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ABSTRACT 
 

Despite the prevalence of Enterprise Miner (EM) with Scorecard, Probability of Default (PD) models  at 
TCF Bank are more often developed and validated using products outside of EM.  While there is no 
shortage of demos pointing out features of using EM, this presentation focuses on stumbling blocks that 
are obvious to those familiar with the product, but often cause potential users to give up on EM citing 
time considerations.  The Interactive Grouping Node is often mentioned as reason enough to use EM, 
because of the ease it brings to the binning process.  Relevant statistical output, graphs and data are 
automatically generated—some of the controls for these are easier to find than others;  code nodes allow 
interaction with base SAS and entire EM diagrams can be converted to SAS code and run in simulations. 

INTRODUCTION 
 

While there are many articles on the internet concerning many aspects of the use and results of Enterprise 
Miner / Scorecard, I had trouble finding a simple overall guide to setting up a model.  This paper attempts 
to help the user get started without getting into the finer points and implications of parameters and 
settings using a simple case. 

This example is a PD model validated without a validation dataset available.  How to convert the process 
diagram to SAS code that can be run in Base SAS is also covered. 

ACCESSING AND DEFINING DATA 
 

The EM’s first time user, or even intermittent users of EM, can be at a loss as to how to set up a simple 
diagram with the necessary parameters correctly specified.   While it is possible to import data from .csv 
and Excel files, I simplify by assuming the input data to be in a SAS dataset already.  To define the 
library to the EM project (Figure 1),  

• Highlight the project name in the top panel at the left. 
• Click on the three dots to the right of “Project Start Code” in the properties section 
• Enter the libname statement in the panel that opens to the right and close the panel. 
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Figure 1.  Assigning libraries to the project 

  

Note that I’ve also added a library, “interact,” to store the interactive grouping library (I wanted to keep 
the datasets of binnings separate).  These libraries will be available to all diagrams within the project. 

To add a dataset to project (Figure 2): 

• Highlight “Data Sources” just below “EF_OM” Click on “Create data Source” 
• Click “next” on SAS Table 
• Browse to your SAS library created in Project Start Code (sasdb)  
• Select the dataset you want to add, “final_test” 
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Figure 2.   Adding a dataset to the project 

Selecting “OK,” “Next,” “Next,” “Next,” brings us to the metadata display of the dataset (Figure 3).  All 
data will typically appear with the role of “Input;” we need to assign the variables we are not going to 
include in the model to “Rejected.” Depending on the number of variables in the dataset, it may be easier 
to highlight all the variables, changing the roles to “Rejected,” then change the variables used in the 
model to “Input.”  We also have to change the role of the target variable, “new_def,” to “Target” (and in 
this case to level “Binary.”) 
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 Figure 3.  Defining input variables 

Then “Next,” “Next,” and verify that this data will have the role of “Raw,” that is for building the model 
(Figure 4). 

 Figure 4.  Assigning role of input dataset 

Then “Next,” “Finish.” 
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The added dataset appears under Data Sources with the corresponding Property table appearing in the left 
panel (Figure 5). 

  
Figure 5.  Properities of available dataset  

To add a diagram to a project: Right click on “Diagrams” (Figure 6) 
• Select “Create New Diagram” 
• Enter new diagram name 
• Click “OK” 
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 Figure 6.  Assigning name to new diagram 

Left click on the dataset, “Final_Test” in Data Sources and drag it to the diagram 

THE BINNING PROCESS 
 

In the diagram, EF_OM (Figure 7), the model process uses nodes in the “Credit Scoring” Tab.  Hovering 
over the second item, a description of “Interactive Grouping” appears (elsewhere in EM under the 
“Modify” tab the node “Interactive Binning” appears, which is not the one we want).  We drag 
“Interactive Grouping” to the diagram.  We connect the dataset with the Interactive Grouping Node.   
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 Figure 7.  Adding Interactive Grouping Node to diagram 

Selecting the Interactive Grouping node and scrolling down the properties window on the left we see 
quite a few parameters that can be set.  Unless we have been given a SAS data set with the bins already 
defined, to replicate the developer’s model, for our initial run we use the defaults (Use Frozen Groupings 
= “No” and Import Grouping Data = “No” as in Figure 7 ) by right-clicking on Interactive Grouping and 
selecting “run.”



