
An Intro to PROC FCMP

Peter Eberhardt is a long time
SAS consultant, a certified
SAS professional, and a SAS
Alliance Partner. Although he
enjoys working with SAS and
teaching his EG classes, he
does take time to speak and
generally hob-nob with
friends and strangers alike at
SESUG, NESUG, and the SAS
Global Forum. He is the Co-
Chair of the upcoming SESUG
2008. And when he is not
working, Peter partakes in the
great outdoors, either
paddling his home-made
cedar canoe, or snowshoeing
and camping with his home-
made ash snowshoes.

How many times have you tried to simplify your code with LINK/RETURN statements?

How much grief have you put yourself through trying to create macro functions to
encapsulate business logic?

How many times have you uttered "If only I could call this DATA Step as a function"?

If any of these statements describe you, then the new features of PROC FCMP are for
you.

If none of these statements describe you, then you really need the new features of PROC
FCMP!

What I am about to describe is not so much a techie-tip, but more a brief introduction to
the SAS PROC FCMP and its new ability to create your own DATA Step functions and CALL
routines using DATA Step syntax. If you are a statistician you may be familiar with PROC
FCMP; a number of SAS/Stat and SAS/ETS procedure already had the ability to call
functions created with PROC FCMP. This ability now extends to the DATA Step
programmer. For a concise overview of PROC FCMP see the paper by Jason Secosky,
http://www2.sas.com/proceedings/forum2007/008-2007.pdf

You can create functions, as my example shows. You can also create CALL routines. You
can pass in ARRAYS. And your functions can even be recursive. All in all, PROC FCMP will
allow for creative encapsulation of your programming and business logic.

Getting started:

You need a library to store the functions. In my example I will be using a WORK.
Although this is fine for developing your functions, you will need to keep them in a
permanent location where all users can access them. You also have to tell SAS where to
find the functions; the OPTIONS CMPLIB= statement does this.

Example:

I commonly have to do some simple division of two values in a data set. This is simple
until we discover that some of the variables have unexpected missing values, or a value
of 0. The following code shows the 'oldway' by explicitly checking values before each
division; even with only 2 divisions my code is becoming repetitive. The 'newway' uses
two functions I created to do the same divisions; note how cleaner the new code is.

* create a test data set;

DATA wonkyData;
 drop i;
 do i = 1 to 100;
 if mod(i,3) = 0
 then divisor = 0;
 else if mod(i,13) = 0
 then divisor = .M;
 else divisor = i;
 dividend1 = (int(ranuni(1) * 10) * i) + (int(ranuni(2) * 10) * i);
 dividend2 = dividend1 * 2;
 output;
 end;

RUN;

* process the data;
(Continued on page 2)

The SESUG Informant Volume 9, Issue 2 Fall 2008

* divByMissingResult set to .X missing so it is easy to see;
* a common problem is it use IF divisor = . ;
DATA oldWay;
 set wonkyData;
 retain divByZeroResult 0
 divByMissingResult1 .X
 divByMissingResult2 .F ;
 drop divByZeroResult divByMissingResult1 divByMissingResult2;
* only 2 tests, but it could be more;
 if divisor = 0 then answer1 = divByZeroResult;
 else if missing(divisor) then answer1 = divByMissingResult1;
 else answer1 = dividend1 / divisor;

 if divisor = 0 then answer2 = divByZeroResult;
 else if missing(divisor) then answer2 = divByMissingResult2;
 else answer2 = dividend2 / divisor;
run;

*--;
* repeat, but use a function ;
*--;

* outlib= tells FCMP where to store the functions;
PROC FCMP outlib=work.funcs.math;

* this function takes explict values for divByZeroResult and divByMissingResult;
FUNCTION divX(dividend, divisor, divByZeroResult, divByMissingResult);
 if divisor = 0 then answer = divByZeroResult;
 else if missing(divisor) then answer = divByMissingResult;
 else answer = dividend / divisor;
 return(answer);
ENDSUB;

* this function uses fixed values for divByZeroResult and divByMissingResult;
FUNCTION div(dividend, divisor);
 if divisor = 0 then answer = 0;
 else if missing(divisor) then answer = .F;
 else answer = dividend / divisor;
 return(answer);
ENDSUB;
RUN;

* tell SAS where to look for functions;
options cmplib= work.funcs;
* much simpler code;
DATA newWay;
 set wonkyData;
 answer1 = divX(dividend1, divisor, 0, .X);
 answer2 = div(dividend2, divisor);
RUN;

* compare the results;
PROC COMPARE BASE=oldWay COMPARE=newWay;
RUN;

(Continued from page 1)

The SESUG Informant Volume 9, Issue 2
Page 2

Fall 2008
An Intro to PROC FCMP

