

1

Paper PO-18

Winning the War on Terror with Waffles: Maximizing GINSIDE Efficiency for
Blue Force Tracking Big Data

Troy Martin Hughes, in support of the Joint IED Defeat Organization (JIEDDO)

ABSTRACT

The GINSIDE procedure represents the SAS solution for point-in-polygon determination. The procedure requires
three parameters—a map data set representing the polygon, an input data set containing geographic points, and a
list of ID fields (i.e., attributes) that are conferred to an observation when point-in-polygon status is determined. The
most significant factor predicting longer GINSIDE runtime or procedure failure is file size of the input data set. When
big data—having either a large number of fields or observations, or both—are encountered, the GINSIDE procedure
operates inefficiently or fails entirely. The traditional GINSIDE procedure, thus, was unacceptable to analyze millions
of records of the Department of Defense (DoD) Blue Force Tracking (BFT) data. To improve point-in-polygon
determination efficiency and prevent GINSIDE errors, a method is demonstrated that substantially reduces the
number of observations required to be calculated through the GINSIDE procedure. The map data set is overlaid by a
matrix (i.e., waffle schema) of rectangles, each of which is wholly inside the polygon. By determining whether a point
falls between the vertices of a rectangle, polygon inclusion is determined through a much simpler and efficient
conditional logic algorithm than required by GINSIDE. Only the few remaining points that fall very close to polygon
borders must be interpreted through the GINISIDE procedure, thus big data now can be processed with efficiency
and without error. In addition to debuting waffle technology, this paper describes two critical errors in the SAS v9.3
implementation of the GINSIDE procedure, neither of which are corrected or documented by SAS as of this
publication.

INTRODUCTION

The GINSIDE
1
 procedure answers the classic point-in-polygon question: given a simple polygon—one for which its

perimeter does not intersect itself—does a point fall inside, outside, or on the boundary? For points falling inside the
polygon, attributes—i.e., one or more fields within the map data set—are appended to the observation in the output
data set to indicate polygon inclusion. While SAS does not disclose its point-in-polygon algorithm, common
computational methods such as ray casting are an iterative and timely process and, when applied to big data, can
present an efficiency challenge to the user or cause process failure.

The Department of Defense (DoD) Blue Force Tracking (BFT) system provides real-time situational awareness and
historic data analysis to troops and analysts through an integrated command and control geographic information

system (GIS) interface
2
. Global positioning system (GPS) units mounted on vehicles or aircraft or carried by troops

demonstrate location and movement and have become a staple of military operations. A single unit that beacons
once per second will produce over 31 million observations per year. When the number of units in Afghanistan and the
length of the US campaign are considered, the billions of BFT observations present a voluminous analytic challenge.

All GPS data minimally include latitude, longitude, and transmission time of the device; other attributes must be
inherited from external sources such as map or feature data sets. Because BFT data do not inherently contain
country or province information, the Joint Improvised Explosive Device Defeat Organization (JIEDDO) utilizes
GINSIDE to attribute country, province, and other geospatial information to BFT data. Given the enormity of BFT
data, a more efficient point-in-polygon determination methodology was required and was developed to reduce
runtime and to extend the number of observations that could be processed through a single GINSIDE procedure. The
improved methodology analyzes and stores information about a map data set in a SAS data set called a waffle
schema. For map data sets that are frequently utilized, “waffles” improve GINSIDE performance much like website
cookies improve the navigation and performance of web pages that are visited repeatedly.

GINSIDE PERFORMANCE FACTORS

GINSIDE has three inputs: the map data set of the bounded polygon, the ID fields of the polygon to be attributed to
observations, and the data set containing observations to be analyzed for inclusion or exclusion. In seeking to build a
more efficient GINSIDE process, the first step was to analyze runtime to determine which factors are most influential.
Variables analyzed included the number of observations in the data set, the number and type of fields, and file size.
The macro %GINSIDE_PERFORMANCE (see Appendix A) first creates a test data set then iterates through
thousands of GINSIDE scenarios varying the above independent variables. The macro invocation below
demonstrates one scenario that will produce (and measure performance of) 270 independent GINSIDE procedures:

