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ABSTRACT  
The time-to-event response is commonly thought of as survival analysis, and typically concerns statistical 
modeling of expected life span.  In the example presented here, alfalfa leafcutting bees, Megachile 
rotundata, were randomly exposed to one of eight experimental thermoprofiles or two control 
thermoprofiles, for one to eight weeks.  The incorporation of these fluctuating thermoprofiles in the 
management of the bees increases survival and blocks the development of sub-lethal effects, such as 
delayed emergence.  The data collected here investigates the question of whether any experimental 
thermoprofile provides better overall survival, with a reduction and delay of sub-lethal effects.  The study 
design incorporates typical aspects of agricultural research; random blocking effects.  All M. rotundata 
prepupae brood cells were randomly placed in individual wells of 24-well culture plates.  Plates were 
randomly assigned to thermoprofile and exposure duration, with three plate replicates per thermoprofile x 
exposure time.  Bees were observed for emergence for 40 days.  All bees that were not yet emerged prior 
to fixed end of study were considered to be censored observations.  We fit a generalized linear mixed 
model (GLMM), using the SAS® GLIMMIX Procedure to the censored data and obtained time-to-
emergence function estimates.  As opposed to a typical survival analysis approach, such as Kaplan-Meier 
curve, in the GLMM we were able to include the random model effects from the study design.  This is an 
important inclusion in the model, such that correct standard error and test statistics are generated for 
mixed models with non-Gaussian data. 

INTRODUCTION  
Survival analysis is a class of methods for which the outcome variable of interest is time until an event 
occurs.  Time is measured from beginning (time=0) until the event occurs or the observation time ends.  
All subjects are observed, even if the subject does not experience the event, the length of time in the 
study is also recorded.  A common goal in a survival analysis study is not only whether an event 
occurred, but also when it occurred.  For example, a subject that lives 5 years after an experimental 
treatment is different from a subject that lives only 1 month after treatment.  An analysis that only counted 
death events would ignore the equally valuable information about survival time.   

Additionally, survival analysis methods allow for some incomplete time to event information in the study.  
These observations are referred to as censored observations, and they occur when a subject does not 
experience the event before the end of the study, the event occurs before the indicated start of the study, 
or if the observations are assessed at infrequent intervals such that the exact timing of the event is 
unknown.  Censoring is uninformative if it occurs when the reasons for removal are unrelated to the event 
and it does not bias the parameter estimates and statistical inference.  Informative censoring occurs when 
the reasons for removal are related to the event. 

Conventional statistical methods are not appropriate for analysis of the time-to-event and censoring 
response variables.  Logistic regression ignores the timing of events, and cannot handle time-dependent 
variables.  Linear regression cannot handle censored observations or time-dependent variables, and is 
also inappropriate because time-to-event data often has a non-Gaussian distribution.  Additionally, we 
introduce random model effects, which if not accounted for appropriately, we will introduce conditional vs. 
marginal model issues, standard error issues, and test statistic issues that is observed for other mixed 
models with non-Gaussian data (Gbur et al., 2012).   

A successful survival analysis might provide the researcher with the ability to estimate and interpret 
survival probability; compare survival among different groups; assess the relationship between the 
survival time distribution and the time-independent and time-dependent explanatory variables; and 
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possibly predict the time until the event.  The methods described in this paper analyze the time-to-event 
response with left censored observations, within the generalized linear mixed model (GLMM), to estimate 
survival probability.  Additionally, the relationship of temperature regime treatments to the time-to-event 
response are explored.   

RESEARCH PROBLEM AND STUDY DESIGN 

The researchers of this study hypothesized that exposing the solitary alfalfa leafcutting bee (Megachile 
rotundata) to an optimal temperature thermoprofile improves survival and decreases the development of 
sub-lethal effects (such as wing deformity).  The researchers are also interested in any possible delay in 
the time to emergence as a first screening for sublethal effects. Thorough details of this research and the 
data referenced in this proceedings are provided in Yocum et al. (2019).   

The study design: In the prepupae stage, each individual brood cell was inspected for developmental 
stage.  Cells were placed individually in wells of 24-well culture plates.  Plates were randomly assigned to 
thermoprofile treatment.  There were 10 thermoprofiles (eight experimental and two controls), eight 
exposure duration to the thermoprofiles (one to eight weeks), and initiation of the exposure at two 
developmental stages (eye-pigmented pupae and emergence-ready adults).  Once a week, three plates 
from each temperature treatment were transferred to constant 29°C to resume development.  The 
individual bees within plates were observed weekly, every other day, and adult emergence date and sex 
were recorded for approximately 40 days.  Our statistical model includes the treatment x week factors as 
fixed effects, and the individual plates observed are random blocking effects.  The treatment and design 
features are necessary to include in the model to adequately interpret the relationship of the thermoprofile 
exposure to emergence. 

