
 SESUG 2013

Paper BtB-01

5 Simple Steps to Improve the Performance of your Clinical Trials Table

Programs using Base SAS® Software

Performance is defined in the Encarta® World English Dictionary as “manner of

functioning: the manner in which something or somebody functions, operates, or

behaves”. In order to improve the performance of a SAS program, we need to look at

several factors. These include not only the processing speed of the SAS program but

also the readability and understandability of the program so that it can be edited

efficiently.

Most clinical trials tables involve taking several SAS data sets, which can be rather

large, combining them and then producing statistics ranging from simple counts and

means, using PROC FREQ or PROC MEANS, to more complex statistical analysis.

There are a few practices that each programmer can embrace to make these programs

more efficient, thereby increasing the performance of these programs.

This paper will detail these steps, with examples, so that you can add them to your SAS

tool bag for your next set of project outputs.

Pre-Step: Understand your baseline

Before you can start improving the efficiency of your SAS programs, you must first

understand where you are – your baseline. Use the SAS option FULLSTIMER to

reveal the most information about your current performance. This option will write real

time (ie: elapsed or wall time), CPU time (user and system) and memory statistics to the

SAS log at the end of each step and at the end of the program.

For example:

NOTE: The data set WORK.FINAL1 has 155 observations and 167 variables.

NOTE: DATA statement used (Total process time):

 real time 0.03 seconds

 user cpu time 0.01 seconds

 system cpu time 0.03 seconds

 Memory 1490k

 OS Memory 8668k

 Timestamp 7/5/2013 3:51:44 PM

Example 1: Output of FULLSTIMER option

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

2

Step 1: Reduce sorting

I/O is one of the biggest uses of resources and sorting your data, especially large data,

can really impact your performance. There are several strategies for reducing sorting.

The ones I like to use are:

 Group like tasks together: if you have several steps that require data in the

same order, group those tasks together in your SAS program. This seems

very logical but is often missed when following an output specification. A few

minutes spent planning your program to take advantage of this can reap large

rewards.

 Use an index: creating an index does take up resources but if you have

programs that need the data sorted repeatedly using the same BY, it is

usually better to create and store an index with the data than to resort the

data several times. Use PROC DATASETS to create an index on an existing

SAS data set:

proc datasets library=work;

modify SAS_data_set;

index create key_var;  Simple Index

index create key=(byvar1 byvar2);  Composite Index

run;

 Example 2: Creating An Index

 Use SQL: PROC SQL can be a good alternative to this sequence: SORT 

SUBSET/MERGE  SORT  PRINT. These tasks can be accomplished in 1

SQL call. Here is a simple SQL that brings in data, subsets, sorts and prints

the data.

proc sql;

select * from sashelp.class

where sex=’F’

order by name;

quit;

 Example 3: Use PROC SQL as an alternative

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

3

Name Sex Age Height Weight

Alice F 13 56.5 84

Barbara F 13 65.3 98

Carol F 14 62.8 102.5

Jane F 12 59.8 84.5

Janet F 15 62.5 112.5

Joyce F 11 51.3 50.5

Judy F 14 64.3 90

Louise F 12 56.3 77

Mary F 15 66.5 112

Output 3: Output from SQL

Step 2: Bring in only what you need

A derived data set may contain hundreds of variables and many observations that you

will not need in your output. The best approach here is to subset the data based on

exactly what you need. Using a WHERE clause will subset the observations before the

data is brought into the Input Buffer, while using an IF statement to subset the data

means that all the data is brought into the Input Buffer sequentially. You can also use

KEEP= to limit the variables to only what you need.

If you are really tight on resources, you may want to consider creating a few new

variables and dropping the originals. Let’s think about using flag variables. I’m sure we

all have them in our derived data sets and normally many more than one or two per

data set. They are usually defined as numeric with a values of 0,1 or <missing>. Each

of these flag variables is 8 bytes. However, if they are changed to character variables,

they can be reduced to 1 byte each – saving many precious bytes of space.

