
SESUG 2013 

 

1 

Paper CC-01 

Let SAS® Do the Coding for You! 

Robert Williams 

WellPoint, Inc. 
 

ABSTRACT 
 

Many times, we need to create the same reports going to different groups based on the group’s subset of queried 
data or we have to develop many repetitive SAS codes such as a series of IF THEN ELSE statements or a long list of 
different conditions in a WHERE statement.  It is cumbersome and a chore to manually write and change these 
statements especially if the reporting requirements change frequently.  This paper will suggest methods to streamline 
and eliminate the process of writing and copying/pasting your SAS code to be modified for each requirement change.  
Two techniques will be reviewed along with a listing of key words in a SAS dataset or an Excel

®
 file:  1) Create code 

using the DATA _NULL_ and PUT statements to an external SAS code file to be executed with %INCLUDE 
statement.  2) Create code using the DATA _NULL_ and CALL SYMPUT to write SAS codes to a macro variable.  
You will be amazed how useful this process is for hundreds of routine reports especially on a weekly or monthly 
basis.  RoboCoding is not just limited to reports; this technique can be expanded to include other procedures and 
data steps.  Let the RoboCoder do the repetitive SAS coding work for you!  

INTRODUCTION 
 

Many times, we have to write a series of SAS code that repeats itself with minor adjustments such as changing the 
WHERE statements in a data step, a PROC REPORT procedure or even a block of statements within the DATA step.  
Typically, it can be handled by copying and pasting and then making the necessary adjustments to the code.  If the 
copy/paste is not feasible, then it can be labor intensive to manually write the code especially when we need to create 
a series of IF/THEN/ELSE statements or a long list of different conditions in the WHERE statement.  In this paper, I 
will show two techniques of auto-generating SAS codes using a listing of key words in a SAS dataset or an Excel file. 

 

1) Technique #1:  Generate SAS code using the DATA _NULL_ and CALL SYMPUT to write SAS codes to a 
macro variable to be invoked. 

2) Technique #2:  Generate SAS code using the DATA _NULL_ and PUT statements to write to an external 
SAS program file to be executed with %INCLUDE statement. 

 

I call this SAS Robo-coding.  The best way to show these two SAS Robo-coding techniques is by example in a 

hypothetical situation.  In our typical world of the medical health field, suppose a project request was received asking 
for a subset of the claims based on a list of conditions.  We are provided with this list of diagnoses and diagnosis 
categories corresponding to a mixed range of diagnosis codes like this below. 

 

- Muscle problems that are of a disabling nature, limited to:  356.1, 359.0-359.2, 045.9, 728.11 

- Hemophilia:  286.0-286.4 

- Acquired or congenital heart disease:  745.0-747.9;  424.0-429.9 

CODING DILEMMA: DIRECT CODING OR USE ROBO-CODING 
 

We are faced with a dilemma on how to best write the SAS code to incorporate a list of mixed diagnoses codes and 
sub-codes.  For those of you who are non-health care professionals, the medical diagnosis codes have many sub-
codes and we need to account for each 1-digit or 2 digit sub-code.  For example, to account for all medical diagnosis 
codes from 359.0 to 359.2, according to the website, www.icd9data.com (Display 1), the dictionary of medical coding 
shows some of 359 codes have just 1-digit sub-codes while others has 2-digit sub-codes.  The sub-codes are the 
digits to the right of the period. 

http://www.icd9data.com/


SESUG 2013 

 

2 

 
Display 1. Screenshot of un-collapsed listing of 359.0-359.2 ICD-9 codes and sub-codes 

 

If we code directly into the WHERE statement to subset the sample claims data and then categorize the data into 
disease categories via a series of IF/THEN/ELSE or SELECT/WHEN statements, we would have coded a DATA step 
similar to this code below.  As you may have noticed, the DATA step have lines of code repeating itself with some 
adjustment for each condition in the WHERE statement as well as the categories in the WHEN statements. 