The continuous day of emergence is the time point at which the event occurred.  It is the “survival” time 
that is of interest.  During the observation period, if a wasp emerged, these are recorded as a death (or 
censored) event at day = t. If emergence did not occur prior to the end of the study time period, the death 
is presumed to have occurred during the treatment phase of the study, prior to day 0 of the observation 
stage for emergence.  These observations are left censored.  A binary censored variable observation is 
recorded for all subjects, either the subject is censored or not censored.  In our data, we coded C=0 if the 
observation is censored, and C=1 if the observation is not censored.  For the following data exploration 
and analysis components, results from the emergence-ready adults is presented.   

DATA EXPLORATION 
Usually the first step in the analysis of time-to-event (“survival”) data is to estimate and plot the survival 
function.  The Kaplan-Meier method is able to incorporate the continuous days to emergence and binary 
censored observations to compute the probability of emergence at a given time t.  The LIFETEST 
procedure computes and plots survival functions, and also tests for differences between survival 
functions.  The TEST functionality within PROC LIFETEST is not appropriate for this example, as the 
random block effect is not taken into account with this method.  You are able to identify the temperature 
treatment, week in storage, or a treatment x week combined variable to define the strata for the analysis.  
This approach is recommended here to explore a simplistic survival curve and tabulate summary statistics 
prior to building the GLMM with post-hoc comparisons.  Details of this procedure and approach are 
thoroughly described in Allison (2010). 

Here is an example of PROC LIFETEST code where the temperature treatment is the variable defining 
the strata.  The TIME statement indicates the time-to-event variable and the censoring variable.  The 
parenthetical 0 value corresponds to the censoring value used in the data file to identify censored 
observations: 
   proc lifetest data=data plots=survival; 
 time TimetoEmerge * C_Emerge(0); 
 strata treatment; 
   run;     
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Table 1 is a Censored Summary output table generated from the preceding code.  For each of the 10 
temperature treatments, you can explore the total emergence and censored observations.  Recall that in 
the system being studied here, the FAILED column is actually the bees that successfully emerged, and 
the CENSORED column is indicative of those observations that did not emerge during the observation 
period.   

 
Table 1. Summary of the Number of Censored and Uncensored Values from PROC LIFETEST 
The summary table does not account for random effects, and only the information based upon the 
temperature treatment is reported; however, you can still utilize this information to validate the input data.  
We expected stratum 5 treatment (6-18°C 12;12 squ) to have a high level of emergence, and it does in 
comparison to the other treatments.  We need to know more about possible interactions with the storage 
time duration, which is explored with the GLMM.   

The corresponding Kaplan-Meier survival curve (Figure 1) is the graphical representation of the same 
input data.  You can identify when initial emergence occurs for the 10 temperature treatments, and follow 
each emergence pattern.  The default Y-axis label ‘Survival Probability’ is the Probability of Emergence 
Event.  With 10 possible stratum in the plot, the extreme probabilities are perhaps the easiest to interpret.  
Emergence appears to begin on or about day 15 in treatment ‘6-18° 12:12 squ’ with 50% emergence on 
or about day 16.  Emergence for treatment ‘6°C hold’ appears to begin on or about day 16 with 50% 
emergence on or about day 21:    
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Figure 1. Kaplan-Meier Survival Curve from PROC LIFETEST 

EXPONENTIAL SURVIVAL GLMM FOR CENSORED DATA 
For the treatment and experiment designs that are described previously, the GLMM becomes a useful 
tool for obtaining estimates of the survivor and hazard functions.  The hazard function is the 
instantaneous risk or potential that an event will occur at time t, given that a subject has survived up to 
time t.  It takes the form of the number of events per interval of time.  It is a constant rate (λ) regardless of 
the time, not a probability, which ranges from zero to infinity.  The purpose of the data inquiry that we 
present does not focus on interpretation of hazard rate, so little discussion on the topic occurs here, 
except to mention where calculations are accomplished.  For examples on hazard function and fitting 
proportional hazards regression models, see Hosmer et al. (2008).     

The elements of a GLMM remain unchanged for time-to-event data.  The approach and description 
provided here closely follows examples provided in Stroup (2013).  The components of the model for 
these data are: 

1. Linear predictor: this is the structure of the experimental design, randomization of how the 
treatment is applied; in model form, 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜂𝜂𝑖𝑖𝑖𝑖 + 𝑟𝑟(𝑎𝑎𝑎𝑎)𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 , where 𝑟𝑟 is the 𝑘𝑘𝑡𝑡ℎ random block 
effect ‘plate’, 𝑎𝑎 is the 𝑖𝑖𝑡𝑡ℎ temperature thermoprofile ‘treatment’, and 𝑏𝑏 is the 𝑗𝑗𝑡𝑡ℎ duration of 
exposure ‘week’.  We use the “cell means” form of the model since our interest lies on the 
interaction of temperature treatments and duration of exposure, rather than on the partitioned 
main effects. 