8 
 

Figure 8.  Including variables to the inputs 

The green checks indicate that the nodes (and proceeding nodes) ran successfully (Figure 8).  Clicking on 
“Results” in the window that opens up upon completion we notice in the Output Variables table that the 
variable, BZTTP079, was “Rejected.”   To control the acceptance level of a variable, we need to scroll 
down the “interactive Groupings” Property Panel until we see “Information Value Cutoff” (not to be 
confused with the “Cutoff Value” in the Internal Target Options) set to 0.1 by default.  We can lower this 
value to, say, .02 which allows this variable to be included in the model. 

After the Interactive Grouping has completed, we can see the details by selecting the Interactive Grouping 
node and left-clicking on the ‘…’ next to the “Interactive Grouping” as we see in Figure 9.  This dataset 
contains the binning information. 
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 Figure 9.  Input variable statistics 

Selecting the “Groupings” tab and selecting a variable in the drop down list in Figure 9, we see that 
variable’s bins (Figure 10).  From this screen we can split the bin (selecting different cutoff values), 
combine groupings, reassign groups and observe the adjusted values in the columns Cutoff, Event Count, 
Non-Event Count, Total, Event Rate and WOE. 

 Figure 10.  Variable characteristic groupings 

The binning cutoff values are generated when “Create Grouping Data” in the section “Report” in the 
lower part of the Interactive Grouping panel is set to “Yes.”  A dataset, “ign_exportgroup” is found in the 
“EMWSx” directory under the “Workspaces” folder within the project folder.   
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Figure 11.  The Ign_exportgroup dataset of variable binnings 

To save the bin definitions of the model, add a Code Node to the diagram connecting to the left side of the 
IGN node as we see in Figure 12.  Save the IGN_EXPORTGROUP created by the diagram to the local 
library that is outside of the automatically created dataset.  As inattention to panel values can result in the 
rerunning of the diagram replacing the cutoffs with system defaults in the Interactive Grouping, you may 
want execute this SAS code node periodically, rename the output dataset, to insure that you have a copy 
of the binnings. 
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Figure 12.  Creating dataset of variable bins from  

In the SAS Code Node we have: 
 
   title 'save the created and frozen groups to interact.EF_OM_Groups'; 
   data interact.EF_OM_Groups; 
      set &EM_LIB..IGN_EXPORTGROUP; 
   run; 
   proc print data=interact. EF_OM_Groups'; 
   run; 
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Figure 13.  Macro variables revealed 
 
 
 
EMWS3 points to the subdirectory “C:\grezek\proj\EF_OM\EF_OM\Workspaces\EMWS3”, that is 
automatically created by EM;  ign_exportgroup is the SAS dataset that contains the saved bins. 
 

 
Figure 14.  Dataset of bins created by the binning process 
 
To read the saved binnings back into the process we can return to the Properties Tables of Interactive 
Grouping node, specify “No” for Create Grouping Data, and set “Use Frozen Data” to “No” and Import 
Data Set to “Yes”, specifying the dataset, “INTERACT.EF_OM_GROUPS.”   