 
    data WORK.CLAIMS_SUBSET_DX_cat; 

 set WORK.SESUG_samp_claims; 

 where (IDCD_ID like "0459%" or IDCD_ID like "3561%" or IDCD_ID like "3590%"  

  or IDCD_ID like "3591%" or IDCD_ID like "3592%" or IDCD_ID like "72811%"  

  or IDCD_ID like "2860%" or IDCD_ID like "2861%" or IDCD_ID like "2862%"  

  or IDCD_ID like "2863%" or IDCD_ID like "2864%" or IDCD_ID like "424%"  

  or IDCD_ID like "425%" or IDCD_ID like "426%" or IDCD_ID like "427%"  

  or IDCD_ID like "428%" or IDCD_ID like "429%" or IDCD_ID like "745%"  

  or IDCD_ID like "746%" or IDCD_ID like "747%"); 

 format DX_category $150.; 

 select; 

     when (substr(IDCD_ID,1,4) = '0459') DX_category = 'Muscle problems'; 

     when (substr(IDCD_ID,1,4) = '3561') DX_category = 'Muscle problems'; 

     when (substr(IDCD_ID,1,4) = '3590') DX_category = 'Muscle problems'; 

     when (substr(IDCD_ID,1,4) = '3591') DX_category = 'Muscle problems'; 

     when (substr(IDCD_ID,1,4) = '3592') DX_category = 'Muscle problems'; 

     when (substr(IDCD_ID,1,5) = '72811') DX_category = 'Muscle problems'; 

     when (substr(IDCD_ID,1,4) = '2860') DX_category = 'Hemophilia'; 

     when (substr(IDCD_ID,1,4) = '2861') DX_category = 'Hemophilia'; 

     when (substr(IDCD_ID,1,4) = '2862') DX_category = 'Hemophilia'; 

     when (substr(IDCD_ID,1,4) = '2863') DX_category = 'Hemophilia'; 

     when (substr(IDCD_ID,1,4) = '2864') DX_category = 'Hemophilia'; 

     when (substr(IDCD_ID,1,3) = '424') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '425') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '426') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '427') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '428') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '429') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '745') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '746') DX_category = 'Heart disease'; 

     when (substr(IDCD_ID,1,3) = '747') DX_category = 'Heart disease'; 

     OTHERWISE DX_category = "WHAT CATEGORY?!"; 

 END; 

    run; 

 

This direct coding requires a lot of typing.  If you were like me, I copied and pasted each line and modify each line of 
code.  However, there is another way to do this by dynamically create the repetitive lines of SAS codes.  Using this 
fictional project, here is an outline that demonstrates the two techniques on how to dynamically create SAS codes. 

 

 Technique #1:  Macro variable 

o Set up a SAS data set with the list of key words i.e. list of diagnosis codes in 1
st
 column of Table 1. 

o Create a macro variable to incorporate the list of diagnoses for WHERE statement.  This process 
uses the DATA _NULL_ and CALL SYMPUT to create the macro variable from the SAS data set. 



SESUG 2013 

 

3 

 Technique #2:  External SAS program file  

o Set up a SAS data set with the same list of key words in technique #1 above but add another 
column that includes the corresponding diagnosis categories.  

o Create an external SAS program file to incorporate the list of diagnoses codes and the associated 
categories for the SELECT/WHEN statement block.  This process uses the DATA _NULL_ and 
PUT statements to write to an external SAS program file from the SAS data set 

 Run the DATA step 

o The DATA step will subset the sample claims data and categorize the diagnoses by incorporating 
the generated SAS codes from the two techniques above.  This is how we incorporate the 
generated codes.   

 Technique #1:  Invoke the macro variable inside the WHERE statement with the 
ampersand “&” symbol. 

 Technique #2:  Insert the external SAS code within the DATA step with %INCLUDE 
statement. 

SETTING UP SAS DATA SET 
 

The first step is to create a SAS data set with key data that you will need for the WHERE statement as well as 
assigning the disease categories.  The key data can be created in Excel and then be imported into a SAS data set or 
it can be created by a separate DATA step (sample SAS code including the sample data is at the bottom of this 
paper).  In this example, I created a column below with the key parts of the diagnosis codes and their corresponding 
disease category.  The first column have the key words that we want to use in the WHERE statement such as 
“WHERE IDCD_ID like '747%' or IDCD_ID like '0459%' or …”.  For the 2

nd
 technique, we add the 

second column what we will used together with the first column for the SELECT/WHEN statement block such as 
“when (substr(IDCD_ID,1,3)='747') DX_category = 'Heart disease';” and so on.  Using Table 1, we 

will create SAS codes with a list of LIKE conditions for the WHERE statement (using technique #1) and a series of 
WHEN statements for the disease categories (using technique #2).  For the remainder of this paper, the name of this 
SAS data set will be SESUG_DX_LISTING. 

