
1 

SESUG Paper AT-218-2019 

Using PROC FCMP to Implement Anomaly Detection Method 

Tsung-hsun Tsai, Research League, LLC; Yung-chen Hsu, GED Testing Service 

ABSTRACT  

The essential purpose of PROC FCMP, the SAS® Function Compiler procedure, is to allow the creation 
of user defined functions or CALL routines for DATA steps or SAS procedures. Those functions can also 
be shared with other SAS programmers to facilitate code reuse and increase productivity. For advanced 
users, it can serve as a wrapper function for PROC PROTO to enable incorporating C language 
structures, types, and functions into SAS®. In addition, for users who do not have access to SAS/IML®, 
PROC FCMP also provides CALL routines for performing typical matrix operations, such as multiplication, 
transpose, and inverse. In this paper, we use a simple anomaly detection method for screening field test 
items as an example to illustrate the use of PROC FCMP and its capability of performing matrix 
operations. In testing service organizations, evaluating field test items in the posterior human review is an 
elaborate inspection process during the test development. This work demonstrates a method to 
automatically flag potential flawed items by using PROC FCMP to conduct matrix and low-level array 
operations. 

INTRODUCTION  

In testing service organizations, newly-developed test items will need to be tried out on actual examinees 
prior to operational use. Field test statistics are collected and calculated for the following posterior human 
review to adjudicate the operational status. The review process is time-consuming and labor-intensive. To 
alleviate the workload, we implemented an anomaly detection method based on a simple multivariate 
Gaussian distribution modeling approach to narrow down the review list of items automatically. PROC 
FCMP is used to conduct matrix and low-level array operations of this approach. SAS does have a 
SAS/IML® language to solve matrix computation, which is relatively succinct and contains many 
functions. However, the license of SAS/IML® requires an extra cost while the FCMP procedure already 
comes with SAS/BASE®. The formula can be decomposed to use matrix algebra. Each matrix operation 
can be performed in a PROC FCMP CALL routine. 

ANOMALY DETECTION 

Anomaly detection is the identification of items which differ from the majorities. There are many methods 
in literature with different performance and cost in a variety of domains. Here we consider a simple 
multivariate Gaussian distribution approach. If we consider a certain expected distribution of the normal 
items, then abnormal or unusual items are those that deviate by a certain threshold from the distribution. 
Certain attributes are collected or derived for building the anomaly detection model. Given a training set 
   for each feature  , we will first fit a model to the data’s distribution. We estimate the Gaussian 

distribution for each of the features    of   items and find parameters    and   
 , where 

   
 

 
   
 

 

and 

  
  

 

 
        

 

 

 

Now, for a given feature vector   of a particular item, we then compute the probability with the given 
multivariate Gaussian distribution 

      
 

     
    

        
 

   
  

 

 



2 

If   is small, it means this particular   has a low probability and is more likely to be an anomalous item. 
This is a special case of general multivariate Gaussian distribution. However, the modeling approach is 
computationally cheaper and is easy to understand, which is important in managing test development 
projects. 

DATA SOURCES 

We use the elicited features and statistics of the items from historical data of a particular test subject to 
prepare training, cross validation, and test sets for the modeling. Each field test item has nine attributes or 
features in the model, which includes features based on both classical test theory and item response 
theory as follows: 

 Proportion of examinees responding in the keyed direction (P-value) 

 Item-total correlation (point-biserial correlations) for correct option 

 b-parameter of Rasch model 

 Inlier-pattern-sensitive fit statistic (infit) and outlier-sensitive fit statistic (outfit) 

 Mean and 25%, 50%, and 75% percentiles of response time 

Each feature represents certain item characteristics. Among the 322 items used in this study, 68 items 
are proposed for inspection by the reviewers before the posterior review meeting. When a complete 
vetting is done, 35 are excluded. Based on the final adjudications, we then split the data into three data 
sets—training, validation, and test sets randomly. The training set contains 194 items (60%). They are 
unlabeled data for fitting the multivariate Gaussian probability function. In other words, they all are 
considered good test items. Cross validation and test sets are a mixture of good items and disposed 
items used to determine the threshold and to evaluate the performance. The validation set has 64 items 
in total (20%). There are 34 items marked as “review items” in a master inspection list by the reviewers to 
be discussed in the posterior review. After human inspection, 18 items are finally excluded as flawed 
items. The test set also has 64 items (20%), where 34 are review items and 17 are flawed items.  

The following statements read the data to prepare training, cross validation, and test sets. Labeled sets 

(vflag and tflag) are created for determining the threshold. The variable accept represents whether 

the item is a flawed one in the final adjudication of the review meeting. The variable discuss indicates 

whether the item is marked as a “review item”, the potential flawed item to be discussed, before the 
posterior review. 

data train; 

  input pvalue corr irtb infit outfit tmean tp25 tp50 tp75; 

  datalines; 

0.3783 0.1792 0.15691 1.11 1.12 153  84 130 201.5 

0.1053 0.457  2.00573 0.86 0.61 194 108 168 248 

0.2412 0.3559 0.81127 0.96 0.92 150  90 134 189 

. . . 

