SESUG Paper 258-2019
Improving Student Application Reporting Using a Slowly Changing Dimension
and SASe Data Integration Studio
Schoenheit, Lauren E.; Fantroy, Alexander K., North Carolina State University

ABSTRACT

For a selective university, shaping the incoming freshman class requires current operational data
on the student applications that have been received, the admissions decisions that have been
made, and the students that have committed in response, throughout the admissions cycle. A
point in time comparison with historical data serves as a benchmark to better understand and
anticipate the final makeup of the incoming students. To meet these demands, one such
institution shifted student application reporting from a Base SAS® program run on an ad hoc
basis, roughly twice a week, that created a data set of application information for that day and
saved it to a drive, to a scheduled SAS® Data Integration Studio job that created a slowly
changing dimension of year over year daily application information stored as an oracle table in
the university’s enterprise database.

Changing how the data was stored reduced storage space, as only new applications and change
records were added to the student application table instead of accumulating data

sets with a repeated record for every day the application was in the system. Scheduling an SASe
Data Integration Studio job removed the task of running the program from a person’s workload
as well as standardized the collection of student application data. Together, these changes
facilitated more frequent snapshots of student application data as well as increased processing
efficiency. A daily summary is loaded to SAS@Visual Analytics as the basis for a daily year over
year analysis of student application decisions.

INTRODUCTION

Admissions officers and enrollment managers need up to date information on applications as
they move through the admissions cycle to manage waitlisted applications and understand the
makeup of the incoming class. A comparison to previous years’ applications gives insight into
how the university should prepare to meet the needs of the incoming class. For example, will
course demands be similar to last year, will housing need more or fewer first year student beds.

OLD PROCESS

NC State collects application data through the admission application software, Admission Prose,
which loads data nightly to our PeopleSoft® Student Information System. The previous process
to pull application data out of SIS and create reports, required manually editing and running a
Base SAS® program. This program created and saved a SAS data set with the current application
data and then compared current application data to last year’s data from approximately the same
date. The data set from the previous year was manually selected by browsing a folder, seen in
Figure 1, with all of last year’s data and picking the data set dated closest, but not after today’s
date a year ago.

| [[= | Asr — O
Home Share WView
- v P <« OIRP VM Share (V:) » Data_Archive » IR » Admissions » ASR v @ Search ASR yel

s+ Quick access

Ea sis_combo_dataset_170404
Ea sis_combo_dataset_170321

Eﬂ sis_combo_dataset_170328
Ea sis_combo_dataset 170307

I Desktop # Easis_combn_d ataset_170222 Eﬂ sis_combo_dataset_170207
* Downloads + Easis_combo_dataset_ﬂmw Easis_combo_dataset_'l 61221
% Documents -+ Easis_combn_datasetjﬁuﬁ Eﬂsis_combo_dataset_'lﬁﬂmﬁ
= Pictures + Easis_combn_datasetj 60811 Eﬂsis_combo_dataset_'l 60302

018 Easis_combn_d ataset 160719 Eﬂ sis_combo_dataset 160703
= OIRP Share (5) Ea sic_combo_dataset_160621 Eﬂ ciz_combo_dataset_160620

535

535

Ei-i sis_combo_dataset 160613
[} sis_combo_dataset_160602
Ei-i sis_combo_dataset_160523
[} sis_combo_dataset_160509

Ei-i sis_combo_dataset 160606
[2] sis_combo_dataset_160331
Ea sis_combo_dataset_160516
[2] sis_combo_dataset_160503

