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ABSTRACT  
Forecasting variables of interest in time series analysis can be quite intriguing. It can also be challenging 
to identify various factors that predict time series data patterns. For example, time series forecasting has 
been effectively applied in scheduling nurses in hospital emergency rooms, where the number of patients 
routinely fluctuates throughout the day based on the time of month and time of year. Similarly, time series 
forecasting has been helpful in forecasting credit card use by cardholders based on their past card usage 
history. The tricky part in modeling time series data is to combine variables such as seasonality, trend, 
and regressor components in one model to develop an accurate forecast. Whereas SAS/STAT® PROC 
ARIMA (Autoregressive Integrated Moving Average Procedure) offers SAS users a classical approach to 
estimating models for time series data with autoregressive, differencing, and moving average structures, it 
is also possible for SAS users to fit these same models to time series data using Bayesian approach with 
SAS/STAT® PROC MCMC (Markov Chain Monte Carlo procedure). The intent of this paper is to provide 
SAS users with example code and demonstrations on how to use PROC MCMC to estimate models 
suitable in time series analysis.  

Keywords: PROC MCMC, Bayesian Structural Model, PROC ARIMA, Time Series Forecasting 

INTRODUCTION  
A remarkable application of Markov Chain Monte Carlo (MCMC) methods in statistical science came 
about through a statistical publication by Tanner & Wong (1987).  They disseminated its usefulness for 
posterior distribution calculations to statisticians. Till then frequentist statistical methods were used in 
practice to address unknown parameters by considering them as fixed constants.  Since the classical 
statistical methods consider parameters as fixed constants, probabilistic statements could not logically be 
made using these methods. In contrast, the Bayesian approach is to address unknown parameters (or 
uncertainty about parameters) through probabilistic statements and distributions rather than exact value 
as described earlier with classical statistical methods.   

Per SAS (2014), the Bayesian approach to estimating parameters has three fundamental steps. These 
steps are: 

1. Based on previously known information, facts, or subject expertise, a probability distribution is 
assigned to parameters, which is known as prior distribution (before the review of data of 
interest); designated by π(ϴ).  

2. Based on observed data variable of interest (y), a statistical model p(y|ϴ) to describe distribution 
for y is selected, given a model (likelihood function). 

3. Previous knowledge is enhanced by merging prior distribution knowledge with observed data by 
calculating a posterior distribution, p (ϴ|y). 

The Bayesian approach typically includes extensive computations by simulation to derive posterior 
distributions in all but the most trivial applications. That is, modern Bayesian computation is typically 
accomplished by randomly sampling values from the target posterior distribution and then inferring the 
posterior distribution parameters and shape from summary statistics derived from the generated posterior 
sample. 

PROC MCMC offers users a suite of algorithms to implement MCMC methods, such as the self-tuning 
Metropolis-Hastings algorithm. Different algorithms define rules for taking sequential samples of random 
variables from the target distribution. In an MCMC process, however, each sample depends on the 
immediately preceding sample denoted by l1 or rv.1 (rv=random variable, and l1=immediately preceding 
sample). Hence this linked event is referred to as Markov Chain.  
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Monte Carlo integration is then utilized to estimate the parameters that define a target posterior 
distribution with the MCMC sample.  

This dataset provides monthly international airline passenger counts from Jan 1949 to Dec 1960 in what 
many airline industry enthusiasts and airline passengers consider as “Golden age of air travel”. SAS 
documentation on PROC ARIMA provides the worked example of the same dataset.  

PURPOSE  
The purpose of this paper is to demonstrate the use of PROC MCMC procedure for time series data. 
Time series forecasting involves prediction of future observations based on a trend in previous data. 
Descriptive time series modeling involves analysis of existing time series data that dissects level, trend, 
seasonality, and noise components.  