SAS Variable Type Default length

1 stored as a SAS numeric 8 bytes

‘1’ stored as a SAS character 1 byte

Table 1: Comparison of Lengths

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

4

Step 3: Use procedures wisely

Consider how procedures work and use them to your best advantage. A good example

is PROC FREQ, frequently used to produce counts for a table program. You could

program your FREQ to use specific values passed in on a WHERE statement. We will

call this “Method A”.

For example:

%macro freqit(dsn=,trt=);

 proc freq data=&dsn;

 tables lbtestn / out=tests&trt;

 where trtsort=&trt;

 run;

 %mend;

 %freqit(dsn=labs,trt=1)

 %freqit(dsn=labs,trt=2)

 %freqit(dsn=labs,trt=3)

Example 4: PROC FREQ example

This results in the procedure being called 3 times. The log, with resource usage data, is

shown below:

83 %freqit(dsn=labs,trt=1)

MPRINT(FREQIT): proc freq data=labs;

MPRINT(FREQIT): tables lbtestn / out=tests1;

MPRINT(FREQIT): where trtsort=1;

MPRINT(FREQIT): run;

NOTE: There were 109407 observations read from the data set WORK.LABS.

 WHERE trtsort=1;

NOTE: The data set WORK.TESTS1 has 43 observations and 3 variables.

NOTE: The PROCEDURE FREQ printed pages 1-2.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.98 seconds

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

5

 user cpu time 0.20 seconds

 system cpu time 0.68 seconds

 Memory 1268k

 OS Memory 7388k

 Timestamp 7/11/2013 10:28:46 AM

Output 4: PROC FREQ log file

84 %freqit(dsn=labs,trt=2)

MPRINT(FREQIT): proc freq data=labs;

MPRINT(FREQIT): tables lbtestn / out=tests2;

MPRINT(FREQIT): where trtsort=2;

MPRINT(FREQIT): run;

NOTE: There were 120054 observations read from the data set WORK.LABS.

 WHERE trtsort=2;

NOTE: The data set WORK.TESTS2 has 43 observations and 3 variables.

NOTE: The PROCEDURE FREQ printed pages 3-4.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.88 seconds

 user cpu time 0.25 seconds

 system cpu time 0.62 seconds

 Memory 349k

 OS Memory 7388k

 Timestamp 7/11/2013 10:28:46 AM

85 %freqit(dsn=labs,trt=3)

MPRINT(FREQIT): proc freq data=labs;

MPRINT(FREQIT): tables lbtestn / out=tests3;

MPRINT(FREQIT): where trtsort=3;

MPRINT(FREQIT): run;

NOTE: There were 114515 observations read from the data set WORK.LABS.

 WHERE trtsort=3;

NOTE: The data set WORK.TESTS3 has 43 observations and 3 variables.

NOTE: The PROCEDURE FREQ printed pages 5-6.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.87 seconds

 user cpu time 0.14 seconds

 system cpu time 0.68 seconds

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

6

 Memory 349k

 OS Memory 7388k

 Timestamp 7/11/2013 10:28:47 AM

Output 5: SAS Log -- Method A

Instead of passing in values on a WHERE statement, use that variable, in our case

TRTSORT, as one of the analysis variables on the TABLES statement. We will call this

“Method B”. For example:

proc freq data=&dsn;

 tables trtsort*lbtestn / out=tests;

 where trtsort in (1,2,3);

run;

The SAS log shows the resources used:

76 proc freq data=labs;

77 tables trtsort*lbtestn / out=tests;

78 where trtsort in (1,2,3);

79

80 run;

NOTE: There were 384574 observations read from the data set WORK.LABS.

NOTE: The data set WORK.TESTS has 172 observations and 4 variables.

NOTE: The PROCEDURE FREQ printed pages 1-4.