2

%macro GINSIDE_PERFORMANCE (map=test

 DataRowIter=10000,

 DataRowMax=100000,

 DigFieldsIter=10,

 DigFieldsMax=20,

 Char10Iter=5,

 Char10Max=10,

 Char100Iter=5,

 Char100Max=10,

 Char1000Iter=0,

 Char1000Max=0,

 Char32000Iter=0,

 Char32000Max=0);

This invocation will utilize the SAS map data set TEST and create fictional data that occur roughly inside the defined
polygon of the map. The 270 GINSIDE procedures ([(100,000 / 10,000)] x [(20 / 10) + 1] x [(10 / 5) + 1] x [(10 / 5) +
1]) are iteratively looped through until macro completion. Because of the factorial nature of the total number of
iterations produced, care should be utilized before execution to ensure that a realistic number of procedures is being
created.

The field types were chosen to represent data typically encountered at JIEDDO, including numeric data and character
data of varying lengths. Because some data sets do include verbose text fields, two long fields containing 1,000 and
32,000 characters, respectively, were included. This code was utilized to run thousands of GINSIDE procedure
iterations and, when the number of observations, number and type of field, and file size were regressed against
GINSIDE procedure runtimes, file size was most predictive of runtime. This result was expected given that the
GINSIDE procedure requires both a complete reordering of the input data set as well as a complete rewrite of the
output data set, both of which are I/O intensive processes. Thus, any reduction in file size—due either to a
reduction in the number of observations or to the removal of gratuitous fields—improves the performance of
the GINSIDE procedure.

DATA SET REDUCTION: FEWER OBSERVATIONS

The first method to improve GINSIDE efficiency is to reduce the number of observations that require the GINSIDE
procedure, by instead applying a simpler, more efficient algorithm to determine point-in-polygon inclusion. The
waffling technique that was developed produces a waffle schema—a matrix of rectangles of decreasing size in which
each rectangle is wholly inside the original polygon. Waffles improve efficiency by reducing substantially the number
of observations that must pass through the traditional GINSIDE procedure. Instead, because the polygon inclusion
status of each rectangle is known prima facie, the waffle acts as a giant lookup table that can confer point-in-polygon

status much more rapidly than the complex GINSIDE algorithms.

While the waffle technology was developed to solve a BFT big data processing conundrum, it can be implemented
successfully with any SAS map data set having one or more ID fields. For demonstration purposes and for ease of
recognition, the map of the Continental United States is used hereafter as opposed to the map of Afghanistan. The
processes that create, interpret, and utilize waffles are automated and internal to the macro WAFFLE_EATIN (see
Appendix C), but for conceptual demonstration, these processes are delineated hereafter.

MAKIN’ WAFFLES

The first step of making a waffle is to determine the boundaries of the map data set, by identifying the minimum and
maximum coordinate values. Any points falling outside of these boundaries are immediately determined to be outside
the polygon, thus eliminating the need for these values to be processed with the GINSIDE procedure. In other words,
you don’t eat the batter that pours over the edge of the waffle iron—it’s crusty and best fed to ducks. This step is
illustrated in Figure 1, in which a black outline has been drawn around the minimum and maximum values of the
Continental United States; geographic coordinates that fall outside of this box should not be considered and will not
receive any attributes in the output data set:

3

Figure 1. Waffling: Rectangular region bounding Continental United States

The first iteration begins by dividing the initial bounded rectangle into four equally sized rectangles. If any of these
subsequent rectangles is wholly inside the polygon, its coordinates are added to the waffle schema; conversely, if a
rectangle is wholly outside the polygon, it is removed from further analysis. The first iteration that divides the
Continental United States is demonstrated in Figure 2 and, because none of the resultant rectangles are wholly inside
or outside the polygon, each rectangle will continue into the next iteration:

Figure 2. Waffling: First iteration (i.e., division) of the Continental United States

The second iteration divides each of the four rectangles into four more equally sized rectangles, which produces 16
rectangles, two of which are wholly inside the polygon. The minimum and maximum X and Y values of each of these
rectangles is output to the waffle schema, as well as any associated ID values. In this example, the only variable
COUNTRY identifies whether a coordinate falls inside the Continental United States, so COUNTRY equals US for the
two rectangles in the waffle schema. The remaining 14 rectangles all partially fall within the polygon, so they pass to
the next iteration. Figure 3 depicts iteration two and the two highlighted rectangles:

4

Figure 3. Waffling: Second iteration (i.e., division) of the Continental United States

The third iteration ignores the two rectangles that are wholly inside the polygon, and divides the remaining 14
rectangles each into four smaller rectangles, producing a total of 56 smaller rectangles. Of these 56, 13 rectangles
(highlighted in Figure 4) are wholly inside the polygon, each of which is added to the waffle schema. Seven additional
rectangles are also determined to be wholly outside the polygon and, while these regions are not added to the waffle
schema, they are eliminated from further processing and iterations. Figure 4 highlights the first two interior rectangles
identified through iteration two, and the 13 additional interior rectangles identified through iteration three:

Figure 4. Waffling: Third iteration (i.e., division) of the Continental United States

In iteration four (not depicted), the remaining 36 rectangles (56 total minus 13 interior rectangles minus 7 exterior
rectangles) will be further divided into four smaller rectangles, and reassessed. These iterations continue until the
parameterized value MAXITER (in the WAFFLE_MAKIN macro) is reached. With each iteration, the highlighted
region formed from interior rectangles increases in size and specificity, more closely representing the original polygon
and more closely approximating the total area of the polygon.

The WAFFLE_MAKIN macro (see Appendix B) never is required to be called directly, because it is called implicitly
through the WAFFLE_EATIN macro if a requested schema cannot be located. Nevertheless, in order to understand
the process, the WAFFLE_MAKIN parameters follow:

%macro WAFFLE_MAKIN(lib= /* library in which the SAS map data set is located */,

 map= /* SAS map data set for which waffles are being created */,

 id= /* space-delimited list of variables used to group map data set, which

 MUST BE IN IDENTICAL ORDER AS MAP DATA SET IS SORTED! */,

 maxiter= /* the maximum number of iterations (rectangle divisions) */);

5

For example, the following statement would generate the schema depicted in Figure 4:

%macro WAFFLE_MAKIN(lib=maps,

 map= america,

 id= country,

 maxiter= 3);

This invocation describes that the SAS library MAPS includes the map data set AMERICA, representing the outline of
the Continental United States. If the map data set also included state divisions demarcated by the field STATE, the ID
utilized in the macro call would be “country state” to include both levels of boundaries. The MAXITER parameter
describes the number of iterations (i.e., division into smaller rectangles) that will occur to produce the waffle schema.
The schema represented in Figure 4 is produced as an HTML report (maps_america_3.htm) in the directory of the
WAFFLES library, and the SAS data set (waffles.maps_america_3) referred to as the waffle schema is produced in
the same library. The HTML report is useful to demonstrate the approximate area of coverage that a specific level of
a schema affords, and the SAS data set is the actual schema that is utilized by the macro WAFFLE_EATIN to
perform efficient GINSIDE processing.

In practice, waffle schemas containing fewer than five iterations are useless because they do not cover sufficient area
of a polygon to be more efficient than the traditional GINSIDE procedure. That said, if the schema depicted in Figure
4 were being utilized and the geographic points in the input data set fell predominantly in the center of the United
States, the waffle process would outperform the GINSIDE procedure. This is to say that only by examining both the
waffle schema and the input data set together can the optimal iteration level be established.

Also in practice, waffle schemas greater than 8 iterations tend to show diminishing returns in efficiency gains, or
actually perform less efficiently than the traditional GINSIDE procedure. This occurs because at higher iterations, the
addition of each incremental iteration can produce tens of thousands of more tiny rectangles. While the area
coverage will more closely approximate the polygon, each of those tens of thousands of rectangles adds an
additional several lines of conditional logic that SAS must process. Once a specific iteration level has been identified
as being the most efficient method to determine point-in-polygon inclusion, as defined by faster runtimes than the
next higher and lower iteration values, that iteration level should be utilized exclusively for that combination of the
map data set and input data set for future analyses. Note that the SAS library “Waffles” must be established
prior to invocation of the WAFFLE_MAKIN and WAFFLE_EATIN macros.