@ OneDrive
Ei-i sis_combo_dataset_160502 Ea sis_combo_dataset_160423
& This PC [Z] sis_combo_dataset 160418 E2] sis_combo_dataset_160411
@ Network Easis_cumbo_datasetjﬁﬁdﬂd Esis_cumbu_dataset_'l 60328
a [} sis_combo_dataset_160321 [5] sis_combo_dataset_160316
Ei-i sis_combo_dataset_160314 Ea sis_combo_dataset_160307
EZ] sis_combo_dataset_160302 E2] sis_combo_dataset_160229
Ei-i sis_combo_dataset_160222 Ea siz_combo_dataset_160216
Eo] sis_combo_dataset_160208 E5] sis_combo_dataset_160202
Ei-i sis_combo_dataset 160201 Ei-ﬂ sis_combo_dataset 160123
Ea sis_combo_dataset_160120 Eﬂ sis_combo_dataset_160119
Ea sis_combo_dataset_ 160118 E sis_combo_dataset 160111
Ea sis_combo_dataset_160104 Eﬂ sis_combo_dataset_131216
Ea sis_combo_dataset_151202 Ea sis_combo_dataset 151116
Ea sis_combo_dataset_131112 Eﬂ sis_combo_dataset_131102
Ea sis_combo_dataset 150803 Ea sis_combo_dataset 150716
E:i-i sis_combo_dataset_130701 Eﬂ sis_combo_dataset_130616
Ea sic_combo_dataset_ 150601 Eﬂ ciz_combo_dataset_130518
551 items ==
Figure 1

A macro variable in the Base SAS® program was set to the date of the file and today’s date; see
below.

%let ymd =160816; ** YYMMDD <- change for each run to today!! used in file names, not
any calcs;

%let lymd6 = 150803; ** last year yymmdd, must match date in data set name in ASRSIS
library; ** in order to make valid comparison;

The process was generally run on Tuesdays and Thursdays during the admission cycle, but
required someone to be in the office to manually run the program to create the data sets. This
caused some weeks to be missed if people were on vacation. If the program had been run

inconsistently in the previous year, the comparison between the current application and last
year’s applications could be up to a two week difference, which can be a substantial amount of
time in the admissions cycle. For planning purposes, it is much better to have a consistent
comparison between this year and last. Also, at certain times admissions officers would want the
data updated more frequently than twice a week, which could not always be accommodated.

In addition to lacking consistent access to the information, the process was inefficient in the time
it would take to locate the comparison data set and update the program. The process also
required storing a large amount of redundant data, as each data set contained all the applications
received for the upcoming fall as of the date the program was run. Two years of application data,
the current year and the comparison year required approximately 10 gigs of space to store.
Additionally, the data was stored in SAS data sets that only one office could access. Other
offices interested in this data would have to collect and store it independently, causing
discrepancies in application data, duplication of work effort, and an even greater waste of
university disc space. To address these issues, it was decided to completely abandon the previous
process and develop a new process using a slowly changing dimension to create, store, and
disseminate application data.

What is a Slowly Changing Dimension (SCD)?

A slowly changing dimension is a technique to capture the change of your data over time. The
dimension table allows you to store current and historical data. We wanted to be able to track all
changes of the student's application data while they were in the application process. There are
numerous ways to implement a SCD, the most popular are below.

e Type 0 — Static
= No changes occur to the table
e Type 1 - No History
= QOverwrites current records, which means there are no historical records
being stored.
e Type 2 — Versioning
= Allows rows to be updated by inserting a new record, which keeps a
historical entry for the record.
e Type 3 —Previous Value
= When a tracked attribute is changed it adds a new column with the
previous value of that attribute.
e Type 4 — History Table
= Updates the current record but loads changes to another table.
e Type 6 — Hybrid
= Mixofl2and3

The way you choose to implement your SCD should fit your business needs.

WHY SCD TYPE 27

We chose to use the Type 2 method since it checked all the right boxes for our business needs.
The 2 main priorities of this project were to be able to track a student’s application process and
to have a point in time comparison to previous years’ applications. With the type 2
implementation we can record the changes to students’ applications while also keeping the
historical versions of their applications. This gives us the ability to grab point in time records
which we then can compare to previous point in time records. If we wanted to compare this
year’s applications from Jan 1% through March 1% to last years during the same time period, this
implementation gives us the ability to do that. It also gives us that version of the student’s
application and not the most current version.

IMPLEMENTATION

We used SASe Data Integration Studio to implement our ETL processes. Within DI Studio there
are many provided transformations that you can use to help with the manipulation of data. The
transformation showed in Figure 2 is used to implement our SCD. One of the most important
steps when implementing SCD Type 2 is to decide on which attributes you want the SCD to
track, which will trigger the insertion of new records.

