the output from this example.  Note that variable ZI is only created when variable W 
exists. 

 
Example 3 with Variable W Present 

 

Obs w x y z zi 

1 1 1 2 0.5 2.0 

2 1 10 5 2.0 0.5 

3 0 6 3 2.0 0.5 
 

Example 3 with Variable W Absent 
 

Obs x y z 

1 1 2 0.5 

2 10 5 2.0 

3 6 3 2.0 

    
 

Output 3. Output from Example 3 

Note that variable ZI is not created when variable W is absent. 

EXAMPLE 4:  LOOPING THROUGH DATASETS TO DETERMINE THE CODE TO EXECUTE. 

Example 4 shows the true power of these macros.  One-time use as in the previous examples only makes 
sense if a program is to be run multiple times on a changing dataset.  Example 4, in contrast, runs on 
multiple datasets sequentially.  In this case, it looks for datasets in the built-in library MAPS to find those 
that contain variable POP. 

Example 4’s code is: 

   proc datasets nolist nowarn; 
 delete EXAMPLE4_OUTPUT; 
   run; 
 
   /*  Put list of dataset names in library MAPS into variable &DSLIST  */ 
 



 

10 

   %global DSLIST; 
 
   proc sql noprint; 
      select unique memname into :DSLIST separated by ' ' 
      from dictionary.columns 
      where libname = 'MAPS'; 
   quit; 
 
   %macro EXAMPLE4; 
 
 %let NDSLIST = %sysfunc(countw(&DSLIST,%str( )));  *  Count elements of 
&DSLIST; 
 %do K = 1 %to &NDSLIST;  *  Loop through datasets in library MAPS; 
 
    %let DSN = %scan(&DSLIST,&K); 
    options nonotes; 
    %existDSVARS(MAPS,&DSN,pop); * Look for POP in MAPS..&dsn; 
    options notes; 
    %if &existPOP %then %do; *  POP found; 
 
  data TEMP; 
     length DSN $32; 
     DSN = "&DSN"; 
  run; 
 
  proc append base=EXAMPLE4_OUTPUT data=TEMP force; 
  run; 
 
    %end; 
 
 %end; 
 
   %mend EXAMPLE4; 
 
   %EXAMPLE4; 
 
   proc print data=EXAMPLE4_OUTPUT; 
   run; 
 

Example 4 uses macro %EXISTDSVARS to determine if a dataset contains a variable named POP.  If so, 
it appends the dataset name as variable DSN to dataset EXAMPLE4_OUTPUT.  It quickly examined 378 
datasets to find the two that contain POP, as shown in Output 4. 

 
Obs DSN 

1 USCITY 

2 WAKEABG 

  
 

Output 4. Output from Example 4 

CONCLUSION 

SAS® code can be conditionally executed based on the presence of dataset variables.  This paper has 
presented 3 macros and an enabling utility macro to accomplish this.  These macros can enable a 



 

11 

tremendous amount of conditional processing.  The examples, while simple, illustrate powerful ways to 
conditionally execute code.  Example 4, in particular, shows how these macros are most powerful when 
applied to multiple datasets. 

 

 

REFERENCES 

SAS Institute Inc. 2016. SAS® 9.4 SQL Procedure User’s Guide, Fourth Edition. Cary, NC: SAS Institute 
Inc. 

ACKNOWLEDGMENTS 

I would like to thank Ahmed Al-Attar and Jesus Lopez for programming assistance, and Suzanne Dorinski 
and Bonnie Kegan for review. 

RECOMMENDED READING 

• SAS® DATA Step Statements: Reference 

• SAS® Macro Language Reference 

CODE REPOSITORY 

All macros will uploaded to https://sourceforge.net/projects/chuckcolemansas/files/SESUG%202019/. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Charles D. Coleman 
Construction Survey Statistical Methods Branch 
Economic Statistical Methods Division 
U.S. Census Bureau 
CENHQ 5H482C 
Washington, DC 20233 
301-763-6068 
charles.d.coleman@census.gov 

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  