NOTE: PROCEDURE FREQ used (Total process time):

 real time 0.96 seconds

 user cpu time 0.24 seconds

 system cpu time 0.70 seconds

 Memory 1485k

 OS Memory 7396k

 Timestamp 7/11/2013 12:34:43 PM

Output 6: SAS Log -- Method B

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

7

And the savings were substantial! These numbers are based on our system with our

data. You may see different results but you should definitely see resource improvement

with this technique.

 Method A Method B Pct Improvement**

User CPU time 0.59 seconds 0.24 seconds 59.3%

System CPU
time

1.98 seconds 0.70 seconds 64.6%

Memory 1966k 1485k 24.4%

OS Memory 22164k 7396k 66.6%
**Pct Improvement calculated as difference between Method A and Method B, divided by Method A.

You should also utilize the percent calculation of procedures like FREQ when using the

number of non-missing subjects as your denominator. This prevents you from having

to recreate these calculations. Make sure you are getting the most from each

procedure call!

Step 4: Simplify!

As mentioned at the beginning of this paper, one factor in performance is the readability

and understandability of the program so that it can be edited efficiently. We all know that

client updates come frequently and it is so much better if the program is easy to

understand and easy to update.

Take the time to review your SAS code from time to time to make sure that it is easy to

understand. If the code requires complex logic and complex programming, add

comments so the next programmer understands what that section of code does. It is

very easy to spend several hours looking at someone else’s code, adding PROC

PRINTs and PUT statements, just to understand what they did. This can have a

negative impact on the program performance from the standpoint of efficient

updates/changes to the program.

Another area to simplify is in the use of SAS macros. Macros can be a wonderful

addition to your SAS program. In certain cases, they can also be wasteful – especially

if you have nested macro definitions. You should never nest macro definitions, which

causes macros defined within the outer macro to be recompiled for every iteration of the

outer macro. If you need nested macros, define them separately. You can then call

one macro from another as needed.

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

8

From the viewpoint of complexity, having nested macro calls can impede the

understanding of what is really getting pushed to the SAS processor. If you must use

this logic, make sure that the code is well documented.

For example:

is generally more efficient than this example:

Example 6: Nested Macro Definitions

In table programs, it is common practice to have a GEN file that is used to create similar

tables. These GEN files typically use macro variables to pass in the information needed

for a specific table. Many people define their GEN program as a SAS macro, and then

define other macros within it. This can over-complicate the process and reduce

efficiency, as shown above.

%macro inner;

 <SAS code here>;

%mend;

%macro outer;

 <SAS code here>;

 %inner;

%mend;

%outer;

%macro outer;

 <SAS code here>;

 %macro inner;

 <more SAS code here for INNER>;

 %mend;

 %inner;

%mend;

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

9

For example:

%gen_table(pop=safety,dsn=data_set,w=,dis1=criteria1,

dis2=criteria2)

Example 7: Using a GEN file

An alternative approach is to define macro variables using %LET statements and then

bring in the code in the GEN file via %INC. The GEN file, in this case, does not start

with %MACRO.

%let pop=safety;

%let dsn=data_set;

%let w=;

%let dis1=criteria1;

%let dis2=criteria2;

%inc "&root.&progdir\gen_qc_table.sas";

Example 8: Using %INC with %LET statements

If you have code that assigns values using a series of if statements, consider using

PROC FORMAT instead of IF statements. This method is generally more efficient, both

in terms of resources and simplicity to update. For example:

proc format;

 value trt;

 1 = ‘Treatment A’

 2 = ‘Treatment B’

 3 = ‘Treatment C’

 4 = ‘Placebo’

 ;
data table;

 set SAS_data_set;

 treat=put(trt,trt.);

run;

Example 9: Using PROC FORMAT to assign values

If you have many of these assignments to make, you can define them all in a single

PROC FORMAT, so the procedure is called only once.

