
1

SESUG Paper 214-2019

When fuzzy matching doesn’t work: using the CONTAINS and JOIN
functions through SAS EG to find foreign words in text strings

Arthur Laciak, U.S. Consumer Product Safety Commission

ABSTRACT
I have found that fuzzy matching functions in SAS, such as SOUNDEX and SPEDIS, are not effective in
matching foreign words, especially Chinese words. When transliterated into the Latin alphabet, too many
syllables are similarly spelled that fuzzy matching is ineffective, even with strict parameters. Many
Chinese words are unintentionally matched, resulting in more complications.

This paper explores a work-around approach, using the CONTAINS and JOIN functions in SAS EG
through PROC SQL to search for keywords from a reference table in text strings of a given data set. In
this procedure, each text string is compared against keywords and matched keywords are displayed in a
new column, resulting in clean data for further analysis. The example given in this paper matches
Chinese addresses written in a text string to Chinese cities and provinces.

INTRODUCTION
Fuzzy matching functions are critical tools when trying to match unstructured text data, especially given
misspellings due to human error. However, through my experience, I found that fuzzy matching is
ineffective with Chinese. Although Chinese characters are transliterated into the Latin alphabet, fuzzy
matching results in too many false matches. In particular, Soundex was developed to match similar-
sounding English surnames, so the function does not factor Chinese phonetics (Sloan and Laffler, 2018).

Take for example the city Nanjing. Its SOUNDEX code is N5252; the same for Nanchang and Nanchong.
Consider also the city Quanzhou. When using COMPLEV, it has a Levenshtein Edit Distance of less than
three with Guangzhou, Taizhou, Suzhou, and many other cities.1 Using SPEDIS and COMPGED has
similar results.

In this paper, I present an alternative approach that first involves creating a reference table and then
using the CONTAINS and JOIN functions in PROC SQL to search for the Chinese names in text strings of
a given data set. I will also show how to use SAS EG to query results. Although my example uses
Chinese city names, this approach can be applied to different languages.2

CREATING A REFERENCE TABLE
The SAS code, which is presented in the next section, uses the JOIN function to merge a table containing
text strings (in this case, Chinese addresses) with a reference table containing a list of keywords (in this
case, Chinese cities). The end result is a dataset with added columns of matched keywords. However,
the first step is to create a reference table and to understand postal address hierarchy in China.

China has three levels of cities – in ascending order, county-level, prefectural-level, and provincial-level.
Additionally, there are two administrative regions, Hong Kong and Macau.3 When creating my reference
table in Excel, I created a separate table for county-level and prefectural-level cities, even though
prefecture-level cities are made up of multiple county-level cities. This is because I found, through
experience, that an address listing a county-level city may not always have a prefecture-level city listed. I

1 The Levenshtein Edit Distance is a count of “the number of single character deletions, insertions, or substitutions
required to transform one string into [another].” (Moler, 2017).
2 The sample Chinese addresses used in this paper w ere dow nloaded from the Violations page of the U.S. Consumer
Product Safety Commission’s public w ebsite, found at: https://cpsc.gov/Recalls/violations. The addresses are of f irms
that w ere found to be in violation of a mandatory consumer product standard.
3 A list of Chinese cities can be easily found on Wikipedia at: https://en.w ikipedia.org/w iki/List_of_cities_in_China.

https://cpsc.gov/Recalls/violations
https://en.wikipedia.org/wiki/List_of_cities_in_China

2

also created an additional table containing only the provinces. Since I will run my SAS code with each of
the three reference tables, I will reduce the number of non-matches. In the end, if I am unable to match
an address to a city, I will at least attempt to match it to a province, which will still allow for some form of
analysis afterwards.

For both of the city reference tables, I created four columns: City_Ref, Prefecture_Ref, Province_Ref, and
Country_Ref, as shown in Display 1 below. For the prefecture-level cities reference table, I repeated their
name in both of the first two columns for the ease of appending tables later. I did the same for provincial-
level cities (not shown in code), such as Beijing, where I repeated the name across the first three
columns. Additionally, due to the special nature of Hong Kong, I listed it as a province and country and its
subdivisions, such as Kowloon, as a city and prefecture.

Display 1. Reference Tables

SAS CODE
The SQL procedure for merging the tables is rather short, as shown below. In this example, I am merging
my dataset, WORK.ADDRESS_LIST, with one reference table, WORK.COUNTY_CITIES, to create
WORK.MATCHED_COUNTY_CITIES.

PROC SQL;
CREATE TABLE WORK.MATCHED_COUNTY_CITIES AS
SELECT t1.FIRM_NAME,

t1.FIRM_ADDRESS,
t2.City_Ref,
t2.Prefecture_Ref,
t2.Province_Ref,
t2.Country_Ref,
(COUNT(*)) AS Count
FROM WORK.ADDRESS_LIST t1

LEFT JOIN WORK.COUNTY_CITIES t2 ON

3

(compress(tranwrd(t1.FIRM_ADDRESS,","," "),,"P") CONTAINS
cat(' ',trim(t2.City_Ref),' '))

GROUP BY t1.FIRM_NAME
ORDER BY t1.FIRM_NAME;

QUIT;

The critical element of this PROC SQL code is the LEFT JOIN statement. In this step, the reference table
is being joined to the address list table, using the CONTAINS function. This function searches the
WORK.ADDRESS_LIST data table line-by-line for each city in the reference table. Whenever there is a
positive match, then the city, prefecture, province, and country reference variables are joined to that
address. Acknowledging that there may be multiple matches per address, the Count variable is added.
Along with the GROUP BY statement, the variable Count lists the number of times the FIRM_NAME
variable appears. When the count is greater than 1, then that means there were multiple matches for a
single address. Those results can then be filtered out.