[a1
e
ADW_ADMMAPPL

o]
ol
ADW_STU_BIO

o] z 3 o}
' . = ey X
ADW_EDUC_UG { L1} Creating Table | [[5%]) sco Type 2 gi;hnpm_

foemy ADW_TEST_
SCORE

ADW_EDUC_
GRAD

4 ADW_
ADMAPPL_ ...

Figure 2

The first step is to identify which columns you want to be overwritten with updated information.
These are Type 1 columns and we do not need to track their changes, we just want the most
updated values (Figure 3).

#ﬁ SCD Type 2 Properties

General
Type 1 Columns

Change Tracking

Code Mappings Options

Changes tabs are available for selection.

Ayailable columns:

Table Options

Business Key
Precode and Postcode

Selected columns:

Status Handling

Generated Key Detect Changes

Parameters Motes

Select the columns whose values should be overwritten. Only the columns that are not being used in the Change Tracking, Business Key, Generated Key, and Detect

Extended Attributes

NAME
ADM_APPL_CTR
NC_AD_APPLCTR_DCR

BIRTHDATE
NC_EG1

NC_EG2

NC_EG3

NC_EG4

NC_EGS

NC_EGE

NC_EGT

NC_GENDER
NC_HIGH_ED_LW_REL1
NC_HIGH_ED_LW_REL2
NC_POSTAL_MAIL
NC_STATE_MAIL

| NC_AFFIL_ALUM_R2
NC_AFFIL_ALUM_R1
EDUC_DEGREE_DT
EDUC_DEGREE
NC_COLL_TRF_SCH
NC_TRANSFER _DEGREE
NC_TRF_ATP_CD
NC_TRF_EXT_GPA
NC_TRF_SUMM_COMP
NC_UGRD_EXT_ORG_ID
NC_UGRD_FICE_CD
NC_UGRD_DEGREE

Cancel

Help

Figure 3

The second step is to identify the columns in your SCD that will store the change indicators

when a new record is inserted (Figure 4).

& sco Type 2 Properties

Use current indicator

Currentindicator column: | CURRENT_ROW

Cancel

Type 1 Columns Code Mappinas Options Table Options Precode and Postcode Status Handling Farameters Motes Extended Attributes
General Change Tracking Business Key Generated Key Detect Changes
Select the method and the target column or columns to track changes.
Date Column Mame Expression
Beginning Date START_DATE %%SYSFUNC(DATETIME(Q)
End Date EMD_DATE '01IANS55999:00:00:00'DT
[] Use version number
Version number column: {none)

Help

Figure 4

The third step is to identify the field where you will be storing the unique key for the SCD. This
key is automatically uniquely generated for every record inserted into the SCD (Figure 5).

& 5CD Type 2 Properties o
Type 1 Columns Code Mappings Options Table Options Precode and Postcode Status Handlina Parameters Notes Extended Attributes
General Change Tracking Business Key Generated Key Detect Changes

Select the target column to use as a generated key. The expressions are used to generate new values for new and changed dimension records. The macro variable
"MewMaxKey" is used to hold the maximum key value.

Column: | ADM_KEY ~

[] Generate retained key Define Max Key

Generate unique keys for each column in the business key

New record: sum (MewMaxey, 1)

Changed record: |sum(MewMaxKey, 1)

concd || o

Figure 5

The fourth step is to find the fields that uniquely identify your Business key. For this project the
Business key was the student’s emplid and the student’s unique application number (Figure 6).

78 SCD Type 2 Properties >
Type 1 Columns Code Mappings Options Table Cotions Precode and Postcode Status Handling Parameters Motes Extended Attributes
General Change Tracking Business Key Generated Key Detect Changes

Select one or more columns from the target table to be designated as the business or natural key. The business or natural key is an identifier used by the operational
systems_

Calurn Marme Description

1 FEMPLID EMPLID

2 [ADM_APPL_NER ADM_APPL_MEBR.
&% ¥ New Delete

Concs || 1o

Figure 6

The last step is to identify the columns you want the SCD to track to detect changes. Every time
the SCD detects a change in one of these columns, a new entry will be inserted with the same
business key, but with updated values of the columns that have changed (Figure 7).