 

DX_list DX_CATEGORY 

0459  Muscle problems 

3561  Muscle problems 

3590  Muscle problems 

3591  Muscle problems 

3592  Muscle problems 

72811 Muscle problems 

2860  Hemophilia  

2861  Hemophilia  

2862  Hemophilia  

2863  Hemophilia  

2864  Hemophilia  

424  Heart disease  

425  Heart disease  

426  Heart disease  

427  Heart disease  

428  Heart disease  

429  Heart disease  

745  Heart disease  

746  Heart disease  

747  Heart disease  

    Table 1. SESUG_DX_LISTING SAS data set 

TECHNIQUE #1:  WRITING SAS CODES TO MACRO VARIABLE 
 

In this technique, we generate the SAS code by creating a SAS macro variable from the SESUG_DX_LISTING table 
(Table 1).  This is a DATA _NULL_ process that does not actually write a new SAS data set hence the “_NULL_” 
phrase.  The purpose of this DATA step is to build a string of characters that will be used in the WHERE statement.  

First, we created a variable called “where_string” which I make it a length of 5,000 characters.  That way, there will 

be enough space to create the whole string.  Below is the SAS code that will build the string of characters from the 
SESUG_DX_LISTING table (Table 1). 



SESUG 2013 

 

4 

 
    data _null_; 

 set WORK.SESUG_DX_LISTING END=last; 

 format where_string $5000.; 

 retain where_string; 

 /* This is the first line for the where statement */ 

 if _n_ = 1 then where_string = 'IDCD_ID like "'||trim(DX_LIST)||'%"';  

 /* subsequent lines that adds the "OR" line for the where statement */ 

else where_string = trim(where_string)||' '||'OR IDCD_ID like 

"'||trim(DX_LIST)||'%"';  

 /* At the end, this outputs entire where statement to the macro variable */ 

 if last then call symput("IDCD_ID_where_statement",where_string);  

    run; 

 

There are several key points that goes into building the WHERE statement string. 

 

 Uses the RETAIN statement for the “where_string” variable.  It helps retain the data string as the variable 

goes through each DATA step iteration.  That way, the data string is retained as it goes to the next row of 
data to be modified.  Otherwise, the data string is cleared out at the start of the next DATA step iteration. 

 Uses the DATA step internal variable “_n_” especially for “_n_ = 1”. This will allow us to start building the 

string with the first data row.  As you can see in the IF statement, it will write ”IDCD_ID like '0459%'“ to 

the “where_string” variable.  That takes care of the beginning of the string. 

 After the first data step iteration, the internal variable “_n_” will be greater than one.  Therefore, executing 

the ELSE statement portion of the code.  It will take the data string from the previous DATA step iteration 
and adds “OR IDCD_ID like '3561%'” to the data string.  This is where you see how important the 

RETAIN statement is because it “carries” the data string from the previous iteration to be concatenated 
together with the current iteration that includes the OR statement. 

 The TRIM statement is used to trim off the trailing blank spaces before the data string is concatenated. 

 The END statement used on the SET line which I called it LAST.  When the last row is processed, the LAST 
in the IF statement will output the series of concatenated statements into the macro variable called 

“IDCD_ID_where_statement”.  The CALL SYMPUT statement is used to output the “where_string” 

into the macro variable called “IDCD_ID_where_statement”. 

 

Now, you can use the %PUT statement to see what the macro variable contains as shown in Output 1.  From the 
SESUG_DX_LISTING (Table 1), the %PUT statement will show this in the log.  This will save us so much work 
having to code all these LIKE conditions. 