This paper demonstrates the time series application of PROC MCMC through international airline 
passenger count data. Because of the centrality of this dataset in this paper, a brief description is in order. 
This is the dataset used by Box and Jenkins as an example to explain time series applications in their 
seminal work. It provides monthly international airline passenger counts from Jan 1949 to Dec 1960 in 
what many airline industry enthusiasts and airline passengers consider as the “Golden age of air travel”. 
We selected this database because SAS documentation on PROC ARIMA provides the worked example 
of the same dataset for reference when discussing the application of PROC MCMC to this dataset in time 
series forecasting. We use international airline passenger data from 1949-60 to compare the two SAS 
procedures mentioned above.  

Time series forecasting involves prediction of future observations. Descriptive Time Series modeling 
involves analysis of existing time series data that dissects level, trend, seasonality, and noise 
components. Per Scott and Varian (2013), trend and seasonality are captured by time series component 
of the MCMC model while regression component captures relationship between factors impacting the 
response variable.  

Per Larsen (2016), Bayesian Structural Time Series (BSTS) model with unobserved components provides 
better transparency than ARIMA models as its method does not rely on differencing, lags, and moving 
averages. In addition, one can visually inspect the underlying components of the model in the MCMC 
procedure.   

The following points from Larsen (2016) provided further motivation for authors of this paper to simulate 
the airline model using SAS PROC MCMC procedure: 

 MCMC handles uncertainty better as one can quantify posterior uncertainty of individual 
components; 

 Regressors, unobserved trend (local level term), and seasonality can be estimated 
simultaneously; 

 Control the variance of components; 
 Make assumptions with prior distributions of parameters; and, 
 An ARIMA Time Series model can be recast as a structural model. 

The basic Structural Time Series model is represented by the following algorithm per Ghosh, Prajenshu, 
and Wadhwa (2017): 

  (1) 

Equation (1) above shows   is the observed values of response variable,  is the trend component,  is 

the cyclical component,  is the seasonal component, and  is the irregular component. All these 
components are of stochastic nature, while Bayesian structural time series shows autoregressive 
behavior with more weight attributed to the value that is immediately preceding the current value, i.e., and 

might have correlation with a , than to for example. 

As the example chosen to demonstrate in this paper is based on time series with dependencies on 
random lag variables, Per SAS Institute (n.d.), the equations that follow demonstrate the dependencies 
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and relationships to explain the time series in theoretical constructs that have trend, mean, and 
seasonality. 

Model-Equations Interpretation # 

 

Observational Model (1) 

 

Trend and seasonal effects (2) 

 

Evolution in mean (3) 

 

Increments in mean (4) 

 

Seasonality (5) 

 

Random variable for seasonality (6) 

 

The first equation (observational model), states that response variable is normally distributed, and its 
mean is indexed by time which indicates that the response variable is nonstationary. The second 
equation (trend and seasonal effects) states that the mean of response variable includes a combination of 
trend and seasonality. The third equation (evolution in mean), states that the trend follows random walk 
and drift. The fourth equation (increments in mean), states that drift term follows first order autoregressive 
process. Fifth equation (seasonality) states normally distributed random shock prevails with mean equal 
to negated sum of three previous shocks. Per Dickey (2004), the sixth equation (random variable for 
seasonality) models random seasonality effects. This last feature is further explained in the Method 
section below. 

METHOD 
PROC MCMC is a flexible simulation procedure to fit wide range of Bayesian models (SAS 2016). In 
reference to this procedure, it treats parameters as unknown random variables and makes inferences 
from posterior distributions of parameters. From Bayes Theorem, posterior distribution is a product of 
likelihood function and prior parameter distribution. Per SAS (2015), MCMC Methods sample random 
variables consecutively from a target distribution. Each sample depends on the previous sample. This 
concept is referred to as Markov Chain. Using predetermined number of samples, simulations introduce 
additional level of uncertainty to the accuracy of posterior estimates. Monte Carlo is used to approximate 
an expectation by using Markov Chain samples. Metropolis algorithm is used to generate sequence of 
samples from joint distribution of multiple variables. This is the foundation for MCMC. 