78 S5CD Type 2 Properties

Type 1 Columns Code

General

Mappings Options
Change Tracking

Table Options

Tracking, Business Key, Generated Key. and Type 1 Columns tabs.

Ayailable columns:

Precode and Postcode
Business Key

Extended Attribu
Detect Changes

Status Handling
Generated Key

Parameters MNotes

The selected columns will be used to detect changes in the target table. If no columns are selected, all columns are used except for the columns selected in the Change

Selected columns:

tes

NAME
ADM_APPL_CTR
NC_AD_APPLCTR_DCR

¥
¥

ACAD_CAREER
ACAD_PLAN
ACAD_SUB_PLAN
ACAD_SUBPLAN_TYPE
MC_ACAD_PLAN_DESCR
MC_ACAD_SBPLN_DCR
ADMIT_TYPE
NC_ADMIT_TYPE_DCR
ACAD_PROG
ADMIT_TERM

DEGREE
MC_ADM_AW_TRNS
MC_ADM_AW_VISA
NC_ADM_RECOMMEND
NC_ADMITTED
NC_APPLIED
NC_AW_DGP_RACT
NC_CIT_COUNTRY
NC_CITZ_CNTRY_DCR
NC_CITZ_STAT_DESCR
NC_DENIED
NC_ENROLLED
NC_PLAN_FIRST
NC_PLAN_SECOND
MNC_PROG_ACTN_DCR

Cancel

Help

Figure 7

Our implementation of the Type 2 SCD will monitor a set of attributes of the student’s
application and will insert a new record when they are changed. For example, one of the
attributes that we selected to monitor was application status (nc_prog_reasn_dcr). Our process
runs on a nightly bases to pick up changes to the student’s application. For example, if a student
has a change to his application status, a new record is inserted into the SCD with a new start
date, closing the previous record with a new end date, and setting the current_row = Y’ for the
new record. As you can see in Figure 2, this student’s application status has changed multiple
times and all the previous attributes of the student’s application are saved in the new row and
only the new entry of the application status is updated. The important attributes in the new row
are start_date, end_date, current_row and adm_key (Figure 8).

Start Date — The date the value of the attribute was changed.

End Date — The date the record was closed due to a change in one of the attributes that is being

tracked.

ADM Key — The unique identifier for the SCD.

Current Row — Indicates the most recent record for that application.

{} EMPLID|{} AD... |{: ACAD_PLAN |{} ACAD_CAREER |{} NC_EG_SUMMARY |{} RESIDENCY |{} NC_ADMITTED |{} NC_APPLIED |{} ACTCOMP |{} NC_PROG_REASN_DCR {} START_DATE |{} END_DATE |{} ACTHMTH |{; CURRENT_ROW |{} ADM_KEY|

{null} |{null) 24-0CT-18 |20-WOV-18
(null) {mull) 20-NOV-18 12-DEC-18 (null) N

2200... 005... 16INTSTBRX UGRD White ouT n ¥
e 30 {null) 12-DEC-18 22-FEB-1% 26N
4
e

3 200... 005... 16INTSIBE UGRD White cuT

4 200... 005... 16INTSTBA UGRD White ouT 30A01-Admit - Fall 22-FEB-19 16-APR-1% 26N

o

5200... 00S... 16INTSTBRZ UGRD White ouT 30N0l-Withdrawal - Will Not Ente 16-RFR-19 01-JRN-99 28Y

S

Figure 8

DATA CLEANING

Now that we have our dimension table/process established we can begin to validate and clean
our data. Data is not always in the format that you need and business logic needs to be applied
to get clarity out of our data. This process could have been done during the load to the SCD but
we wanted to keep that data as raw as possible, just in case we wanted to apply a different set of
business logic in the future.

The first step we did was to get the correct people at the table to determine which attributes from
the SCD are needed in the reporting data set and which values may need to be transformed.
Once that was complete, we began putting together a process to pull the data out of the SCD and
load it to the staging area. We did this ETL process also within in DI Studio.

One priority of this project was to create a data set that would give us the ability to do point in
time comparisons. We wanted to give Colleges within the University the ability to compare their
current application numbers with previous years.