 

Click on the “Macro 
Variables” tab in the Code 
Node window and the 
resolution of the macro 
variable “EM_LIB” appears 
in the adjacent column. 
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Figure 15 IGN properties to read binnings from SAS dataset  

To read the saved binnings back into 
the process we can return to the 
Properties Tables of Interactive 
Grouping node, we can specify “No” 
for Create Grouping Data, and set “Use 
Frozen Data” to “No” and Import Data 
Set to “Yes”, specifying the dataset, 
“INTERACT.EF_OM_GROUPS.”   
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ROC Curve 
 

Where sensitivity is the proportion of true positive responders (event = 1) that have a positive model 
result and specificity is the proportion of true negative responders (event =0) that have a negative model 
result.  In this graph, Figure 17, the sensitivity is cumulative.  The random line would be the result of 
model that does not differentiate between events 1 and 0.  Intuitively a point below the random line would 
be in the area where the model is predicting an event = 1 where the true response was 0.  The ROC or 
Area under the curve (AUR) is the area under the blue line. 

ROC or area under the curve (AUR) is one measure of how well the model is in predicting defaults.  One 
rule of thumb is: 
 

ROC Grade 
90.0% A 
80.0% B 
70.0% C 
60.0% D 

Table 16.  Grade equivalents of ROC percentages 
 
KS is the maximum vertical distance between random line and the ROC curve.   Gini can be calculated 
from ROC:  
 
Gini=2×ROC−1. 
 
 
 

 
Figure 17.  ROC Curve 
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SCORECARD REPLICATION 
 

 

Figure 18.  Enterprise Miner node to create SAS code for binning and scoring 

We replicated the model in SAS’s EM with the Scorecard module. We see in Figure 18 that the nodes 
that are connected to build the model: the data input, “Final_test;” the Interactive Grouping Node, “IGN 
bins from Modeler;” the Scorecard Node; and the code node, “SAS Codes to save bins.” The bins 
developed by the modeler were adopted in the Interactive Binning Node. By default, the Interactive 
Grouping Node re-estimates the bins optimizing by specified criteria, but here we have frozen the bins. 
The results are the same as those stated in the model documentation. 

KS 0.400482 
ROC 0.769132 
Gini 0.538263 
Table 19.  Model statistics 

FIVE-FOLD CROSS VALIDATION 
 
We split the data into five parts making sure that each part has sufficient bads, defined as “new_def” in 
this input dataset.  The code is further split into training and validation datasets. 
 
Code to split up data into five parts: 
 

libname sasdb "C:\grezek\proj\EF_OM\final" ; 
proc sort data=sasdb.final_test out=sorted; 
  by new_def ; 
  run; 
data make5; 
   set sorted; 
   fold=1+FLOOR(5*RAND('UNIFORM')); 
   run; 
title2 'OPTIONAL: check the percentages'; 
title3 'MAKE5'; 
proc freq data=make5; 
   tables new_def / norow nocum; 
   run; 
proc freq data=make5; 
   tables fold*new_def /  nocol nopercent nocum; 
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   run; 
options mprint symbolgen macrogen ; 
%macro fold_over ; 
  %do i = 1 %to 5 ; 
    data sasdb.mytrain_&i. sasdb.myvalidate_&i.; 
      set make5; 
      if fold=&i then output sasdb.myvalidate_&i.; 
  else output sasdb.mytrain_&i; 
  run; 
    title2 'OPTIONAL: check the percentages'; 
    title3 "MYTRAIN I:  &i."; 
  proc freq data=sasdb.mytrain_&i.; 
    tables new_def / norow nocol; 
    run; 
    title3 "MYVALIDATE I:  &i."; 
  proc freq data=sasdb.myvalidate_&i ; 
    tables new_def / norow nocol; 
    run; 
  %end ; 
run ; 
%Mend ;  
run ; 
%fold_over ; 
run ; 

 

 
Figure 20. Distribution of goods and bads across the five folds 

As we see in Figure 20 the distribution of bads is fairly uniform, hovering between 1.25% and 1.11%, as 
are the total number of records between 18,500 and 19,020.  
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Figure 21. Five Fold Cross validation 

Sample 
Training Validation 

ROC Gini KS ROC Gini KS 
Fold 1 0.772 0.544 0.395 0.758 0.515 0.403 
Fold 2 0.766 0.532 0.390 0.781 0.563 0.421 
Fold 3 0.771 0.543 0.397 0.759 0.519 0.408 
Fold 4 0.767 0.535 0.405 0.774 0.547 0.400 
Fold 5  0.772 0.544 0.404 0.755 0.509 0.367 
Average 0.770 0.540 0.398 0.765 0.531 0.400 

Figure 22.  Model performance statistics for Five Fold cross validation  

The average for the training ROC at 77.7% and KS at 39.8% are very close to the final model at 76.9% 
and 40.0% respectively, as is the Gini of 54.0% to the final model’s Gini of 53.8%.  The validation 
numbers are very close to the training numbers as well.   