For the four models to obtain posterior distribution the following steps were taken: 

 Accessed sas dataset available at SASHELP.AIR that has DATE (Month and year) and AIR 
(international airline passenger count) variables; 

 Added month and year variables to the dataset and took natural logarithm of AIR variable and 
created a new column “logair”. Per Lütkepohl & Xu (2009), using logarithms of variables help with 
significant gains in forecast precision if log transformation makes the variance more 
homogeneous for the entire sample.  

 Applied PROC TIMESERIES data to plot the data to graphically view to understand data better 
before using PROC MCMC. 

 Applied PROC MCMC for data (called the updated dataset Series G) and defined parameters 
(refer to Model equations and interpretation above) to account for trend and seasonality. 

 Parameters to account for trend and seasonality were declared; 
 Prior distributions were assumed for relevant parameters that account for trend and seasonality; 

And assumed standard distributions for getting prior distribution of parameters; 
 Random statements were developed for declaring random effects of parameters; 
 Referred to Example 2: UK Coal Consumption from SAS (n.d.) article for developing PROC 

MCMC program statements  for Model 0, Model 2, and Model 3; 
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 Referred to Dickey (2004) article for developing the random statement for declaring seasonality 
parameter for Model 1; 

 Trend and Seasonality were simultaneously declared in the likelihood function (assumed Normal 
distribution) for the response variable ( Passenger Count or Log Passenger Count); 

 Effective Sample Size table and trace plots for parameters are generated as default.  
 PROC FORMAT was used to format X-Axis (Time in years) for posterior distribution plots; 
 PROC SGPLOT procedure was used to generate plots of posterior distribution forecast for each 

model.  

CODE 
LIBNAME AIRLINE '\\<servername>\<Drive>\7.1 EG 
Projects\<Dept>\murali.sastry’; 
%LET extension=xlsx; 
%LET folderpath = \\'\\<servername>\<Drive>\7.1 EG 
Projects\<Dept>\murali.sastry’; 
options mlogic mprint;*Import data, create variables, and format 
values; 
filename datfile "&folderpath\Airline_Passenger_Data"; 
PROC IMPORT datafile=datfile 
    out=AirData  
    dbms=xlsx 
    replace; 
    getnames=yes; 
   run; 
PROC SQL; 
Create table work.Air as 
 Select t1.DATE 
 ,t1.Passenger_Count 
 ,month(t1.DATE) as Month 
 ,year(t1.DATE) as Year 
 ,log(t1.Passenger_Count) as logcount 
 from work.AirData t1 
 ; 
QUIT; 
  ODS GRAPHICS ON; 
  ODS EXCLUDE NONE; 
  ODS RESULTS; 
*Plot data; 
PROC TIMESERIES data=Air plot=series; 
      id DATE interval=month; 
      var logcount; 
   run; 
  
*Insert sample for prediction check; 
DATA seriesG; set Air end=eof; 
  output; 
  if eof then do; 
   do year=1961 to 1962; 
  do month=1 to 12; 
   Passenger_Count=.; logcount=.; output; 
  end; 
   end; 
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  end; RUN; 
*Holdout sample for prediction check; 
DATA seriesG; set seriesG; 
  holdout=logcount; t=(_N_-1); 
  if year(date)>1959 then logcount=.; 
RUN; 
*Model 0: Bayesian Structural Time Series Analysis; 
PROC MCMC data=seriesG NMC=500000 NBI=50000 thin=100 seed=1234 
outpost=posterior0; 
  PARMS mu0; 
  PARMS s2_s s2_mu s2_e; 
  prior mu0 ~normal(0,var=2);  
  prior s2: ~igamma(shape = 3/10, scale = 10/3); 
  random s~normal(0,var=s2_s) subject=month; 
  random mu~normal(mu.l1, var=s2_mu) subject=t icond=(mu0); 
  model logcount~normal(mu + s,var=s2_e); 
  preddist outpred=outpred; 
  ODS output PredSumInt=PredSumInt0; 
RUN; 
*Forecast data Model 0; 
DATA forecast0; 
  merge seriesG PredSumInt0; 
run; 
PROC FORMAT; 
 value timefmt 13='1950'  
                  37='1952'  
                  61='1954'  
                  85='1956'  
                  109='1958'  
                  133='1960'; 
PROC SGPLOT DATA=forecast0; 
  title1 "Model 0: Bayesian Time Series Analysis Forecast 0"; 
  title2 "Monthly Passengers (1949-1960)"; 
  format t timefmt.; 
  series x=t y=logcount / LINEATTRS=(color=red pattern=longdash); 
  series x=t y=holdout / LINEATTRS =(color=red pattern=dot); 
  series x=t y=mean / LINEATTRS =(color=blue pattern=solid); 
  YAXIS label="Count"; 
  XAXIS values=(13 37 61 85 109 133) ranges=(1-168) label="Year"; 
  REFLINE 133 / axis=x LINEATTRS=(color=black pattern=dash); 
  REFLINE 6.5 / axis=y; 
  band x=t upper=HPDUPPER lower=HPDLOWER / transparency=.5; 
run; title1; title2; 
*/Model 1:Bayesian Structural Time Series Analysis/*; 
PROC MCMC data=seriesG NMC=750000 NBI=50000 thin=100 seed=1234 
Diagnostics=MCSE;       
  PARMS mu0;       
  PARMS s2_s s2_mu s2_e;       
  prior mu0 ~normal(0,var=2);        
/*  prior s:~normal(0,var=s2_s) subject=month;*/     
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  prior s2: ~igamma(shape = 3/10, scale = 10/3);     
  