; 

run; 

 

data valid0; 

  input pvalue corr irtb infit outfit tmean tp25 tp50 tp75 accept discuss; 

  datalines; 

0.6804 0.1728 -1.3504  1.07 1.09  36 15  25  46 0 0 

0.4779 0.3627 -0.32104 0.94 0.92 146 80 131 189 0 0 

0.2924 0.2528 0.57241  1.05 1.06 168 93 147 219 0 0 

. . . 

; 

run; 

 

 



3 

data test0; 

  input pvalue corr irtb infit outfit tmean tp25 tp50 tp75 accept discuss; 

  datalines; 

0.2894 0.3314  0.33784 0.96 0.96  73 31 54    95 0 0 

0.7615 0.3381 -1.7807  0.9  0.79  89 48 72   106 0 0 

0.4514 0.3368 -0.26498 0.96 0.94 117 57 85.5 137 0 0 

. . . 

; 

run; 

 

*Label sets; 

data valid(drop=accept discuss) vflag(keep=accept discuss); 

  set valid0; 

run; 

data test (drop=accept discuss) tflag(keep=accept discuss);  

  set test0; 

run; 

DENSITY ESTIMATION 

After reading the three data sets (train, valid, and test) and computing the means (mu) and 

variences (s2) of the training set, the subroutine MulGauss is implemented as a PROC FCMP subroutine 

for density estimation. We fit a simple Gaussian distribution to estimate the mean and variance vectors of 
the features. For simplicity’s sake, the non-diagonal elements of the covariance matrix are set to zero. 
Through histogram plots, we do know that three features that relate to test taker’s response time are 
slightly skewed to the right, but they do not substantially deviate from Gaussian. The following annotated 
code shows how to perform density estimation: 

*mu and s2; 

proc means data=train noprint; 

output out=mu (drop=_TYPE_ _FREQ_) mean=; 

run; 

proc means vardef=n data=train noprint; 

output out=s2 (drop=_TYPE_ _FREQ_) var=; 

run; 

 

*Multivariate Gaussian distribution; 

proc fcmp outlib=work.func.ad; 

subroutine MulGauss(fX $, fMu $, fS2 $, fP $); 

  *read ds; 

  array X[1,1] /nosymbols;  rc1=read_array(fX,  X); 

  array mu[1]  /nosymbols;  rc2=read_array(fMu,mu); 

  array s2[1]  /nosymbols;  rc3=read_array(fS2,s2); 

 

  *diag s2; 

  nc=dim(s2,2);  array ds2[1] /nosymbols;  call dynamic_array(ds2,nc,nc); 

  call identity(ds2); 

  do i=1 to nc;  ds2[i,i]=s2[1,i];  end; 

 

  *X-mu; 

  nr=dim(X,1); 

  do i=1 to nr; 

    do j=1 to nc; 

      X[i,j]=X[i,j]-mu[1,j]; 

    end; 

  end; 

 



4 

  *transpose X-mu, inverse s2, determinant s2; 

  array Xt[1] /nosymbols;  call dynamic_array(Xt,nc,nr); 

  call transpose(X, Xt); 

  array ids2[1] /nosymbols;  call dynamic_array(ids2,nc,nc); 

  call inv(ds2, ids2); 

  call det(ds2,dds2); 

  dds2=dds2**(-0.5); 

  cc=(2*constant("pi"))**(-nc/2)*dds2; 

 

  *p; 

  array tmp1[1] /nosymbols;  call dynamic_array(tmp1,nr,nc); 

  call mult(X,ids2,tmp1); 

  array tmp2[1] /nosymbols;  call dynamic_array(tmp2,nr,nc); 

  call elemmult(tmp1,X, tmp2); 

  array p[1] /nosymbols;  call dynamic_array(p,nr); 

  call zeromatrix(p); 

  do i=1 to nr; 

    do j=1 to nc; 

   p[i]=p[i]+tmp2[i,j]; 

 end; 

 p[i]=cc*exp(-0.5*p[i]); 

  end; 

  rc4=write_array(fP,p,'p'); 

 

endsub; 

quit;  

 

*Density estimation; 

options cmplib=work.func; 

data _null_; 

  call MulGauss("valid","mu","s2", "pv"); 

  call MulGauss("test", "mu","s2", "pt"); 

run; 

 

Notable in this subroutine are: 

1. The matrix must be declared before use. The arrays are declared with nosymbols, which means that 

they do not include variable names for each array element. Here we only use array subscripting to 

access the elements. The read_array function then dynamically resizes the array to fit the 

dimensions of the input dataset after the data set is read. With the dynamic_array function, we can 

prepare and resize the declared arrays or matrices using the provided dimensions within a function.  