EATIN’ WAFFLES

The only thing more rewarding than making waffles…is eating waffles! Despite the one-time overhead involved in
creating a waffle schema, if a map data set is accessed repeatedly and the input data set is large enough, waffles will
always provide a more efficient point-in-polygon calculation. Moreover, because the GINSIDE procedure inherently
fails when big data are encountered (see GINSIDE ERROR below), utilizing waffle technology will expand the data
sets and scenarios to which point-in-polygon determination can be established. The declaration for the
WAFFLE_EATIN macro follows:

%macro WAFFLE_EATIN (lib= /* library in which the SAS map data set is located */,

 map= /* SAS map data set for which waffles are being created */,

 tab= /* SAS data set that contains coordinate values X and Y */,

 outtab= /* SAS data set that is output, containing appended ID fields */,

 id= /* the ID variable (or space-delimited list) used to group map data set */,

 maxiter= /* the maximum number of iterations (rectangle divisions) */);

For the following examples, consider the data set DOTS that contains 1,000,000 observations representing
geographic coordinates in North America. An analyst wishing to determine which specific observations have
coordinates occurring within the Continental United States (see Figure 1) could perform the following traditional
GINSIDE procedure:

proc ginside data=dots map=maps.america out=results;

 id country;

This would produce an output data set RESULTS in which all coordinates falling within the bounds of the polygon
MAPS.AMERICA received the value of the attribute COUNTRY (i.e., “US”) from the map data set. The following
macro invocation would generate the same data set RESULTS, albeit with improved efficiency because only those
points falling very close to the polygon borders would need to be assessed through the traditional GINSIDE
procedure:

6

%macro WAFFLE_EATIN (lib=maps,

 map= america,

 tab= dots,

 outtab= results,

 id= country,

 maxiter= 2);

In an actual scenario, the MAXITER parameter should be set to a whole value near 8; however, in this example, 2 is
utilized because it can be displayed visually and calculated mathematically more easily. The macro first determines
whether the waffle schema waffles.maps_america_2 exists as a SAS data set; if it does not exist, the schema is
created by invoking the WAFFLE_MAKIN macro. To improve readability in this example, the following simplified X-Y
coordinates (representing geographic coordinates of rectangle vertices) have been added to Figure 5 below:

Figure 5. Visualization of sample coordinates for waffles.maps_america_2

The schema in Figure 5 would be represented as two observations in the data set waffles.maps_america_2, as
depicted in Table 1:

X1 X2 Y1 Y2 Country

1 2 1 2 US

2 3 2 3 US

Table 1. Observations in waffle schema waffles.maps_america_2

Because the map data set MAPS.AMERICA has only one ID field (COUNTRY), only this field appears in Table 1, and
every value will be identical. If a second ID field STATE were present, this field also would be appended to the data,
and its respective values would contain the name of the state in which the coordinate point for the observation fell. As
the schema is ingested, it is translated into conditional logical code stored in macro variables &code1 through
&code[N] that will be applied later to the input data set. For example, the data in Table 1 would be translated into the
following code, which would be stored as macro variable &code1:

if 1 <= X <= 2 and 1 <= Y <= 2 then do;

 country=’US’;

 output;

 end;

else if 2 <= X <= 3 and 2 <= Y <= 3 then do;

 country=’US’;

 output;

 end;

Because of the length of the conditional logic code in schemas that have tens of thousands of defined rectangles, the
&code macro variable increments to create a new macro variable after each 150 observations (i.e., rectangles) in the
schema. Once the conditional logic code has been created, it is executed from within a data step that ultimately
creates the output data set:

7

data results;

 &code1;

 &code[N];

 else output unknown;

run;

The schema in essence acts as a giant sieve, filtering observations having coordinates easily determined through
conditional logic statements directly into the output data set. While the schema waffles.maps_america_2 represents
only two iterations—which would never in actuality be utilized because it covers such a sparse area of the polygon—
higher level schemas commonly can cover 95 percent or more of the area of a map. Thus, for a point data set that is
geographically equally distributed, at least 95 percent of the points will receive polygon determination without the
necessity of the GINSIDE procedure. In this example, only the remaining five percent of observations—those that lie
near the polygon borders—would require the GINSIDE procedure, and would be appended to the original
observations in the RESULTS data set.