Figure 23 below offers a graphic imagine reflecting the results of the Table 22 above. 
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Figure 23. Graphs of Training and Validation ROC curves 

SIMULATION 
 

In order to run a simulation of the process MRM connected the nodes as seen in Figure 24 below. 

Figure 24.  Enterprise Miner Nodes to create model process 

The data is partitioned (randomly with replacement) at a 70% for training, 30% for validation; the 
Interactive node reads the fixed grouping that were saved at the model creation. The point is to run the 
process holding the parameters constant, varying only the data input. The code to save a single run is: 

SAS Code to save AUR and KS from scorecard node: 

title 'save _AUR_ Area Under ROC from the Scorecard node'; 
  
proc print data=&EM_LIB..scorecard2_strength; 
  run; 
  
data aur(keep = train_aur validate_aur) 
      ks(keep = train_ks validate_ks) ; 
  set &EM_LIB..scorecard2_strength ;  
    if STAT = '_AUR_' then do ; 
      train_aur = train ; 
      validate_aur = validate ; 
      output aur ; 
     end ; 
    if STAT = '_KS_' then do ; 
      train_ks = train ; 
      validate_ks = validate ; 
      output ks ; 
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    end ; 
   run ; 
  data sasdb.myAUR ; 
    merge aur ks ; 
  run ; 
  
proc print data=sasdb.myAUR; 
  run; 
 
proc print data=&EM_LIB..scorecard2_strength; 
  run; 
  
data sasdb.myest(keep = Intercept           
WOE_BZ_LGC004       
WOE_BZ_TTB001       
WOE_BZ_TTP079       
WOE_min_vantage_gp  
WOE_sblend_gp3      
WOE_portfolio_pd    
WOE_S1_IFTC01_CT); 
  set &EM_LIB..scorecard2_emestimate 
(where = (_name_ = 'new_def') ); 
  run; 
  
proc print data=sasdb.myest; 
  run;  
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  Right-clicking on the node, “SAS Codes to save ROC, KS” and checking off “Create Model  

 
Figure 25.  Enterprise Miner Node to create SAS code of diagram for simulation 

Package for this path” opens up a window permitting us to store the SAS code equivalent of the preceding 
nodes. Running this batch code once gives us the current values of ROC, KS, etc. Including this code 
within a processing loop (“Rerun” was specified on the Input Node), “EFFLow.sas,” will allow the 
program to run from beginning to end, re-estimating the training/validation split giving us a simulation 
for the number of iterations specified. The code that determines the number of simulations (controlled by 
the macro “times” below) and append each result to datasets is: 

 
options mprint symbolgen macrogen mlogic ; 
libname sasdb "C:\grezek\proj\EF_OM\final" ; 
 
%global times intera ; 
 
data _null_ ; 
  call symputx('times',100) ; 
  call symputx('intera',1) ; 
run ; 
 
%macro spin ; 
  %do spinit = 1 %to &times. ; 
   
 
  %inc "C:\grezek\proj\EF_OM\code\EFFlow.sas" ; 
  proc append data = sasdb.myaur base = 
sasdb.myaurvalues_i&intera.t&times force ; 
  proc append data = sasdb.myest base = 
sasdb.myestvalues_i&intera.t&times force ; 
 
  run ; 
%end ; 
run ; 
%mend ; 
 
