
SESUG Paper 244-2019

Chasing Master Data Interoperability: Facilitating Master Data Management
(MDM) Objectives Through CSV Control Tables that Contain Data Rules

that Support SAS® and Python Data-Driven Software Design

Troy Martin Hughes

ABSTRACT

Control tables are the tabular data structures that contain control data—the data that direct software
execution and which can prescribe dynamic software functionality. Control tables offer a preferred
alternative to hardcoded conditional logic statements, which require code customization to modify. Thus,
control tables can dramatically improve software maintainability and configurability by empowering
developers and, in some cases, nontechnical end users to alter software functionality without modifying
code. Moreover, when control tables are maintained within canonical data structures such as comma-
separated values (CSV) files, they furthermore facilitate master data interoperability by enabling one control
table to drive not only SAS software but also non-SAS applications. This text introduces a reusable method
that preloads CSV control tables into SAS temporary arrays to facilitate the evaluation of business rules
and other data rules within SAS data sets. To demonstrate the interoperability of canonical data structures,
including CSV control tables, functionally equivalent Python programs also ingest these control tables.
Master data management (MDM) objectives are facilitated because only one instance of the master data—
the control table, and single source of the truth—is maintained, yet it can drive limitless processes across
varied applications and software languages. Finally, when data rules must be modified, the control data
within the control table must be changed only once to effect corresponding changes in all derivative uses
of those master data.

ARRAY-BASED CONTROL TABLE INGESTION

Control tables provide a data-driven method to direct and modify software functionality by maintaining
software instructions inside tables rather than in code. This alternative to hardcoded software design can
be further improved by maintaining control tables in interoperable (aka, canonical) file formats such as Excel
spreadsheets or CSV files that can be accessed not only by SAS but also by numerous applications and
programming languages.

For example, consider the requirement to scan SAS program files for specific SAS language elements such
as procedure names or macro statements. One solution would be to create a control table containing the
search terms, to load that control table into memory or a data set, and to interrogate one or more SAS
program files for the terms. A CSV control table (e.g., d:\sas\terms.csv) contains sample terms:

PROC SORT,Procedure: Base

PROC FREQ,Procedure: Stats

PROC MEANS,Procedure: Stats

%MACRO,Macro Statement

%MEND,Macro Statement

%DO,Macro Statement

%LET,Macro Statement

The control table includes two columns, containing the term and its user-specified classification. Search
terms can be added, removed, or modified by altering only the control table, so this data-driven design
facilitates software stability and integrity—because the underlying code can remain static while its control
data are modified over time. Moreover, this data-driven design supports software configurability because
different users can utilize the table to search for different terms of unrelated content.

A sample SAS program file (d:\sas\etl.sas) will not be run but can be interrogated for these search terms:

data etl;

 set pres;

 length fullname $50 term 8 numVPs 8;

 format term 8.2;

 fullname=catx(' ',fname,lname);

 term=round((dt2-dt1)/365.25,.01);

 numVPs=countw(vp,',');

run;

proc sort data=etl;

 by num;

run;

proc means data=etl;

 var term numVPs;

run;

proc freq data=etl;

 tables term numVPs;

run;

PROC FREQ data=etl;

 tables lname;

run;

%macro sample();

%put Today is %sysfunc(putn(%sysfunc(date()),mmddyy10.));

%mend;

%sample;

The CTRL_TEXT_DOMAIN_TEXT macro first ingests the control table to determine the number of
observations; this step is required because the observation count is used subsequently in the declaration
of temporary SAS arrays. A second DATA step first ingests the control table (when _N_=1) and
subsequently ingests the program file to search for the terms:

* saved as d:\sas\ctrl_text_domain_text.sas;

%macro ctrl_text_domain_text(ctrl= /* ctrl tab CSV */,

 domain= /* SAS program file name to parse */,

 case= /* SENSITIVE to do case-sensitive search */);

* facilitate case-insensitive FIND;

%if "%upcase(&case)"="SENSITIVE" %then %let case=;

%else %let case=,'i';

* get observation count;