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

10

Step 5: Comment code and review

The last of the 5 steps for improving efficiency is to comment your code and periodically

review it. Always add enough comments so that the next programmer can quickly find

what they need and make updates as required. As mentioned earlier, this is especially

important when the logic is complex or you are using a less-common SAS statement or

procedure. A good example of this is when PROC SQL is used to join data. If the next

person is not well-versed in PROC SQL, they may not understand some of the logic

used. A few comments before that code block can make a world of difference.

Another important step is to review the code. A typical table program may start out as

simple and then becomes complex one update at a time, as written in the specification.

After a few updates, it is usually beneficial to review the code to see if some of the code

can be consolidated, use fewer sorts or a different SAS statement. As code is added to,

it sometimes becomes less efficient just by the process of adding new sections. Before

beginning a large update, or when you have time, it is beneficial to do a code walk-

through to see if the program can be re-organized so that it performs better – whether in

terms of system resources or readability by the next programmer.

Extras

Here are a few SAS options and tips that can be used when writing SAS programs.

They can help in many ways as you work to improve your SAS code.

Options

ERRORABEND: This SAS option can help as you debug your program. If your code

produces an error, this option tells SAS to stop executing the entire program. It will save

you much real/wall time waiting for a job to end, only to find that you had an error and

will need to rerun.

OBS=: You can also use the OBS= system option to limit the number of observations

read or written in all SAS data sets within the program. This can be useful when testing

logic and you want to speed up your test. You can also use the data set option OBS= if

you only want to limit observations in one particular data set.

SORTEDBY=: This option sets the sort indicator, which SAS uses to determine whether

or not to sort the data. You may also want to set SORTVALIDATE so that SAS will

validate this sort order. Default value is NOSORTVALIDATE.

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

11

MSGLEVEL=I: This option will write out Information notes (INFO) to the SAS log. With

this option, an INFO note is written to the SAS log when an index is used.

MPRINT/MLOGIC/SYMBOLGEN: These macro debugging options can help you

understand what is actually being interpreted by the SAS compiler.

Tips

WHERE= vs. IF: Using the WHERE= data set option, or WHERE statement, is

generally more efficient than a subsetting IF statement in a DATA step. The exception

is when a SAS function appears on the WHERE clause – this causes SAS to read the

entire data set sequentially. You can sometimes use the WHERE operators to mimic

the SAS function. For example:

 where protocol =: ‘XYZ’;

would produce the same results as:

 if substr(protocol,1,3)=’XYZ’;

Create a hash object: A hash object is held in memory so the benefit for these is less
I/O when combining data sets. A good application for hash tables is a table look-up
where the table used for look-up is relatively smaller than the table receiving the look-up
results.

Conclusion

As you have seen, there are many, many ways to improve efficiency in your SAS

programs. If you search the Internet or review past SAS Global Forum and regional

conferences proceedings, you can find even more tips. Whether your goal is to make

your program run faster (wall time), use less I/O or be easier to update, I hope that you

have found several tips that you can use.

Acknowledgments

The author would like to thank the following reviewers: Jan Squillace and Martha

Messineo from SAS, Magdalena Lopez and Hardik Sheth from Quintiles.

Title, 5 Simple Steps to Improve the Performance of SESUG 2013
your Clinical Trials Table Programs

12

Additional Reading

 McGowan, Kevin>. 2013. “Big Data, Fast Processing Speeds”. Proceedings of

the SAS Global 2013 Conference. Cary, NC: SAS. Available at

http://support.sas.com/resources/papers/proceedings13/036-2013.pdf

 SAS® 9.3 Companion for Windows

 SAS 9.3 Language Reference. See SAS System Concepts  Optimizing System
Performance. Available at
http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.ht
m#p1xjhzwjv6ojukn18mi4j1ysye76.htm

Contact Information

Your comments and questions are valued and encouraged. Contact the author at:

Name: Sally Walczak
Enterprise: Quintiles
E-mail: sally.walczak@quintiles.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings13/036-2013.pdf
http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#p1xjhzwjv6ojukn18mi4j1ysye76.htm
http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#p1xjhzwjv6ojukn18mi4j1ysye76.htm