 

%put &IDCD_ID_where_statement; 

 

IDCD_ID like "0459%" or IDCD_ID like "3561%" or IDCD_ID like "3590%" or IDCD_ID like 

"3591%" or IDCD_ID like "3592%" or IDCD_ID  

like "72811%" or IDCD_ID like "2860%" or IDCD_ID like "2861%" or IDCD_ID like "2862%" 

or IDCD_ID like "2863%" or IDCD_ID like  

"2864%" or IDCD_ID like "424%" or IDCD_ID like "425%" or IDCD_ID like "426%" or 

IDCD_ID like "427%" or IDCD_ID like "428%" or  

IDCD_ID like "429%" or IDCD_ID like "745%" or IDCD_ID like "746%" or IDCD_ID like 

"747%" 

Output 1. Log showing %PUT statement of the macro variable “IDCD_ID_where_statement” 

TECHNIQUE #2:  WRITING SAS CODES TO AN EXTERNAL TEXT FILE 
 

In this technique, we create SAS code by writing to an external text file using the SAS data set SESUG_DX_LISTING 
table (Table 1).  Again, this is a DATA _NULL_ data step that will not generate a new SAS data set.  The purpose of 
this data step is to write a series of SELECT/WHEN statements to be used for categorizing the DX categories as 
organized in the SESUG_DX_LISTING table (Table 1).  First, we create a variable called “when_string” which has 

a length of 250 characters.  That way, there will be enough space to write a line of SAS code.  Below is the SAS code 
that will write each line of SAS code to the external SAS program file from the SESUG_DX_LISTING table (Table 1). 

 
    filename tmpwhen "C:\SESUG\tempwhenstatements.sas"; /* Makes a SAS program file */ 

    data _null_; 



SESUG 2013 

 

5 

 set WORK.SESUG_DX_LISTING END=last; 

 format when_string $250.; 

 file tmpwhen; /* This is the file the PUT statements writes to */ 

 /* This sets the length for the SUBSTR function in the WHEN statement */ 

 str_length = put(length(DX_LIST),1.0);  

 /* Write first line which is just the SELECT statement */ 

 if _n_ = 1 then put @1 'select;'; 

 /* Write each WHEN statement for each DX with the corresponding category */ 

when_string = "when (substr(IDCD_ID,1,"||trim(str_length)||") = 

'"||trim(DX_LIST)||"') DX_category = '"||trim(DX_CATEGORY)||"';"; 

 put @5 when_string; 

 /* Finish writing the last two statements in the SELECT/WHEN statement block */ 

 if last then do; 

  put @5 'OTHERWISE DX_category = "WHAT CATEGORY?!";'; 

  put @1 'END;'; 

 end; 

    run; 

 

There are several key points that go into the process of writing SAS codes into the external text file. 

 

 Prior to the DATA _NULL_ data step, we use the FILENAME statement.  This statement will establish a 

reference to a text file.  The example uses a reference name “tmpwhen” which actually references to a text 

file location such as:  “C:\SESUG\tempwhenstatements.sas”.  This is the SAS program file that we will 

write the series of SELECT/WHEN statements to. 

 In the DATA _NULL_ statement, use the FILE statement along with the file reference to “tmpwhen” that was 

established with the FILENAME statement.  The FILE statement is where the DATA step will write to. 

 Uses the DATA step’s internal variable “_n_” especially for “_n_ = 1”. This will allow us to write the first 

line to the external SAS program file.  The IF statement, it will write a simple statement, “select;” as the 

first line of the external file.  This is the beginning of dynamic coding the SELECT/WHEN statement block.  

After the first DATA step iteration, the internal variable “_n_” will be greater than one.  Therefore, it will not 

write the SELECT statement again.  

 Before we start writing the WHEN statement lines after the SELECT statement, we need to define a 
parameter size for the SUBSTR function.  Needing a value for the parameter size, the “str_length” 

variable is created to determine the length of the DX code from the first column of the SESUG_DX_LISTING 
(Table 1).  This number will be embedded the SUBSTR function for each WHEN statement.  This will allow 
us to dynamically change the parameters for the SUBSTR function based on the size of the DX codes. 

 The “when_string” variable is used to put together the WHEN statement from the SESUG_DX_LISTING 

table (Table 1) along with the “str_length” variable.  The “when_string” will have something like this 

“when (substr(IDCD_ID,1,3)='747') DX_category = 'Heart disease';.”   

 After the WHEN statement string is created for the “when_string” variable, we write this statement to the 

external SAS program file using this PUT statement:  “put @5 when_string;”.  This will write a line to the 

external file.  I use “@5” in the PUT statement to make an indent at 5 spaces from the left.  This makes the 

SAS code easier to read.   

 The TRIM statement is used to trim off the trailing blank spaces before the data string is concatenated 
together. 