  a=s.l1 +(s.l12-s.l13);       
  random s~normal(a,VAR=s2_s) subject=month;     
       
  random mu~normal(mu.l1, var=s2_mu) subject=t icond=(mu0);   
     
  model Passenger_Count~normal(mu + s,var=exp(s2_e));    
   
  preddist outpred=outpred1;       
  ODS output PredSumInt=PredSumInt1;       
RUN;              
*Forecast data; 
DATA forecast1; 
  merge seriesG PredSumInt1; 
RUN; 
/*proc format;*/ 
/* value timefmt 13='1950' */ 
/*                  37='1952' */ 
/*                  61='1954' */ 
/*                  85='1956' */ 
/*                  109='1958' */ 
/*                  133='1960';*/ 
PROC SGPLOT DATA=forecast1; 
  title1 "Model 1: Bayesian Time Series Analysis Forecast 1"; 
  title2 "Monthly Passengers (1949-1960)"; 
  format t timefmt.; 
  series x=t y=Passenger_Count / LINEATTRS =(color=red 
pattern=longdash); 
  series x=t y=holdout / LINEATTRS =(color=red pattern=dot); 
  series x=t y=mean / LINEATTRS =(color=blue pattern=solid); 
  YAXIS label="Count"; 
  XAXIS values=(13 37 61 85 109 133) ranges=(1-168) label="Year"; 
  REFLINE 133 / axis=X LINEATTRS=(color=black pattern=dash); 
  REFLINE 6.5 / axis=Y;BAND x=t upper= HPDUPPER lower=HPDLOWER / 
transparency=.7; 
RUN; title1; title2; 
 
Code for Model 2 and Model 3 are provided in Appendix A. 
 

DISCUSSION 
This section includes the interpretation and our findings in light of what is already known about the PROC 
MCMC procedure and to explain any new understanding or insights that emerged as a result of our study 
of time series forecasting in applying PROC MCMC procedure. For the airline dataset, the authors 
decided to hold out data for the years 1959-60 to observe the accuracy of posterior distribution for this 
period. 
 

PROC TIMESERIES DATA procedure with the plot statement generated the following graph for 
visualizing the airline passenger data. The plot shows the unobserved trend and seasonality of the data 
as mentioned previously. X Axis provides the scale in years between 1949-1960 and the Y Axis shows 
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the natural logarithm of airline passenger data. From the data, it is clear that one can observe an upward 
trend and seasonal cycles for each year of the date range. 

 

Figure 1. International Airline Passenger Data 1949-60 

The highest airline passenger counts were observed during July/August of each year, while the lowest 
passenger counts were observed during January/November of each year. Per Larsen (2016), this airline 
data does not have regressors. This makes the model simpler by considering trend and seasonality only.  