SELECTING REPORTING DATA

The first step was to identify which applications we want to load to the reporting data set and
pull them into the staging area. For point in time comparison, we needed all applications
submitted up to today and needed all the applications for the same time period for the previous
year(s). This point in time data set will consist of 3 sets of data (current year, last year and end
of last year). Since our SCD process has been running for multiple years we are able to do this
by using start_date, end_date and current_row attributes in the SCD to select the correct records.

Current year = All applications currently submitted in their current state (current_row = Y”,
start_date = current_year)

Last year = All applications submitted at this time last year. (start_date <= todays date of last
year) We do not care if it is the most recent version of the application (current_row in Y’ or ‘N’)
as long as the application falls within the time period. If there are multiple versions of the
application during the time period, then we will grab the most recent.

End of last year = The final state of each application at the end of last year’s application cycle
current_row = ‘Y’, start_date = last_year. This will give us the last state of this application.
This will allow us to see if we are on pace to meet or exceed last year’s application numbers.

In the staging area we use the Extract transformation within DI Studio to extract the correct time
period and apply necessary business logic (Figure 9).

1172949
119811389
1248073
1309786

Eﬂ e |-—> [% AP Test Scores [-]-

————— @
Apm PR | > e
DAILY_HIST =7 Fields -,
e Computed fekds for \
SEEEEEE
L (—
= Daily i
@ ol E% Comparisons =
PS_EXT_ORG_ 7 Computed i
D TBL_ADM — > |Sp EXTORGID Fields LD-
Hiq
—GEe—t——t
o E:%LislVei!Tohl =

=
-

Figure 9

PS_NC_SDM_ |
-

TSTDC_VW
ADW_ L/
INTRDISCP_...
ADW_ L
COLLEGE ...

Apps

Applications

Most Recant .
App before...

n

—>

Eﬁ’j Table Loader

%m
—>[77] Table Laader

(6)0—m—)
Most Recent
~ 7% appoefore.. = 1 :'

L

~

Within the Extract transformation you can see where we begin applying the business logic

(Figure 10).

Target table: Extract (WXHHSH7)

R NEEIIRNLE R S 4= SRR

RPT_ADM_
DAILY_COMP

RPT_ADM_
DAILY_COMP...