2. Distribution(s): encompasses all random effects in the linear predictor, here 𝑟𝑟(𝑎𝑎𝑎𝑎)𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 are 
i.i.d. 𝑁𝑁(0,𝜎𝜎2); the observations are conditional on the random model effects, and the response 
variable, survival time (𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖) ~ independent 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖).   Note on distributions of survival 
analysis:  The Poisson provides a theoretical starting point for developing time-to-event 
distributions.  This process leads directly to the exponential distribution, which can be easily 
generalized to the gamma distribution.   

3. Link Function:  𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 = log�𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖�, this is the natural or canonical parameter – always a function of 
the mean, but a better candidate for regression and ANOVA-like models than the mean. 

Initially, you should verify that the exponential (or gamma) distribution provides an adequate fit for the 
time-to-event response variable.  This is achieved by determining if Φ = 1 is a plausible value for the 
scale parameter, i.e. fit the exponential distribution and determine if there is evidence of over- or under-
dispersion.  
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The GLIMMIX statements for the exponential model are: 
      proc glimmix method=laplace data=data; 

class treatment week plate; 
 model TimetoEmerge = treatment*week / dist=exponential; 
 random intercept / subject = plate(treatment*week); 
 covtest/cl(type=plr); 
  run;   
 

The only output of interest for this question is the scale parameter (𝛷𝛷)� , which is the Pearson 𝛸𝛸2 𝑑𝑑𝑑𝑑⁄ , 
located in the ‘Fit statistics for conditional distribution’ output table (Table 2): 

 
Table 2.  Fit Statistics for Conditional Distribution. 
Values close to 1, with a confidence interval containing 1 are optimal.  Our data appears to err on the 
under-dispersion boundary, with the Pearson 𝛸𝛸2 𝑑𝑑𝑑𝑑⁄  = 0.76, 95% confidence interval: [0.51, 0.97].  
Perhaps the potential under-dispersion is influenced by the large proportion of censored observations, we 
have less variation in the data than the model predicted.  However, the proportion of censored 
observations in this study was not unremarkable in the context of the biology of the system.  More 
importantly, there is no evidence of over-dispersion, which is often encountered when fitting simple 
parametric models, such as those based on the Poisson distribution.  There is no evidence to suggest 
that the gamma distribution is a better fit, and no evidence of over-dispersion, so the analysis moves 
forward utilizing the exponential model approach.        

As mentioned previously, the exponential model is a generalization of the Poisson; therefore, the resulting 
log-likelihood for the exponential is the Poisson.  The censoring random variable C has a Poisson 
distribution with rate parameter 𝜆𝜆.  At given time t, 𝐸𝐸(𝐶𝐶|𝑡𝑡) = 𝜇𝜇𝑐𝑐 =  𝜆𝜆𝜆𝜆.  In the time-to-event GLMM with 
censored observations, we use C as the primary response variable.  The Poisson distribution is the 
conditional distribution of C given the random model effects.  The link is 𝐿𝐿𝐿𝐿𝐿𝐿(𝜇𝜇𝑐𝑐) = log(𝜆𝜆) + log (𝑡𝑡).  
Because the form of the log-likelihood works within the GLMM estimating equations, we use log(𝑡𝑡) as an 
offset. This is all accomplished in the GLIMMIX procedure:  
   proc glimmix method=laplace data=data; 
 class treatment week plate; 

logt = log(TimetoEmerge); 
model c_emerge=treatment*week / noint d=poisson offset=logt ; 
random intercept / subject=plate(treatment*week); 

   run; 

Notice we use the METHOD=LAPLACE option in our time-to-event data analysis.  The class of models 
for which a Laplace approximation can be applied in PROC GLIMMIX is few compared to models to 
which Pseudo-Likelihood (PL) can be applied.  Laplace works here because we have a conditional log-
likelihood (d=poisson) and G-side random effects that are assumed to be normal (0, σ2) (RANDOM 
statement). 

  

 0.76 
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The Type III tests (Table 3) tell us that the interaction of treatment x week is statistically significant at 
α=0.05.    

 
Table 3. Type III Tests of Fixed Effects 

 
ESTIMATING MEANS 

Our main steps with the analysis is to estimate µ, the temperature x week treatment combination means, 
and use the 𝜇̂𝜇 to determine the hazard and survivor functions for each treatment. Once we generate 
parameter estimates, we apply the inverse link to give us the µ� for the functions of interest.  Hence, taking 
(µ�)-1 yields 𝜆̂𝜆 for the estimable functions of interests, and in turn we can calculate the survivor and hazard 
functions.  This is all accomplished using LSMEANS and LSMESTIMATES statements.   