%macro andag ; 
  %do j = 1 %to &intera. ; 
    %spin ; 
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  %end ; 
run ; 
%mend ; 
   
run ; 
%andag ; 
run ; 
 

is used to run the following code, EFFlow.sas, in a loop to create the simulations;  this code is too long to 
include here, but is available upon request.  In the code you will note that  
 

• &times is the number of interations 
• sasdb.myaurvalues collects the ROC statistics 
• sasdb.myest collects the parameter estimates 

 

At the end of each iteration we save the results for ROC and KS and append the data to 
sasdb.myaurvalues; also we captured the model parameters in sasdb.myest to see whether 
there was a shift in these values as illustrated below in Figure 26: 

We ran simulations of 1000, which took 48 hours to complete, but noticed that the simulations converged 
at far fewer iterations. After a few trials, we judged that 100 iterations was reasonable. The result is a tight 
grouping for the model statistics. 

TOLERANCE INTERVALS 
 

To check whether the simulations were close to the predicted values, MRM estimated the tolerance 
intervals of the spread of values around the average1. Below is a graph (Figure 26) which gives an 
intuitive explanation of the difference between confidence intervals and tolerance intervals. 

 

                 Figure 26. Graph of difference between Confidence Interval and Tolerance Interval. 

In SAS/QC proc capability can be used to calculate the tolerance intervals using the code: 

proc capability data=test; 
  ods select Intervals3; 
  var y; 

                                                      
1 For a discussion of tolerance intervals see Confidence Intervals vs Prediction Intervals vs Tolerance Intervals, 
https://statisticsbyjim.com/hypothesis-testing/confidence-prediction-tolerance-intervals/ 
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  intervals y / method=3; 
run; 

  

The datastep code to obtain the same result in base SAS: 

%macro tolint(var,ds) ; 
proc means data=&ds noprint; 
  var &var; 
  output out=out(drop=_type_ _freq_) n=n mean=mean std=std; 
run; 
data _null_ ; 
  set out ; 
  call symputx('n',n); 
  call symputx('xbar',mean) ; 
  call symputx('std',std) ; 
run ; 
 
data &var ; 
  length var_name $ 12 ; 
  set out ; 
  var_name = "&var." ; 
xbar = &&xbar; 
s = &std; 
n = &n; 
p = 0.95; 
alpha = 0.05; 
df = n-1 ; 
/* compute Lower & Upper tolerance limits using QC formula */ 
z = quantile("normal", (1+p)/2); 
chi2 = quantile("chisq", alpha, n-1); 
delta = s*z*(1 + 1/(2*df))*sqrt( (n-1)/chi2 );  
Lower = xbar - delta; 
Upper = xbar + delta; 
run; 
 
proc print data = &var;run; 
run ; 
%mend ; 
run ; 
 
data _null_ ; 
  call symputx('var1','Train_aur') ; 
  call symputx('var2','Validate_aur') ; 
  call symputx('var3','Train_ks') ; 
  call symputx('var4','Validate_ks') ; 
run ; 

 

 In Table 27 below we see the tolerance intervals include the variable mean of the model statistics:   
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Statistic N p alpha df Lower mean Upper std 
Train_aur 100 0.95 0.05 99 0.7594 0.7697 0.7800 0.0046 
Validate_aur 100 0.95 0.05 99 0.7417 0.7662 0.7907 0.0110 
Train_ks 100 0.95 0.05 99 0.3813 0.4023 0.4232 0.0094 
Validate_ks 100 0.95 0.05 99 0.3519 0.4005 0.4492 0.0218 

 
Table 27.  95%/95% Tolerance Interval 

We can say for the two-sided test that at the 95% confidence level (1-alpha) that 95% of the population is 
within the tolerance level. We notice that the mean of the simulations is centered between the lower and 
upper limits of the tolerance intervals. The values for the corresponding standard deviations confirm the 
narrow spread of the estimates for the training of the ROC and KS (0.0046 and 0.0094 respectively). 
While the standard deviation of the validation ROC and KS are less tight at 0.0110 and 0.0218 
respectively, the means are within the tolerance intervals and the distribution is still supportive of the 
model.    