In all the models in this paper, PROC MCMC procedure statement summons the input data set Series G. 
Outpost option with Posterior generates posterior samples for all parameters. The posterior intervals of 
prediction table (ODS table name, PredIntervals or PredInt) contains the equal-tail and Highest Posterior  
Density (HPD) interval estimate for each prediction. The default α value is 0.05.  

ODS output PredSumInt contains statistics including parameter (for the airline example, the passenger 
count or log passenger count), sample size, Mean, Standard Deviation, HPD lower, and HPD upper. The 
table includes these statistics for all of data and not just for prediction time frame. For this example, the 
above statistics are generated for the period 1949-62. The true posterior prediction forecast is for 1961-62 
time period.  

Bayesian inference relies on use of simulated sample draws to summarize posterior distribution of 
quantities of interest, per SAS (2015). Markov Chain Convergence. After the PROC MCMC procedure 
runs, one has to decide whether: 

 Markov Chain has reached its stationarity or the needed posterior distribution, and 
 Decide the number of iterations needed to keep after the posterior distribution has reached 

stationarity. 

Markov Chain convergence diagnostics help us to address the two issues mentioned above. There are no 
conclusive tests to indicate whether the Markov chain has reached its stationarity. As practitioners, we 
need to evaluate the stationarity of all parameters, and not just the convergence of response variable or 
quantities of interest. Convergence diagnostics can be observed with visual trace plots including 
diagnostics for trend parameters, and the diagnostics for seasonality parameters as well, for this 
example. Additionally, effective sample sizes provide tabular output diagnostics that show Effective 
Sample Size (ESS) for each parameter, Autocorrelation time, and the efficiency. The closer the ESS for 
each parameter is to the sample size of draw, the mixing is good, and the Markov Chain convergence 
could be observed visually in the diagnostic plots. 
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RESULTS 
The results for Model 0 and Model 1 are discussed in detail to optimize this discussion. 
 

Model 0 Diagnostics: 

      

Table 1. Model 0 Posterior Summaries and  Table 2. Model 0 ESS Data    
Intervals  
 

Table 2 shows ESS for Model 0. Per SAS (2015), ESS relates to autocorrelation and measures mixing of 
Markov Chain. If there is a significant difference between ESS and the simulation sample size, then it 
indicates poor mixing. Figure 2 and first data row of Table 2 shows that for mu0, the mixing is slower than 
for other parameters and is marginally good, and the auto correlation time is not considerably high. When 
we observe Second row of Table 2 and Figure 3, the ESS is closer to the model sample size and the 
autocorrelation time is lesser than those for mu0. Similarly, the parameters s2_mu and s2_e indicates 
better ESS as they are closer to the sample size N (Table 1 column N) and further evidenced by 
autocorrelation time for these two parameters. 

 

          
Figure 2: Model 0 mu0 Diagnostics   Figure 3: Model 0 s2_s Diagnostics 
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Figure 4: Model 0 s2_mu Diagnostics   Figure 5: Model 0 s2_e Diagnostics 

 

Figure 6: Model 0 Forecast 0  

Figure 6 indicates that the band around mean (light blue shaded area indicates the region of HPD interval 
range around actual log count indicated by red dashed line and the mean values of posterior distribution 
are indicated by blue line, and the hold out samples are indicated by red dots) of natural log of passenger 
count posterior distribution during the period 1949-60, while prediction for the forecast years 1961-62 
shows a range that is much larger than the previous year data. This indicates that the model could be 
improved as reliable forecast cannot be inferred from this model. As the model statement and random 
statements of parameters in the code approaches the true distribution of data, the prediction band in the 
forecast years 1961-62 improves i.e., the prediction band becomes narrower. Highest Posterior Density 
(HPD) interval. HPD is an interval in which most of the posterior distribution is contained. The mean 
values as seen in Table 3 are closer to the actual count for previous years, however the HPD interval 
range is very wide as shown in Figure 6 and in Table 3. 