DATA SET REDUCTION: FEWER VARIABLES

As mentioned, traditional GINSIDE runtime is most closely correlated with file size, which is influenced by both
number of observations and number and type of fields. While the waffle technique presented above dramatically can
reduce the number of observations required to be processed through the traditional GINSIDE procedure, this
technique will still be inefficient if the data set contains numerous or large gratuitous fields—any fields that neither
represent a primary key nor a geographic coordinate. While a few meager gratuitous fields will not hamper point-in-
polygon processing, the overhead processing of these fields should be considered in every calculation. Consider that
a 10,000 observation data set with the minimal X and Y coordinates and a numeric primary key will create an
approximately 300KB SAS file. The addition of only five 32,000 character text fields to that original data set will cause
the file size to increase roughly 5,000 times! Because the GINSIDE procedure requires both a sort and rewrite of the
input data set, significant time can be wasted when numerous or large gratuitous fields are not removed before the
GINSIDE procedure.

Removal of fields, however, typically implies a later reconstitution of the data set; gratuitous as these fields may be to
geospatial processing, they no doubt do serve some other purpose. And, especially where big data are involved,
reconstitution of a data set that has had a significant number of fields sheared off into a temporary data set can be a
resource intensive operation, at times rivaling or exceeding process time required to GINSIDE the original, intact data
set. Because the GINSIDE procedure reorders observations in the output data set, a unique key also must exist in
both the data set that is being processed by GINSIDE as well as the temporary data set that contains the remaining
fields. Reconstitution can be expedited through a hash join or by an index, but both of these methods also require
some overhead at the outset to produce later efficiency gains. For some data sets, the sheer file size will dictate that
gratuitous fields must be removed before GINSIDE and later reconstituted because of errors inherent in the GINSIDE
procedure when processing big data (see GINSIDE ERROR below); in other cases, however, the user will need to
determine whether it is more efficient to process the original data set, or whether to remove fields, perform the
GINSIDE, and reconstitute thereafter.

MAP DATA SET REDUCTION: FEWER POINTS

To a far lesser extent than data set file size, the runtime of the GINSIDE procedure will vary based on the complexity
(i.e., number of observations) of the map data set, with smaller map data sets processing more rapidly. The
GREDUCE

3
 procedure reduces the number of points that define the polygon, which will cause the GINSIDE

procedure to execute quicker. The cost of this speed, however, is reduced accuracy and for many applications
GREDUCE is not a viable option. If utilized with BFT data, for example, the introduction of GREDUCE might attribute
a geographic point as being in the wrong district or province in Afghanistan, or even as belonging to a neighboring
country. If some degree of accuracy can be sacrificed for improved execution, however, the GREDUCE procedure
may be an alternative to consider.

GINSIDE ERROR: OUTPUT DATA SET HAS FEWER OR ZERO OBSERVATIONS

At least two critical errors exist in the SAS v9.3 implementation of the GINSIDE procedure, neither of which has been
corrected or documented by SAS as of this publication. The first error occurs when the map data set is “too large” to
process, although the SAS log will erroneously depict a successful execution and an appropriate runtime. Upon
inspection, however, the output data set specified in the OUT parameter of the procedure will contain either zero
observations or far fewer observations than the original data set. Most vexing is that neither the SAS log nor the
automatic macro variable &SYSERR report any execution errors. No specific threshold appears to exist after which
GINSIDE ceases to work; however, as file size increases past two and three gigabytes, these inexplicable execution
failures become commonplace.

8

A best practice when using the GINSIDE procedure, thus, is always to perform an observation count of the
output data set to ensure it is consistent with the input data set. If the error persists, the file size must be

reduced, either by reducing the number of fields or the number of observations (e.g., through the waffle technique.)

GINSIDE ERROR: FAILURE WHEN X-Y COORDINATES ARE MISSING

Also not mentioned in the GINSIDE reference material is the fact that all X and Y coordinate values must be present
in the input data set to avoid confounding, erroneous results. When the GINSIDE procedure encounters an
observation for which either the X or Y value is missing, it performs the following incorrect operations:

 The ID value of the observation that is missing a coordinate is retained from the previous observation; it should
instead be given a null or missing value.

 The next immediate observation is deleted from the output data set, regardless of coordinate validity.