 The END statement used on the SET line which I called it LAST.  When the last row is processed, the LAST 
flag in the IF statement will write the last two statements for the SELECT/WHEN statement block like this  
 

OTHERWISE DX_category = "WHAT CATEGORY?!"; 

END; 

 

 After the DATA _NULL_ process finishes, the external SAS program file “tempwhenstatements.sas” is 

created with SELECT/WHEN statement block generated by the PUT statements. 
 

Now, you can open up the external file, “tempwhenstatements.sas”, to see SELECT/WHEN statement block we 

just created from the SESUG_DX_LISTING table (Table 1).  The external file will show what was written below.  You 
will see parameter values of 3, 4 and even 5 in the SUBSTR function portion of the WHEN statements.  The 
parameter values are dynamically changed with the value of “when_string” variable depending on the size of the 

first column of the Table 1.  This alone shows the power of dynamically creating the repetitive lines of code.  This 



SESUG 2013 

 

6 

technique will save us so much work having to code all these WHEN statements with different size parameters for the 
SUBSTR function. 

 

The code inside the external file:  “tempwhenstatements.sas” 
    select; 

       when (substr(IDCD_ID,1,4) = '0459') DX_category = 'Muscle problems'; 

       when (substr(IDCD_ID,1,4) = '3561') DX_category = 'Muscle problems'; 

       when (substr(IDCD_ID,1,4) = '3590') DX_category = 'Muscle problems'; 

       when (substr(IDCD_ID,1,4) = '3591') DX_category = 'Muscle problems'; 

       when (substr(IDCD_ID,1,4) = '3592') DX_category = 'Muscle problems'; 

       when (substr(IDCD_ID,1,5) = '72811') DX_category = 'Muscle problems'; 

       when (substr(IDCD_ID,1,4) = '2860') DX_category = 'Hemophilia'; 

       when (substr(IDCD_ID,1,4) = '2861') DX_category = 'Hemophilia'; 

       when (substr(IDCD_ID,1,4) = '2862') DX_category = 'Hemophilia'; 

       when (substr(IDCD_ID,1,4) = '2863') DX_category = 'Hemophilia'; 

       when (substr(IDCD_ID,1,4) = '2864') DX_category = 'Hemophilia'; 

       when (substr(IDCD_ID,1,3) = '424') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '425') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '426') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '427') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '428') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '429') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '745') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '746') DX_category = 'Heart disease'; 

       when (substr(IDCD_ID,1,3) = '747') DX_category = 'Heart disease'; 

       OTHERWISE DX_category = "WHAT CATEGORY?!"; 

    END; 

PUT SAS CODES TOGETHER:  RUNNING THE AUTO-GENERATED SAS CODE 
 

Now, we are ready to incorporate the auto-generated SAS code from the two techniques in the DATA step to extract 
a subset of claims and categorize the disease.  The SAS code from the first technique is a macro variable to be 
invoked inside the WHERE statement using “&” sign or ampersand symbol i.e. “where 

(&IDCD_ID_where_statement);”.  The SAS code from the second technique is an external SAS program file that 

will be inserted using the %INCLUDE statement i.e. “%include tmpwhen;“.  The “tmpwhen” statement is the same 

reference file name as the external SAS program file that was created.  It will insert the external SAS code in its 
place.   

 

    /* Source2 option will allow the external SAS code to display in the log */ 
    options source2;  

    data WORK.CLAIMS_SUBSET_DX_cat; 

 set WORK.SESUG_samp_claims; 

/* The macro variable will put the WHERE conditions we created */ 

 where (&IDCD_ID_where_statement);  

 format DX_category $150.; 

/* Inserts the external SAS code that we created the WHEN statements */ 

 %include tmpwhen;  

    run; 

 

After invoking the macro variable and inserting the external SAS program code, this DATA step will look exactly the 
same as if we were coding this directly in the “Coding Dilemma” section of this paper.  The results of the DATA step 
will produce Table 2 which has the subsets of the sample claims data with the proper diagnosis selections in the 
WHERE statement and categorization of the diagnoses in the WHEN statements.  