The TRANWRD, COMPRESS, TRIM, and CAT functions are used to clean the data before joining the
tables and are optional:

• TRANWRD replaces all commas with spaces. This is useful in cases when a comma was used
as a delimiter instead of a space.

• COMPRESS with the “P” option removes all punctuation, because some city and province names
have apostrophes.

• TRIM removes any leading or trailing blanks. This is useful to ensure that there are no hidden
blanks in the reference tables.

• CAT adds a leading and trailing blank. This seems contradictory with the TRIM function, but if the
reference data is not perfectly clean, then there can be many non-matches due to a hidden blank.
These two functions together ensure that only the reference city (or province) is matched in its
entirety to a city name in the address and not to a portion of a name (i.e., prevents a city such as
Jian from being matched with Zhejiang).

The output results in seven columns, with the last one being the Count column, as shown in the display
below.

Display 2. Output of PROC SQL Code

USING SAS ENTERPRISE GUIDE TO QUERY RESULTS
To examine the output at each step, I use SAS Enterprise Guide to query the results. In the previous
section, I only matched the address list with the county level cities, so I would have to repeat the same
PROC SQL code with the prefecture level cities and province, if no cities are matched. Therefore,
between each step, I need to query the output and remove any matched cities.

4

The figure below displays the process flow taken in SAS EG to achieve my final output of matched
Chinese cities. Since I run my PROC SQL sequence three times (for county level cities, prefecture level
cities, and provinces), I query the results for matches and non-matches three times. I only apply the
PROC SQL sequence a second or third time to the non-matched output of the previous query. Once I
exhaust all reference tables, I append all of the matched outputs into one dataset. (Note – you can link
tables to any SAS program, by right clicking the desired table and selecting “Link ‘table name’ to….” This
will ensure that the project runs in order.)

Display 3. SAS EG Process Flow

QUERYING FOR MATCHES AND NON-MATCHES
After each PROC SQL sequence, the results are queried for matches and non-matches, using the
COUNT variable. Each query for matched addresses is identical. Using Query Builder, I filter the PROC
SQL output, where t1.Count = 1 AND t1.City_Ref NOT IS MISSING. The first filter identifies the
addresses that have at most one matched city; and the second filter identifies the addresses that actually
have a matched city. The AND statement ensures that both criteria are met. These steps are repeated for
prefecture-level city and province matches. The output of each query will display the original firm name
and address and the city, prefecture, province, and country reference.

Display 4. Query for Matches

The query for non-matched addresses is very similar. Instead, the query filters for t1.City_Ref IS
MISSING OR t1.Count NOT = 1. The first filter identifies any address that does not have a matched city
and the second filter identifies any address that has multiple matches. This way, any addresses with
multiple matches can be removed from the matched city output, which will eliminate any duplication in the
final dataset. The OR statement only requires that one criterion is met. Lastly, only the original firm name

5

and firm address needs to be selected for this query, so the original data can be reused in the next
iteration of the PROC SQL sequence. It is important to check “Select distinct rows only,” so no duplicative
rows are in the output.

Display 5. Query for Non-Matches

The final step is to append all of the outputs together. Using the Append Table task, select the three
matched addresses output tables from each query and the non-matched addresses output table from the
final query to create one final output table. Now the final dataset contains the original address list with
reference cities and provinces attached. The unstructured text data is now matched with structure text
data that can be used for future analysis.

CONCLUSION
When it comes to matching Chinese words in SAS, fuzzy matching functions, such as SOUNDEX and
COMPLEV, are ineffective. The PROC SQL code and SAS EG procedure presented in this paper is a
work-around approach that can be used for other languages as well. In fact, it can also be used to search
for a list of keywords in English in a text string given a reference table. The end result is a dataset of
usable data for analysis.

REFERENCES
Moler, Cleve. August 14, 2017. “Levenshtein Edit Distance Between Strings.” Accessed September 5,
2019. https://blogs.mathworks.com/cleve/2017/08/14/levenshtein-edit-distance-between-strings/.

Sloan, Stephen and Kirk Paul Lafler. 2018. “Fuzzy Matching Programming Techniques Using SAS®
Software.” Proceedings of the Southeast SAS User Group 2018 Conference, Paper 143-2018.

U.S. Consumer Product Safety Commission. “Violations.” Accessed July 17, 2019. Available at
https://cpsc.gov/Recalls/violations.

Wikipedia. “List of cities in China.” Accessed July 17, 2019. Available at
https://en.wikipedia.org/wiki/List_of_cities_in_China.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Arthur Laciak
U.S. Consumer Product Safety Commission
alaciak@cpsc.gov

https://blogs.mathworks.com/cleve/2017/08/14/levenshtein-edit-distance-between-strings/
https://cpsc.gov/Recalls/violations
https://en.wikipedia.org/wiki/List_of_cities_in_China

	Abstract
	Introduction
	Creating a reference table
	SAS Code
	using sas enterprise guide to query results
	Querying for matches and non-matches

	Conclusion
	References
	Contact Information