The LSMEANS statement provides estimates of log (𝜆𝜆) – the rate parameter; the ILINK option gives actual 
values of the estimated hazard function for each treatment x week.  The PLOTS option provides a graphic 
representation of the hazard function over the duration weeks for each temperature treatment:   
     proc glimmix method=laplace data=data; 
 class treatment week plate; 

logt = log(TimetoEmerge); 
model c_emerge=treatment*week / noint d=poisson offset=logt ; 
random intercept / subject=plate(treatment*week); 
lsmeans treatment*week / ilink plots=meanplot(sliceby=treatment ilink); 

  run;  
 
The output from the LSMEANS statement (first 8 observations) appears as Table 4: 

 
Table 4. Treatment*Week Least Squares Means 
The MEAN column shows the estimates of the hazard functions for each temperature x week treatment 
combination.  The ESTIMATE column shows the link predictor function – which is a value of very little 
interest for the current interpretation.  The following plot (Figure 2) show that across many of the 
treatments (except for 6°C hold) the hazard function increases as the number of weeks exposed to 
temperature treatment also increases.  But what does the model tell us about emergence?   
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Figure 2.  Plot of inverse link (hazard function) by duration of exposure ‘Week’ sliced by 
temperature thermoprofile ‘Treatment’ 
 

The statement/option LSMESTIMATES / EXP provides us with exponentiated estimates of mean survival 
time – which we interpret as the mean emergence.  The first set of 8 weeks for temperature regime 
treatment ‘6-12°C 12:12 squ’ are as follows: 
     proc glimmix method=laplace data=data; 
 class treatment week plate; 

logt = log(TimetoEmerge); 
model c_emerge=treatment*week / noint d=poisson offset=logt ; 
random intercept / subject=plate(treatment*week); 
lsmestimate treatment*Week  

  'mean emerge_time for 6-12oC 12;12 squ wk1' -1, 
  'mean emerge_time for 6-12oC 12;12 squ wk2' 0 -1, 
  'mean emerge_time for 6-12oC 12;12 squ wk3' 0 0 -1, 
  'mean emerge_time for 6-12oC 12;12 squ wk4' 0 0 0 -1, 
  'mean emerge_time for 6-12oC 12;12 squ wk5' 0 0 0 0 -1, 
  'mean emerge_time for 6-12oC 12;12 squ wk6' 0 0 0 0 0 -1, 
  'mean emerge_time for 6-12oC 12;12 squ wk7' 0 0 0 0 0 0 -1, 
  'mean emerge_time for 6-12oC 12;12 squ wk8' 0 0 0 0 0 0 0 -1/exp; 

  run; 
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Table 5 is the LSMESTIMATE output table for the subset of observations provided in the preceding 
PROC GLIMMIX statements: 

 
Table 5. Least Squares Means Estimates of Treatment ‘6-12°C 12:12 squ’ for Weeks 1 through 8 
The EXPONENTIATED ESTIMATE column shows the estimated mean survival times, which we interpret 
as the estimated mean emergence day.  We use these estimates to plot the survivor (emergence) 
functions for each temperature X week treatment combination.  Figure 3 is modified from Yocum et al. 
(2019).   

 
Figure 3.  Plot of ‘Days to Emergence’ by the duration of exposure ‘Week’ sliced by the 
temperature thermoprofile treatment 
 

SUMMARY OF GLMM RESULTS 

Some emergence-ready bees emerged during the exposure period to treatment ‘6°C hold’; these 
observations are left censored, and this is exhibited in Figure 3 with no apparent emergence after week 4 
of exposure.  Bees emerged early from the following thermoprofiles: ‘6-12°C 12;12 squ’, ‘6-18°C 12;12 
squ’ and ‘6-18°C 18;6 wav’ and are further investigated for biological effect in Yocum et al. (2019).  Early 
emergence started between exposure weeks 3 and 4 in the thermoprofiles ‘6-18°C 12;12 squ’ and ‘6-
18°C 18;6 wav’, with the rate of emergence increasing in the following weeks.  Early emergence began 
between exposure weeks 6 and 7 in the ‘6-12°C 12;12 squ’ thermoprofile.  By week 8 of exposure, 
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emergence during low-temperature exposure reached 62% ± 8.5% for ‘6-18°C 12;12 squ’, 12.7% ±6.5% 
for ‘6-12°C 12;12 squ’ and 9.8% ± 3.6% for ‘6-18°C 18;6 wav’, respectively (modified from Yocum et al., 
2019). 

CONCLUSION 
Building a survival analysis, or time-to-event, model with censored observations is achievable via the 
generalized linear mixed model approach described here.  Time-to-event response with censored 
observations are easily analyzed using methods commonly addressed in introductory survival analysis 
texts.  The major difference shown here is the addition of the random model effects.  This example shows 
how they exist because of the study design, and it is important to account for them in the model.     
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