This error can be demonstrated with the following code, which generates a map data set MAP (i.e., a square) and
performs the GINSIDE procedure against this polygon using the generated data set TEST having 10 observations:

data map; /* creates a simple polygon */

 infile datalines delimiter=’,’;

 input x y inside $;

datalines;

0,0,inside

0,1,inside

1,1,inside

1,0,inside

0,0,inside

;

data test; /* generates 10 points that all fall inside the above polygon */

 length x y i 8;

 format x y 12.10;

 do i= 1 to 10;

 call streaminit(123);

 x=rand(‘uniform’);

 y=rand(‘uniform’);

 if i=8 then x=.; /* deletes the X coordinate in the 8
th
 observation */

 output;

 end;

proc ginside data=test map=map out=testout;

 id inside;

run;

The above code generates an output data set TESTOUT that has only nine observations—not 10—and which
erroneously ascribes the attribute ‘inside’ to observation eight (which should be given no attribute, because X is
blank.) The actual ninth observation is deleted, which should have been given the attribute ‘inside’. Even more
alarming, if the last observation of the input data set is missing either the X or Y coordinate, the GINSIDE procedure
appends the entire map data set onto the test data set!

The second best practice when utilizing the GINSIDE procedure, thus, is to delete all observations for which
either the X or Y coordinate is missing. This eliminates the errors described above, although a thorough quality

control process will not only delete observations having missing values but, moreover, will delete coordinate values
that fall outside of the range of acceptable X and Y coordinates.

CONCLUSION

With a little finesse, the GINSIDE procedure can be a powerful tool in solving point-in-polygon determination. Its
major limitation is its inability innately to handle big data, in addition to at least two critical internal errors that can
cause disastrous, unexpected results. The introduction of the waffle methodology described herein not only ensures
that the GINSIDE procedure produces more efficient results, it moreover allows significantly larger data sets to be
processed, by reducing the number of observations that must be processed using the traditional GINSIDE procedure.
The robustness and portability of the WAFFLE_MAKIN and WAFFLE_EATIN macros ensure that with relative ease
and no additional coding, any SAS map data set can be transformed into delicious, ready-to-eat waffles!

9

APPENDIX A. GINSIDE_PERFORMANCE MACRO

* GINSIDE_PERFORMANCE macro tests the efficiency (as measured in runtime) for data;

* sets of varying dimensions, including observations and type and number of variables;

%macro GINSIDE_PERFORMANCE (map= /* map data to be used in GINSIDE procedure */,

 id= /* ID field to be used in GINSIDE procedure */,

 DataRowIter= /* obs by which each successive data set will be incremented */,

 DataRowMax= /* max obs in SAS data set to which GINSIDE is applied */,

 DigFieldsIter= /* iteration value for number of numeric variables */,

 DigFieldsMax= /* max number of numeric variables */,

 Char10Iter= /* iteration value for number of 10-character variables */,

 Char10Max= /* max number of 10-character variables */,

 Char100Iter= /* iteration value for number of 100-character variables */,

 Char100Max= /* max number of 100-character variables */,

 Char1000Iter= /* iteration value for number of 1000-character variables */,

 Char1000Max= /* max number of 1000-character variables */,

 Char32000Iter= /* iteration value for number of 32000-character variables */,

 Char32000Max= /* max number of 32000-character variables */);

%local i;

%1ocal j;

%local k;

%1ocal l;

%local m;

%local n;

%local o;

%1ocal err;

%1ocal tot;

%local filesize;

%local Gerr;

%local Gobs;

* create values for long and short integers;

%let char10=0123456789;

%let char100=0123456789012345678901234567890123456789012345678901234567890123456789012

 345678901234567890123456789;

%let char1000=;

%do i=1 %to 10;

 %let char1000=&char1000.0123456789012345678901234567890123456789012345678901234

 567890123456789012345678901234567890123456789;

 %end;

%let char32000=;

%do i=1 %to 320;

 %let char32000=&char32000.01234567890123456789012345678901234567890123456789012

 34567890123456789012345678901234567890123456789;

 %end;