%local nobs;

data _null_;

 infile "&ctrl" truncover end=eof;

 input line $500;

 if eof then call

 symputx('nobs',strip(put(_n_,8.)),'l');

run;

data metrics (drop=i term);

 if _n_=1 then do;

 i=0;

 infile "&ctrl" truncover end=eof dsd

 delimiter=',';

 do until(eof);

 i=i+1;

 length term $32 cat $32;

 input term $ cat $;

 array arrkey[&nobs] $32 _temporary_;

 arrkey[i]=strip(term);

 array arrcat[&nobs] $32 _temporary_;

 arrcat[i]=strip(cat);

 end;

 end;

 length line 8 contents $500 keyword $32;

 infile "&domain" truncover end=eof;

 input contents $500.;

 do i=1 to dim(arrkey);

 if find(contents,strip(arrkey[i])&case) then do;

 line=_n_;

 keyword=arrkey[i];

 cat=arrcat[i];

 output;

 end;

 end;

run;

%mend;

The user-specified file location (&LOC) should be modified, after which the macro can be executed:

%let loc=D:\sas\; * USER MUST CHANGE LOCATION *;

%include "&loc.ctrl_text_domain_text.sas";

%ctrl_text_domain_text(ctrl=&loc.terms.csv,

 domain=&loc.etl.sas, case=);

Table 1 demonstrates the Metrics data set that is created from the default case-insensitive search.

Line Contents Keyword

10 proc sort data=etl; PROC SORT

14 proc means data=etl; PROC MEANS

18 proc freq data=etl; PROC FREQ

22 PROC FREQ data=etl; PROC FREQ

26 %macro sample(); %MACRO

28 %mend; %MEND

Table 1. Metrics Data Set with Search Results

The use of SAS arrays is instrumental to the macro because it enables reserved words and special
characters to be parsed without the need to mask them. For example, both %MACRO and %MEND are
identified within the etl.sas program file without issue. Too often, the contents of control tables are exported
from SAS data sets into macro variables or macro “lists.” Although this methodology may be required in
some instances, character masking is often required and can unnecessarily complicate a solution.

The CTRL_TEXT_DOMAIN_TEXT macro is demonstrated and more fully described in the author’s text:
SAS Data-Driven Development: From Abstract Design to Dynamic Functionality. (Hughes, 2019) The text
additionally demonstrates other control table scenarios, including: maintaining a CSV control table and
interrogating a SAS data set, and maintaining a SAS control table and interrogating either a text file or a
SAS data set.

CONTROL TABLE INTEROPERABILITY

As mentioned, because the control table is maintained within a CSV file, it is more readily ingested by non-
SAS applications. For example, another analyst might be given the same task (to find search terms within
program files) but have more familiarity with the Python language. Rather than having to learn SAS or first
export a SAS control table into an interoperable data structure, he could ingest the same CSV control file
with the following Python code:

import csv

with open('d:/terms.csv') as ctrl:

 reader=csv.reader(ctrl)

 terms=list(reader)

metrics=[]

with open('d:/etl.sas') as f:

 datafile=f.readlines()

 lineno=0

 for line in datafile:

 lineno+=1

 for term in terms:

 if term[0] in line.upper():

 metrics.append([lineno,line,term[0]])

The Python code first imports the CSV control table into the Terms list, after which the program file is parsed
for search terms. When a term is discovered, the term, the program line in which it was discovered, and the
line number are appended to the Metrics list. The Metrics list could be further manipulated to visualize the
results, but this functionality is not demonstrated.

Master data management objectives are facilitated because the single control table is now driving both the
SAS program (CTRL_TEXT_DOMAIN_TEXT macro) and the Python program. If data within the control
table must be modified (e.g., to add additional search terms), these changes can be made once and yet
propagate to all programs relying on the control table. This overcomes a common limitation in SAS software
design in which control tables are maintained as SAS data sets and thus are of limited to no use to non-
SAS applications and languages that could (or should) otherwise rely on those master control data.

CONCLUSION

The use of control tables epitomizes data-driven software design by storing software instruction within
malleable data structures rather than statically within code. This text introduced an array-based method to
ingest and evaluate control tables, overcoming a common weakness in which SAS control data are
unnecessarily converted to macro variables and macro “lists.” Maintaining control tables in interoperable
data structures such as CSV files further broadens the scope of the applications and programming
languages that can leverage control tables. Furthermore, this promotes MDM objectives by maintaining a
single version of the truth—the master control data driving software and providing dynamic functionality.

REFERENCES

Hughes, T. M. (2019). SAS(r) Data-Driven Development: From Abstract Design to Dynamic Functionality.
San Diego, California: CreateSpace.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