 

Claim_ID DOS IDCD_ID DX_category 

521959269 01MAR2013 2863  Hemophilia  

620558593 01MAR2013 3591  Muscle problems  

834446494 01MAR2013 42511 Heart disease  

350650440 01MAR2013 2860  Hemophilia  

999400510 04MAR2013 7467  Heart disease  

295583464 04MAR2013 74510 Heart disease  



SESUG 2013 

 

7 

Claim_ID DOS IDCD_ID DX_category 

294778600 04MAR2013 7452  Heart disease  

725175228 06MAR2013 2860  Hemophilia  

576261199 06MAR2013 4280  Heart disease  

325277861 06MAR2013 35921 Muscle problems  

702352846 07MAR2013 4254  Heart disease  

575425830 07MAR2013 4281  Heart disease  

740288358 07MAR2013 7464  Heart disease  

245189238 08MAR2013 2860  Hemophilia  

930080969 11MAR2013 42821 Heart disease  

411880687 11MAR2013 3591  Muscle problems  

931851740 14MAR2013 3591  Muscle problems  

305813261 16MAR2013 3590  Muscle problems  

                Table 2. Final data set of the sample claims 

CONCLUSION 
 

By looking at the DATA step we just Robo-coded, the two techniques saved us a significant amount of manual labor 

of coding all those LIKE statements as well as the WHEN statements.  This example may not seem like a lot of 
coding to do for such a short list in the SESUG_DX_LISTING table (Table 1).  But these two techniques will be a big 
help if we have a large number of repetitive SAS statements to code.  This is not limited to just making the WHERE 
statements or the SELECT/WHEN statements.  You will be amazed how useful these techniques can be applied to 
dozens or hundreds of routine reports especially on a weekly or monthly basis.  RoboCoding techniques can be 
expanded to include other SAS procedures and DATA steps.  Let the RoboCoder do the repetitive SAS coding work 
for you! I am confident that you will add these two valuable techniques to your expanding SAS bag of coding tips. 

 

ACKNOWLEDGEMENTS: 
 

I would like to thank the Southeast SAS Users Group for accepting my abstract and paper as well as for conducting a 
successful conference. I would also like to thank Joe Urbi at WellPoint, Inc. for providing feedback. 

REFERENCES 

SAS Certification Prep Guide:  Base Programming for SAS 9 Third Edition Cary, NC:  SAS Institute Inc. 2011 

SAS Certification Prep Guide:  Advanced Programming for SAS 9 Third Edition Cary, NC:  SAS Institute Inc. 2011 

The Web's Free 2013 Medical Coding Reference.  (http://www.icd9data.com/) 

CONTACT INFORMATION 
 

Your comments and questions are valued and encouraged.  Contact the author at: 

Robert Williams 

WellPoint, Inc. 

4425 Corporation Lane 

Virginia Beach, VA 23462 

Robert.Williams@amerigroup.com  

 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   

Other brand and product names are trademarks of their respective companies.  

SAMPLE SAS CODE 
 

This is the full sample SAS code for this paper including SESUG_DX_LISTING table (Table 1) and the sample claims 
data.  Run the first two DATA steps to import the diagnosis listing and the sample claims data.  The rest of the code is 
for the two Robo-Coding techniques. 

 
/* this is the data set of key DX and categories for the SESUG_DX_LISTING table */ 

data WORK.SESUG_DX_LISTING; 

    format DX_list $5.; 

http://www.icd9data.com/
mailto:Robert.Williams@amerigroup.com


SESUG 2013 

 

8 

    format DX_CATEGORY $50.; 

    infile datalines delimiter='|'; 

 input DX_list $ DX_CATEGORY $ ; 

 datalines; 

0459|Muscle problems 

3561|Muscle problems 

3590|Muscle problems 

3591|Muscle problems 

3592|Muscle problems 

72811|Muscle problems 

2860|Hemophilia 

2861|Hemophilia 

2862|Hemophilia 

2863|Hemophilia 

2864|Hemophilia 

424|Heart disease 

425|Heart disease 

426|Heart disease 

427|Heart disease 

428|Heart disease 

429|Heart disease 

745|Heart disease 

746|Heart disease 

747|Heart disease 

run; 

/* This is a sample claims data for this paper */ 

/* It has 40 rows of claims data. */ 

/* Note:  Claims ID has been scrambled and dates of service has been randomized */ 

data WORK.SESUG_samp_claims; 

    format Claim_ID 9.0 DOS DATE9. IDCD_ID $5.; 

informat DOS DATE9.; 

     infile datalines delimiter='|'; 

 input Claim_ID DOS IDCD_ID $; 

 datalines; 