2. The code illustrates the operations of matrix. The corresponding CALL routine functions used in 
PROC FCMP as follows: 

CALL routine Description 

IDENTITY identity matrix 

TRANSPOSE transpose matrix 

INV matrix inverse 

DET matrix determinant 

MULT matrix multiplication 

ELEMENT element-wise multiplication 

ZEROMATRIX create matrix of all zeros 



5 

DETERMINING THE THRESHOLD 

To determine the best threshold, we compute the F-measure by looping through different values of 

threshold in this experiment. If      falls outside the realm, the item is flagged as anomalous. F-measure 
is a classification measure and is defined as the harmonic mean of precision and recall: 

   
                

                
 

where 

        
             

                            
 

       
             

                            
 

We first set the step size by creating macro variables for looping through different values. Then in the 
following PROC FCMP code below, we compute precision and recall, and then F-measure to obtain the 

threshold. Finally, we flag a list of potential flawed items and use write_array to write arrays to a data 

set. There are 17 flawed items among 64 items in the test set. In the original list the human reviewers 
marked 34 items for further inspection and discussion in the review meeting. The model generates a list 
of 31 items with F-measure 0.593. Comparing the two lists, the model’s list contains five extra items and 
does include eight items in the reviewer’s master list. Only one rejected item is not covered by the model. 
We examine that item closely. It is a rather difficult item for the target test takers, probably because most 
educators do not cover that content area. The following statements determine the threshold, then flag the 

anomalous items. The role of validation and test sets can be switched by replacing vflag with tflag, 

and pv with pt. This alternative model also generates a list of 31 items with F-measure 0.566. There are 

two out of the 18 flawed items not in the original list. 

*Set step size; 

proc sql noprint; 

  select max(p), min(p), (max(p)-min(p))/1000 

  into :xpv, :npv, :spv 

  from pv; 

quit; 

proc sql noprint; 

  select max(p), min(p), (max(p)-min(p))/1000 

  into :xpt, :npt, :spt 

  from pt; 

quit; 

 

*Select threshold; 

proc fcmp; 

  array pval[1] /nosymbols;  rc1=read_array("pv",pval); 

  array val[1]  /nosymbols;  rc2=read_array("vflag",val); 

  n=dim(pval);  array pred[1] /nosymbols;  call dynamic_array(pred,n); 

 

  do thred=&npv to &xpv by &spv; 

    do i=1 to n; 

      if pval[i]<thred then pred[i]=1; 

      else pred[i]=0; 

    end; 

 

 *true positive tp, false positive fp, false negative fn; 

    tp=0; fp=0; fn=0; 

    do i=1 to n; 

      if      pred[i]=1 and val[i,1]=1 then tp=tp+1; 

   else if pred[i]=1 and val[i,1]=0 then fp=fp+1; 



6 

   else if pred[i]=0 and val[i,1]=1 then fn=fn+1; 

    end; 

 

 *F measure and threshold; 

    if (tp+fp)~=0 and (tp+fn)~=0 then do; 

      prec=tp/(tp+fp);  rec =tp/(tp+fn); 

      F=2*prec*rec/(prec+rec); 

      if F > bestF then do; 

        bestF=F; 

     Threshold=thred; 

   end; 

 end; 

  end; 

 

  put BestF=; 

  put Threshold=; 

 

  *flag anomalous items; 

  array ptst[1] /nosymbols;  rc3=read_array("pt",ptst); 

  m=dim(ptst); 

  array outLst[1] /nosymbols;  call dynamic_array(outLst,m,2); 

  do i=1 to m; 

   outLst[i,1]=i; 

    if ptst[i] < Threshold then do; 

   put i=; 

   outLst[i,2]=1; 

 end; 

 else  

   outLst[i,2]=0; 

  end; 

  rc4=write_array('outFile',outLst,'item','flag'); 

quit; 

CONCLUSION 

PROC FCMP provides an option for users to create custom functions and subroutines like any other SAS 
function. Since it is part of SAS/BASE®, there is no need to purchase an extra license. This paper 
provides a glimpse of the flexibility of the FCMP procedure. We demonstrate an anomaly detection 
method based on multivariate Gaussian distribution to show the use of the FCMP procedure’s matrix 
operation CALL routines. There are a vast of other capabilities and powerful CALL routines other than 
matrix operations, such as functions for calling SAS code from within functions and several others for 
special purposes, which may be appreciated by analytics programmers. 

REFERENCES 

Powers, D. M. W. 2011. “Informedness, Markedness & Correlation.” Journal of Machine Learning 
Technologies, 2:37–63.  

Schmeiser, B. C. & Welch, C. J. 2006. In R. L. Brennan (Ed.).  Educational Measurement. 4th ed. (307–
353). Westport, CT: Praeger. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Tsung-hsun Tsai 
Research League, LLC  
ttsai@researchleague.org 


