
1

SESUG Paper 268-2019

How to Keep Multiple Formats in One Variable after Transpose

Mindy Wang, Independent Consultant

ABSTRACT

In many industries and research fields, proc transpose are used very often. When many variables with
their individual formats are transposed into one variable, we lose the formats. We can do a series of if
then statements to put the formats back in. However, when the variables involved are too many, the
above method can be very tedious. This paper illustrates how to extract formats from dictionary.columns
or sashelp.vcolumn, and then use PUTN function to assign the formats at run time and make the task
much easier. In addition, it is much easier to apply the same method to other projects without a lot of hard
coding in the SAS program. Efficiency is largely increased with this method.

INTRODUCTION

Problems arise when transposing the different observations with different formats into one variable. It is
impossible to have different formats for different observations for the same variable. Therefore the
original formats do not show up at all after transpose.

PROBLEM

I have the following formats before transpose:

PROC FROMAT;

 VALUE sexcode
1 = 'Male '
2 = 'Female'
 ;
 VALUE racecode
1 = 'White'
2 = 'Black'
3 = 'Hispanic'
4 = 'Asian'
5 = 'Other'
6 = 'Multi-racial'
 ;
…………

RUN;

DATA demo2;
SET desk.demo;
FORMAT datestmp
datetime17.
 birthdt mmddyy10.

 sexcd sexcode.
 racecd racecode.
 ……………
;
RUN;

2

Following is the before-transpose snapshot. Please note that the sexcd and racecd variables display text
formats.

Display 1. Snapshot Before Transpose

Display 2 is the after-transpose snapshot. Please note the sexcd and racecd now are numeric, instead of
text.

Display 2. Snapshot After Transpose

3

IF THEN AND ELSE METHOD

There is some work needed to fix the problem. One way of doing it is to have a series of if then
statements to accommodate value labels and hard code the value labels into a new variable. We can do
it individually to each variable with format. Following is the code that I used with this method:

IF UPCASE(COMPRESS(_name_))="DATESTMP" THEN DO;
 n_value=PUT(Col1, datetime17.);

END;

ELSE IF UPCASE(COMPRESS(_name_))="BIRTHDT" THEN DO;
 n_value=PUT(Col1,mmddyy10.);

END;

ELSE IF UPCASE(COMPRESS(_name_))="SEXCD" THEN DO;
 IF Col1=1 THEN n_value= 'Male ' ;
 ELSE IF Col1=2 THEN n_value= 'Female' ;

END;

ELSE IF UPCASE(COMPRESS(_name_))="RACECD" THEN DO;

IF Col1=1 THEN n_value= 'White ' ;
ELSE IF Col1=2 THEN n_value= 'Black' ;
ELSE IF Col1=3 THEN n_value= 'Hispanic' ;
ELSE IF Col1=4 THEN n_value= 'Asian' ;
ELSE IF Col1=5 THEN n_value= 'Other' ;
ELSE IF Col1=6 THEN n_value= 'Multi-racial' ;

END;

ELSE n_value=Col1;
........

4

Display 3 is the snapshot after I used if, then and else method.

Display 3. Snapshot Using If Then Statements

While the method is working well with only a few variables with formats to be transposed, it becomes very
tedious when the observations are in the hundreds or thousands.

EXTRACTING FORMATS FROM DICTIONARY.COLUMNS OR SASHELP.VCOLUMN
AND APPLYNG PUTN FUNCTION

An easier way of doing it is to pull out the format information from dictionary. columns using sql, and then
apply putn function to assign the individual format for each observation at run time. If you are not a sql
person, you can do the same by pulling out format information from sashelp.vcolumn. Following is the
demonstration using dictionary.columns or sashelp.vcolumn then applying the formats using putn

function. This method is much easier to adapt to other situations without a lot of hard coding.

5

Display 4 is where we can find the sashelp.vcolumn file.

Display 4. Where to Find Sashelp.Vcolumn File

Display 5 shows you what sashelp.vcolumn file looks like.

Display 5. What Sashelp.Vcolumn File Looks Like

6

You can use the following code to print the variable names and formats from sashelp.vcolumn:

PROC PRINT DATA=sashelp.vcolumn NOOBS;
WHERE libname ='WORK' and memname='SAMPLE';
VAR name format;
RUN;

Display 6 is the snapshot of the output window after running the above code.

Display 6. To See All the Formats in Sashelp.Vcolumn File Using the Above Code

7

You can also export the sashelp.vcolumn file to excel if you are more familiar with Excel.

Display7. How To View Sashelp.Vcolumn File in Excel

Display 8 is the snapshot of the Excel file with all other data from Sashelp.Vcolumn except the sample file
(that we are interested) filtered out.

Display 8. Sashelp.Vcolumn File in Excel Formats

8

Following is the code using proc sql and then print the output file to Excel using ods tagsets.excelxp:

PROC TRANSPOSE DATA=sample NAME=name OUT=t89 ;

RUN;

DATA Z89;
SET t89;
seq+1;
RUN;

/*PULL OUT INFORMATION FROM DICTIONARY.COLUMNS*/

PROC SQL NOPRINT;

CREATE TABLE temp AS SELECT name, format FROM dictionary.columns
 WHERE libname='WORK' and memname="SAMPLE" ;

QUIT;

/*PULL OUT INFORMATION FROM SASHELP.VCOLUMN*/
/*IT DOSE THE SAME AS THE ABOVE METHOD*/
/*USE THIS ONE OR THE ABOVE SQL METHOD*/
DATA temp2;
SET sashelp.vcolumn;
WHERE libname ='WORK' and memname='SAMPLE';
KEEP name format;

RUN;

PROC SORT DATA=temp NODUPKEY;
BY name;
RUN;

PROC SORT DATA=Z89;
BY name;

RUN;

DATA f89;
LENGTH name $32.;
MERGE Z89(in=a) temp;
BY name;
IF a;
IF format gt ' ' THEN value=PUTN(Col1,format);
IF value=' ' THEN value=col1;
RUN;

PROC SORT DATA=f89;

BY seq;
RUN;

9

ODS LISTING CLOSE;

ODS tagsets.excelxp FILE="desktop\data_for_visual_check.xls";
ODS tagsets.excelxp OPTIONS(SHEET_NAME="id 89");

PROC PRINT DATA=f89 NOOBS;

WHERE _label_ ^=' ';
VAR _label_/STYLE=[CELLWIDTH=750];
VAR value /STYLE=[CELLWIDTH=300];
TITLE1;

RUN;

ODS tagsets.excelxp CLOSE;

ODS LISTING;

Following is the snapshot of the file after applying formats using PUTN function.

Display 9. Snapshot of The File After Applying Formats Using PUTN Function

CONCLUSION

The latter method certainly makes your life a lot easier. Not only it has minimized typing when the
variables involved are too many. It is also more adaptable to other projects. It is always beneficial to write
the programs that are easier to adapt to new situations, even though at first it takes more time to develop.
In the long run, it really saves time.

10

ACKNOWLEDGMENTS

Many thanks to SAS® Technical Support for providing valuable suggestions in the developing of this
paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

 Mindy Wang
 14412 Stonebridge View Dr.
 North Potomac, MD 20878
 Phone: (240) 760-9988
 Email: ymindywang@yahoo.com