299162360|01MAR2013|29622 

991925024|01MAR2013|29680 

577369858|01MAR2013|38200 

430302367|01MAR2013|5589 

876331892|01MAR2013|65583 

521959269|01MAR2013|2863 

620558593|01MAR2013|3591 

834446494|01MAR2013|42511 

350650440|01MAR2013|2860 

953814363|01MAR2013|29570 

783984003|04MAR2013|65703 

999400510|04MAR2013|7467 

295583464|04MAR2013|74510 

294778600|04MAR2013|7452 

571969019|05MAR2013|78099 

866712984|05MAR2013|79501 

725175228|06MAR2013|2860 

576261199|06MAR2013|4280 

325277861|06MAR2013|35921 

702352846|07MAR2013|4254 

575425830|07MAR2013|4281 

740288358|07MAR2013|7464 

245189238|08MAR2013|2860 

930080969|11MAR2013|42821 

411880687|11MAR2013|3591 

666030620|11MAR2013|29530 

607775910|11MAR2013|3094 

357294485|12MAR2013|V053 

239756817|12MAR2013|30981 



SESUG 2013 

 

9 

698580465|12MAR2013|2967 

869433614|13MAR2013|25000 

397244252|13MAR2013|3029 

811434889|13MAR2013|4019 

864832781|13MAR2013|4660 

931851740|14MAR2013|3591 

529180268|15MAR2013|78903 

403535027|15MAR2013|1105 

305813261|16MAR2013|3590 

874030959|18MAR2013|4644 

928100359|18MAR2013|4779 

run; 

/* Technique #1:  Macro Variable method  */ 

/* Generates the list of conditions for the WHERE statement */ 

/* the list is outputted as a SAS macro variable            */ 

data _null_; 

 set WORK.SESUG_DX_LISTING END=last; 

 format where_string $5000.; 

 retain where_string; 

 /* This is the first line for the where statement */ 

 if _n_ = 1 then where_string = 'IDCD_ID like "'||trim(DX_LIST)||'%"';  

 /* subsequent lines that adds the "OR" line for the where statement */ 

else where_string = trim(where_string)||' '||'OR IDCD_ID like 

"'||trim(DX_LIST)||'%"';  

 /* At the end, this outputs entire where statement to the macro variable */ 

 if last then call symput("IDCD_ID_where_statement",where_string);  

run; 

/* Taking a look how the where statement that was outputted into the macro variable */ 

%put &IDCD_ID_where_statement; 

 

/* Technique #2:  External SAS Program file method  */ 

/* create a category SELECT/WHEN statement block using the same where criteria */ 

/* It is to create a separate SAS file from a data _null_ step */ 

filename tmpwhen "C:\SESUG\tempwhenstatements.sas"; /* Makes a SAS program file */ 

data _null_; 

 set WORK.SESUG_DX_LISTING END=last; 

 format when_string $250.; 

 file tmpwhen; /* This is the file the PUT statements writes to */ 

 /* This sets the length for the SUBSTR function in the WHEN statement */ 

 str_length = put(length(DX_LIST),1.0);  

 /* Write first line which is just the SELECT statement */ 

 if _n_ = 1 then put @1 'select;'; 

 /* Write each WHEN statement for each DX with the corresponding category */ 

when_string = "when (substr(IDCD_ID,1,"||trim(str_length)||") = 

'"||trim(DX_LIST)||"') DX_category = '"||trim(DX_CATEGORY)||"';"; 

 put @5 when_string; 

 /* Finish writing the last two statements in the SELECT/WHEN statement block */ 

 if last then do; 

  put @5 'OTHERWISE DX_category = "WHAT CATEGORY?!";'; 

  put @1 'END;'; 

 end; 

run; 

/* Actual DATA step incorporating technique #1 and #2 */ 

/* Source2 option will allow the external SAS code to display in the log */ 
options source2;  

data WORK.CLAIMS_SUBSET_DX_cat; 

 set WORK.SESUG_samp_claims; 

/* The macro variable will put the where conditions we created */ 

 where (&IDCD_ID_where_statement);  

 format DX_category $150.; 

/* Inserts the external SAS code that we created the WHEN statements */ 

 %include tmpwhen;  

run; 