N Column Expression Length
105 (i) NC_TRF_EXT_GPA IFN{NC_TRF_EXT_GPA > 0 AND NC_TRF_EXT_GPA IS NOT NULL, NC_TRF_EX... 3=
151 (i) NC_GRAD_GPA IFN(MC_GRAD_GPA <=0, . NC_GRAD_GPA) 8
17 (i) ENROLLED_FLG IFN{NC_ENROLLED ='Y',1,0) 3p
13 iz DENIED_FLG IFN{NC_DENIED ='Y',1,0) 3p
12 (i) AWAIT EVAL_FLG TFN(MC_AW_DGP_RACT ='Y',1,0) 3=
15 iz APPLIED_FLG IFN{NC_APPLIED ='Y',1,0) 8=
15 iz ADMITTED_FLG IFN(MC_ADMITTED ='Y',1,0) 3k
11 iz RECOMMEND_FLAG IFN{NC_ADM_RECOMMEND ="Y",1,0) 3k
10 iz PENDING_FLG IFN{MC_ADM_AW_VISA ='Y',1,0) 3p
14 (i) TRANS_CONF_FLG TFN(MC_ADM_AW_TRMNS ="r",1,0) 3=
= 19 (i) GRE_VERB IFN{GREVERE2 =0, .,GREVERBZ) 8=
TSTDC_VW ‘- z0 29 GRE_QUAN TFN{GREQUAN2 =0, ., GREQUANZ) 8
| ——— 21 (i) GRE_AWA IFN{GREAWA =0, ,GREAWA) 3=
[j ADW_ |_-' 95 () EXT_GPA IFN{EXT_GPA > 0 AND EXT_GPA IS NOT NULL, EXT_GPA,.) 8=
) [MTRDISCR — 95 (i) CONVERT_GPA IFN(COMVERT_GPA > 0 AND COMVERT_GPA 1S NOT NULL, COMVERT_GPA,.) 8
| _ 27 {2 GA_TR_FLG IFN{ADMIT_TYPE IN (TRD', TRI,/A2D',A2I/BAR’),1,0) 8=
[’:j ADW_ ‘_- 25 2 INT_UNG_FLG IFN(ADMIT_TYPE IN (JNT') AND ACAD_CAREER = UGRD',1,0) 8=
— COLLEGE . | 26 @ GA_FR_FLAG TFN(ADMIT_TYPE IN (A1D', A1l /FRD',FRIY,1,0) s
85 Ay NC_GENDER IFC{NC_GENDER =M, Male’ IFC(NC_GENDER = F',Female’,ERROR’)) 10p=
246 i, FIRST_GEN IFC (substr(NC_HIGH_ED_LV_REL1,1,1)in (B~ "C", D", E",F, M", ") and subs... 8
3 Ay INSTR_LOC CASE when ACAD_SUBPLAN_TYPE = 'DTK' then 'Distance'when ACAD_SUEPLA... 10p=
5 /A COUNTY_DESCR lcase when NC_TUI_RES_CODE between ‘001 and ‘100" then CATT(NC_TUIL R... 20
248 @ ETHNIC_DESCR. ICASE when NC_IPEDS_SUMMARY ='1' then ‘Nonresident alien’ when NC_IPED... 50
+ A ethnic_short_descr CASE when NC_IPEDS_SUMMARY ='1' then Non-Res Alien'when NC_IPEDS_S... 40
249 /A STUDENT_AFFIL_ALUM CASE WHEN NC_AFFIL_ALUM_R1 ='ALUM' OR NC_AFFIL_ALUM_R2 ="ALUM T... 8
& iy TUI_RES case when NC_TUI_RES_CODE <101 then 'NC'_when NC_TUI_RES_CODE >'... 3k
2z /A ADMIT_GROUP [CASE WHEN ADMIT_TYPE LIKE 'FR%' AND PROG_ACTION='COND' THEN 'UIEF"... 8
Output | - 5 Ay CLASS (CASEwhen DEGREE in(PHD',;EDD',DDES) then DR’ when substr(DEGREE,1,1)="... 3=
9 /A COUNTRY_DESCR. case when NC_TUI_RES_CODE between '001' and '154' then 'United State... 40/
7 i STATE_DESCR case when NC_TUI_RES_CODE between ‘001" and '100' then North Carolin... 20}

Figure 10

| am coder at heart, but DI Studio has decreased my development time for a number of projects.
Within these transformations you also have the ability to write as much SAS code as you want.
There is a code tab in all the transformations where you can see what SAS code is actually being
generated. As you can see in Figure 11, you have the option to modify the code or write your

own.

P8 Computed Fields Properties b

General Where GroupBy Order By Mappings Options Table Options Code Precode and Postcode Parameters Notes Extended Attributes

Code generation mode: | Automatic - * * [[] Exdude transformation from run
M g5 B &) | %= [lser written body

e all user written | = &

+ srep: Compured Fields ASH364YT.CADOOESE *

* Transform: Extract =

* Description: Computed fields for admissions reporting table =

* spreadshest on google driwe / gathered *

= byhlexLaurenStevenloe =

+ *

Source Table: ADM_AFPL_DATLY HIST - ASH364YT.BFO000SW

= ent_rpt.ADN APPL DAILY HIST =

Target Table: Extract - work.W<HHSHT ASH364YT.CH000BAZ *

+ *

* Warnings: =

Mapped source columns do not match columns used in expression. *

* Mapped source columns do not match columns used in expression. "

* Mapped source columns do not match columns used in expression. =

+ wy

%let transformID = “quote (ASHI&4AYI.CAOOOESK)
zlet crans_rc = 07
%let etls stepitartTime = %sysfuncidatetime(), datetimeZ0.):

/% hocess the data for DE4 ENTERPRISE_RFT #/

LIENAME ent rpt ORACLE DECLIENT MAX BYTES=1 DE_LENGTH SEMANTICS EVTE=NO update lock type=row INSERTEUFF=10000 FREADEUFF=1
PASSWORD= :

srcSekissyslibre) ;

%let SYSLAST = snroquoteient_rpt.ADM AFPL_DATLY HIST):

%let ETLE_SYSLAST = &5T3ILAST:

J¥---- Start of Fre-Process Code -——-%/

zlet cdav = 3FYSFUNC(TODAY(11: he

< >
Server: | =default> ~ View Step Code

Figure 11

Below is our ETL process flow within DI Studio that is used to create our SCD and reporting
data sets (Figure 12).