Date Description Mean HPD Lower HPD Upper 

 Jan-1961 Jan Passenger_Count 362.39 23.68 4361.16 

 Feb-1961 Feb Passenger_Count 351.57 22.03 5180.45 

 Mar-1961 Mar Passenger_Count 389.98 22.00 6388.57 

 Apr-1961 Apr Passenger_Count 363.36 20.90 7443.10 

 May-1961 May Passenger_Count 363.21 15.24 7086.72 

 Jun-1961 Jun Passenger_Count 402.75 17.17 9444.15 

 Jul-1961 Jul Passenger_Count 437.39 17.26 13361.20 

 Aug-1961 Aug Passenger_Count 427.30 12.31 10610.43 

 Sep-1961 Sep Passenger_Count 378.15 9.46 10908.13 

 Oct-1961 Oct Passenger_Count 328.35 9.26 11962.24 

 Nov-1961 Nov Passenger_Count 286.06 5.86 8629.21 

 Dec-1961 Dec Passenger_Count 317.28 8.64 15278.54 
Table 3: HPD Interval for forecast year 1961 (Model 0) 
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Model 1 Diagnostics: 

           
Table 4: Model 1 Posterior Summaries and  Table 5: Model 1 ESS Data 
Intervals 
 
For Model 1, the ESS Data table shows that for parameter mu0, ESS is equal to the sample size as 
indicated in Table 4. However, the ESS for s2_s could be further improved as the ESS for this parameter 
is 130.4 with an autocorrelation time of 57.5224. Efficiency in the ESS data table (Table 5) is calculated 
as the ratio of ESS for a given parameter to the sample size. The closer the efficiency to 1, the better the 
ESS approximation to the sample size, and lesser the autocorrelation time.  
 

       
Figure 7: Model 1 mu0 Diagnostics  Figure 8: Model 1 s2_s Diagnostics 
 

          
Figure 9: Model 1 s2_mu Diagnostics   Figure 10: Model 1 s2_e Diagnostics 
 
Similar to the discussion for Model 0, the trace plot for mu0 for Model 1 (Figure 1) shows a “perfect” trace 
plot, and looks similar to the trace plot identified in SAS (2015) (in the section on Visual Analysis via 
Trace Plots (Figure 7.1)) It can be observed that the center of the chain appears to be around the value 0, 
with small fluctuations. This could be construed as the chain might have reached the right distribution. 
The chain might be mixing well and is exploring the distribution by traversing to areas where its density is 
low.  Figure 8, Figure 9, and Figure 10 show that the Markov Chain for these parameters could be 
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improved and are further evidenced by the ESS, autocorrelation times, and efficiency for these 
parameters (Table 5). 

 
 

Figure 11: Model 1 Forecast 1 
 

Figure 11 indicates the passenger count, holdout samples (1959-60), and the shaded regions for 1961-
62. The mean values of posterior distribution and actual passenger count are very close and the hold out 
samples for 1959-60 indicate that the mean values of posterior distribution and the airline passenger 
count are close to the actual passenger count values.  
 
The light blue shaded region around mean values of posterior distribution (forecast 1) of passenger count 
for 1961-62 appear to follow the trend for the previous years with a slight increase in the peak values as 
shown in Figure 11. 
 

Month-Year Parameter Mean HPD Lower HPD Upper 

 Jan-1961 Jan Passenger Count 433.40 398.19 469.43 

 Feb-1961 Feb Passenger Count 423.46 372.06 468.75 

 Mar-1961 Mar Passenger Count 454.14 398.71 516.42 

 Apr-1961 Apr Passenger Count 448.06 379.98 514.15 

 May-1961 May Passenger Count 450.01 372.76 530.09 

 Jun-1961 Jun Passenger Count 487.08 391.76 564.00 

 Jul-1961 Jul Passenger Count 524.03 428.08 606.54 

 Aug-1961 Aug Passenger Count 521.45 420.46 600.19 

 Sep-1961 Sep Passenger Count 471.30 374.35 551.42 

 Oct-1961 Oct Passenger Count 435.08 340.39 516.66 

 Nov-1961 Nov Passenger Count 399.98 302.61 480.79 

 Dec-1961 Dec Passenger Count 426.62 324.46 513.65 
 

Table 6: HPD Interval for forecast year 1961 (Model 1) 
Table 6 shows the mean, HPD Lower, and HPD Upper values for forecast year 1961 for Model 1, and 
Figure 11 visually represents these values. As mentioned in a previous section, the accuracy of the model 
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depends on the accuracy of random variable function approximation and the model density function 
equation. 
 