Below in Figures 28-31., we see a tight grouping around the mean of the simulations for ROC and KS. 

 
Figures 28-29.  Distribution of ROC for train and validate data 

 
Figures 30-31.  Distribution of KS for train and validate data 

The same analysis was performed on the model parameters, as we see in Table 32 below we notice that 
the standard deviations are acceptable and that the means of the parameters are within the lower-upper 
tolerance intervals. The advantage of including seven variables, as opposed to fewer, is that the model is 
more robust in that model can withstand the variations in the data for a couple of variables without 
causing serious swings in model output. 
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Parameter N p alpha df Lower mean Upper std 

Intercept 100 0.95 0.05 99 -4.3739 -4.3713 -4.3688 0.0011 

BZ_LGC004 100 0.95 0.05 99 -0.3431 -0.2217 -0.1002 0.0544 

BZ_TTB001 100 0.95 0.05 99 -0.6388 -0.5847 -0.5306 0.0242 

BZ_TTP079 100 0.95 0.05 99 -0.5165 -0.4153 -0.3140 0.0453 

S1_IFTC01_CT 100 0.95 0.05 99 -0.6581 -0.5980 -0.5380 0.0269 

min_vantage_gp 100 0.95 0.05 99 -0.5105 -0.4470 -0.3834 0.0285 

portfolio_pd 100 0.95 0.05 99 -0.8276 -0.8003 -0.7729 0.0123 

sblend_gp3 100 0.95 0.05 99 -0.6659 -0.6188 -0.5717 0.0211 

Table 32.  Model parameters of tolerance level 
 
The histograms in Figures 33-40 indicate a relatively tight grouping around the means of the parameters.  

 

 
Figure 33-34.  Distribution of intercept and BZ_LGC004 parameters 

 

 

 

 

 

 

 

Figures 35-36.  Distribution of BZ_TTB001 and BZ_TTP079 parameters 
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Figures 37-38. Distribution of S1_IFTC01_CT and min_vantage_gp parameters 

 
Figures 39-40. Distribution of portfolio PD and sblend_gp3 parameters 

 

IGN DETERMINED BINS 
 

The Interactive Grouping Node in Enterprise Miner can be set to determine the bins by optimizing on, for 
instance, the Information Values of the variables. While we believe the correct way to determine the bins 
is the method followed by the developer, that of getting buy in from the business, using various 
procedures to determine variables and their statistics, returning to the business for confirmation, etc., 
MRM thought it useful to let the Interactive Grouping determine the groupings just to see what would 
happen. The Model Comparison Node is used to compare the results of the original model (created in the 
string of nodes on the top of Figure 18) to the results of the string of nodes on the bottom in which we 
allow Enterprise Miner determine the bins.  
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Figure 41.   Enterprise Minor Nodes to Create SAS code for comparing binning approach 

 
MRM expects the bins to make sense in terms of IV, distribution of defaults and observations across bins, 
and a scorecard with higher ROC, KS and Gini statistics than that of the original model.   

 

   

 

                Table 42.  Comparison of original and IGN determined statistics 

While we were able to obtain modestly higher statistics as we see in Table 42 above we note that the 
difference is slight. We notice that the ROC curves in Figure 43 below are almost identical. 

 

                             Figure 43.  Graph of ROC curves for different binning approach 

What MRM did not expect is the unsupervised binning produced by the program to be as close in many 
respects to the original model. 

CONCLUSION 
 

Run ROC KS Gini 
Original 0.7690 0.5380 0.3970 
IGN determined 0.7710 0.5420 0.4000 



27 
 

The initial set up of a model in Enterprise Miner / Scorecard is within reach of the SAS user.  The system 
offers an ease of use and capabilities beyond what is obtained from running a diagram.  The underlying 
tables, the interaction with SAS code Nodes expands the functionality  
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