3~ [3 Jobs
=- [Admissions Data Warehouse
= [000_DATA_WAREHOUSE
e 3 100_ADW
ADW _ADMAPPL_P
ADW _ADMAPPL_SCD
ADW _ADMAPPL_VERIFY
ADW _APPL_DAILY_HST
ADW _APPL_DAILY_SCD
ADW _BCKIUPS
ADW _EDUC_UG_SCD
ADW _INTRDISCP_PRGMS
ADW _SDM_TEST
ADW _STU_BIO_SCD
ADW _SYS_CONFIG
0_TRAMNSLATION
ADM_EMROLL_PROJECTIONS
ADW _COLLEGE_TR
ADW _RACE_TR
0_REPORTIMNG
Archiwve
RPT_ADM_AFPP_STATLS
RFT_ADM_C_DAILY_COMP
RPT_ADM_DAILY _COMP
RPT_ADM_PRE_EMROLLMENMNT
RPT_ADM_PROJIECTIOMS
- [300 _vALIDATION
L. E%% ADW_ERROR
o — - .

G

]
=
[
o

5 3
k}

(]

R D g

Figure 12

REPORTING

The last step in the process is the visualization of the data. We currently use SASe Visual
Analytics 7.4 for our reporting needs. The data sets are refreshed/uploaded to the LASR server

every morning via DI Studio.

{z} (10 15 8
RPT_ADM_ =3 SAS LASR - = RPT_ADM_
APP_STATUS Analytic Serv... APP_STATUS

{1} 143
RPT_ADM_ ’3 - . RPT_ADM_
DAILY_COMP % Analybc Serv... 0 DAILY_COMP

@) , a
RPT_ADM_ | S S | | RPT_ADM_
PROJECTIONS... 3 Analybc Serv... Q PROJECTIONS...

Figure 13

There are a variety of ways the reports are distributed (email, custom dashboards, saved URL’s
and embedded reports on the department’s website). User access for the reports are controlled
through SAS Metadata security. Below are some screenshots of one of the Graduate Schools VA
Reports that were created from the final reporting data set. We also have a DEMO version of the
report below with artificial data that we use for demonstration purposes that is open to the public.
DEMO Graduate Admissions Management Report

4 Graduate Admissions Comparison Report w i @@ oc

— e o T A S et o i o GRE Percenties P O e e e TOEFL Scores e e

O
[]
ma

Summary Applicant Cre Selectivity & Yield

T D

GPA by Callege

1 =

Non-NC US States

Graduate Admissions
Management Report

GRE Percentiles

Non-US Countries

Apply/Admit Comparison

Section Descriptions

Figure 14

https://sasvaext.oit.ncsu.edu/SASVisualAnalyticsViewer/guest.jsp?appSwitcherDisabled=true&reportContextBar=false&reportViewOnly=true&reportPath=/Shared%20Data/DEMO/Reports&reportName=Graduate+Admissions+Comparison+Report

mparison Report ® i B oc
nnnnnnnn Frevo— = oR e Gender v || Tulion Rms
| Apelied R 2nde a ned ¥
Applied
a1

e

| HE

1082
I,
17094
—17037
7421
&y
2005
I, >
825
1150
s03s
— I, -
1816
I
sas2
I 5
3847
[, - -+
738
| O
| =
Figure 15

This process automated the data capture and creation of the reporting data set, allowing for data
to be consistently collected on a daily basis. The process also centralized the data so departments
across the university can report admissions data from the same data source saving space and
ensuring consistent reporting. Uploading the data to VA nightly refreshes the report giving
enrollment managers access to the most recent data.