HPD Lower and HPD Upper for model 1 are closer in range and the mean values appear to be following 
the trend from previous year (1960). 
 

CONCLUSION 
This section summarizes the paper’s findings and the importance of PROC MCMC in light of time series 
forecasting.  
 
Time Series data offers some of the trickiest analytical challenges. We typically have minimum amount of 
data to work with, however analytics professionals are expected to provide insights for some of the most 
important decisions, especially with accurate forecasts. ARIMA has been a popular time series 
forecasting method. In the last few decades, time series forecasting using Bayesian Structural Model has 
been gaining popularity. 
 
In the examples provided in this paper, International Airline Data provides passenger data change month 
over month through 1949-60. This dataset was used to demonstrate the power of PROC MCMC in 
making accurate forecasts. As the accuracy of defining parameter random variables improve, and the 
model distribution accurately approximates the actual distribution of input data, the accuracy of forecast 
improves, especially with PROC MCMC as the parameters can be simultaneously be used in a single 
block as shown by considering trend and seasonality together in the model equation of airline data 
example in this paper. So, it is ever more important to consider the author Larsen (2016) statement “Sorry 
ARIMA, but I’m going Bayesian”  in order to improve forecast accuracy. By efficiently accessing lag and 
lead variables across an index (Month-Year) in the airline data example, as in time series analysis, the 
likelihood function can depend on lag values. PROC MCMC allows the construction of equations with the 
use of lag and lead variables across an index in RANDOM statement, as shown in Model 1 and other 
models in this paper. 
 
The models discussed in this paper could be further improved by fine tuning the parameters, random 
statements, and model equations further to cater to the time series forecasting needs of organizations.  

APPENDIX A 
*/Model 2: Bayesian Structural Time Series Analysis, Model 2 with 
alpha, mu, theta, and phi*/; 
PROC MCMC data=seriesG NMC=750000 NBI=75000 seed=123456 thin=100 
PROPCOV=QUANEW; 
PARMS ALPHA0; 
PARMS MU0; 
PARMS S0 S1 S2; 
PARMS THETA1; 
PARMS THETA 2; 
PARMS THETA 3; 
PARMS THETA 4; 
PARMS THETA_PHI; 
PARMS PHI; 
prior PHI~NORMAL(0,var=exp(THETA_PHI)); 
prior ALPHA0~normal(0,var=theta2); 
prior mu0~normal(0,var=100); 
prior s:~normal(0,var=theta3); 
prior theta:~igamma(shape = 3/10, scale = 10/3); 
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random ALPHA~NORMAL(phi*alpha.l1,var=exp(theta2)) subject=t 
icond=(alpha0); 
random s~normal(-s.l1-s.l2-s.l3,var=exp(theta3)) subject=Date 
icond=(s2 s1 s0); 
random mu~normal(mu.l1 + alpha.l1,var=exp(theta1)) subject=t 
icond=(mu0); 
x=mu + s; 
model Passenger_Count~normal(X,VAR=exp(theta4)); 
preddist outpred=outpred2 statistics=brief; 
ODS output PredSumInt=PredSumInt2; 
RUN; 
*Forecast data; 
data forecast2; 
  merge seriesG PredSumInt2; 
run; 
proc format; 
 value timefmt 13='1950'  
                  37='1952'  
                  61='1954'  
                  85='1956'  
                  109='1958'  
                  133='1960'; 
PROC SGPLOT DATA=forecast2; 
  title1 "Model 2: Bayesian Time Series Analysis Forecast 2"; 
  title2 "Monthly Passengers (1949-1960)"; 
  format t timefmt.; 
  series x=t y=Passenger_Count / LINEATTRS=(color=red 
pattern=longdash); 
  series x=t y=holdout / LINEATTRS =(color=red pattern=dot); 
  series x=t y=mean / LINEATTRS =(color=blue pattern=solid); 
  YAXIS label="Count"; 
  XAXIS values=(13 37 61 85 109 133) ranges=(1-168) label="Year"; 
  REFLINE 133 / axis=x LINEATTRS=(color=black pattern=dash); 
  REFLINE 6.5 / axis=y; 
  band x=t upper=HPDUPPER lower=HPDLOWER / transparency=.7; 
run; title1; title2; 
*/Model 3: Bayesian Structural Time Series Analysis, Model 3 with 
alpha, mu, theta, and phi and logcount*/; 
PROC MCMC data=seriesG nmc=750000 NBI=75000 seed=123456 thin=100 
outpost=posterior3 PROPCOV=quanew; 
PARMS alpha0; 
PARMS mu0; 
PARMS s0 s1 s2; 
PARMS theta1; 
PARMS theta2; 
PARMS theta3; 
PARMS theta4; 
PARMS THETA_PHI; 
PARMS phi; 
prior PHI~NORMAL(0,var=exp(THETA_PHI)); 
prior alpha0~normal(0,var=theta2); 
prior mu0~normal(0,var=100); 
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prior s:~normal(0,var=theta3); 
prior theta:~igamma(shape = 3/10, scale = 10/3); 
random ALPHA~NORMAL(phi*alpha.l1,var=exp(theta2)) subject=t 
icond=(alpha0); 
random s~normal(-s.l1-s.l2-s.l3,var=exp(theta3)) subject=Date 
icond=(s2 s1 s0); 
random mu~normal(mu.l1 + alpha.l1,var=exp(theta1)) subject=t 
icond=(mu0); 
x=mu + s; 
model logcount~normal(X,VAR=exp(theta4)); 
preddist outpred=outpred3 statistics=brief; 
ODS output PredSumInt=PredSumInt3; 
RUN; 
*Forecast data; 
DATA FORECAST3; 
  merge seriesG PredSumInt3; 
run; 
PROC SGPLOT DATA=forecast3; 
  title1 "Model 3: Bayesian Time Series Analysis Forecast 3"; 
  title2 "Monthly Passengers (1949-1960)"; 
  format t timefmt.; 
  series x=t y=logcount / LINEATTRS =(color=red pattern=longdash); 
  series x=t y=holdout / LINEATTRS =(color=red pattern=dot); 
  series x=t y=mean / LINEATTRS =(color=blue pattern=solid); 
  YAXIS label="Count"; 
  XAXIS values=(13 37 61 85 109 133) ranges=(1-168) label="Year"; 
  REFLINE 133 / axis=x LINEATTRS=(color=black pattern=dash); 
  REFLINE 6.5 / axis=y; 
  band x=t upper=HPDUPPER lower=HPDLOWER / transparency=.5; 
RUN; title1; title2; 
  



 

15 

APPENDIX B 
The PROC MCMC statement options considered in this paper are provided in the table below for 
reference with brief explanations. (Reference: SAS (2015)) 
 

PROC MCMC Option Option Description 
Data Names the input dataset  
Icond Icond specifies the initial values of lag or lead variables for the 

response variable when observation indices are out of range. 
Model Model statement specifies the conditional distribution of data given the 

parameters (likelihood function). 
NBI Specifies the number of burn-in iterations 
NMC Specifies the number of iterations, excluding the burn-in iterations 
Outpost Names the output dataset for posterior samples of parameters  
PARMS PARMS statements declare parameters in the model. 
Prior Prior statements declare prior distributions of parameters. 
PROPCOV Controls options for constructing initial proposal covariance matrix 
RANDOM Random statements specify random effects and their prior distributions 
Seed Specifies the random seed for simulation 
Subject Subject argument declares group index in the model 
Thin Specifies the thinning rate 

Table x. PROC MCMC Option & Option Description Table  
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