* find min and max X Y values from the MAP data set for random number generator;

data _null_;

 set gis_af.af_districts end=eof; /* map data set used in this example */

 retain minx maxx miny maxy;

 if missing (minx) or x<minx then minx=x;

 if missing (maxx) or x>maxx then maxx=x;

 if missing(miny) or y<miny then miny=y;

 if missing (maxy) or y>maxy then maxy=y;

 if eof then do;

 call symput ('minx' ,minx);

 call symput ('maxx' ,maxx);

 call symput ('miny' ,miny);

 call symput ('maxy' ,maxy);

 end;

 run;

* initialize the table used to collect statistics and compute number of iterations;

data statistics (compress=yes); /* output data set that records metrics */

10

 length Data_Observations filesize Data_NumericFields Data_Char10Fields

 Data_Char100Fields Data_Char1000Fields Data_Char32000Fields

 beforeFile afterFile secdiffFile beforeGINSIDE AFTERGINSIDE

 secdiffGINSIDE GINSIDEobs 8 Map_Table GINSIDEerr $50;

 format beforeFile afterFile beforeGINSIDE afterGINSIDE datetime17.

 filesize 15.0;

run;

%if &dataRowIter=0 or &DataRowMax=0 %then %do;

 %let err=Neither DATAROWITER nor DATAROWMAX parameters can equal zero.;

 %goto err;

 %end;

%else %let tot1=%sysevalf(&DataRowMax/&DataRowIter);

%if &digFieldsIter=0 or &DigFieldsMax=0 %then %do;

 %let tot2=1;

 %let DigFieldsIter=1;

 %let DigFieldsMax=0;

 %end;

%else %let tot2=%sysevalf((&DigFieldsMax+&DigFieldsIter)/&DigFieldsIter);

%if &Char10Iter=0 or &Char10Max=0 %then %do;

 %let tot3=1;

 %let Char10Iter=1;

 %let Char10Max=0;

 %end;

%else %let tot3=%sysevalf((&Char10Max+&Char10Iter)/&Char10Iter);

 %if &Char100Iter=0 or &Char100Max=0 %then %do;

 %let tot4=1;

 %let Char100Iter=1;

 %let Char100Max=0;

 %end;

%else %let tot4=%sysevalf((&Char100Max+&Char100Iter)/&Char100Iter);

%if &Char1000Iter=0 or &Char1000Max=0 %then %do;

 %let tot5=1;

 %let Char1000Iter=1;

 %let Char1000Max=0;

 %end;

%else %let tot5=%sysevalf((&Char1000Max+&Char1000Iter)/&Char1000Iter);

%if &Char32000Iter=0 or &Char32000Max=0 %then %do;

 %let tot6=1;

 %let Char32000Iter=1;

 %let Char32000Max=0;

 %end;

%else %let tot6=%sysevalf((&Char32000Max+&Char32000Iter)/&Char32000Iter);

%let tot=%sysevalf(&tot1*&tot2*&tot3*&tot4*&tot5*&tot6);

%let counter=1;

* create the data set to be analyzed, which varies by obs, field number, and type;

%do j=0 %to &DigFieldsMax %by &DigFieldsIter; * DO LOOP number of numeric fields;

 %do k=0 %to &Char10Max %by &Char10Iter; * DO LOOP number of 10 char fields;

 %do l=0 %to &Char100Max %by &Char100Iter; * number of 100 char fields;

 %do m=0 %to &Char1000Max %by &Char1000Iter; *1000 char fields;

 %do n=0 %to &Char32000Max %by &Char32000Iter; *32k char;

 %do o=&DataRowIter %to &DataRowMax %by &DataRowIter;

%let beforeFile=%sysfunc(datetime(),datetime17.);

%if &o=&DataRowIter %then %do; *create a base table on the first iteration;

 data test (drop=j k l m n o p) testcum (drop=j k l m n o p); *initialize

 testcum for later;

 length x y j k l m n o p 8;

 format x y 8.6;

 %if &j^=0 %then %do;

 array num{&j} 8 num1-num&j;

 %end;

 %if &k^=0 %then %do;

 array char10_{&k} $10 char10_1-char10_&k;

 %end;

11

 %if &1^=0 %then %do;

 array char100_{&l} $100 char100_1=char100_&l;

 %end;

 %if &m^=0 %then %do;

 array char1000_{&m} $1000 char1000_1-char1000_&m;

 %end;

 %if &n^=0 %then %do;

 array char32000_{&n} $32000 char32000_1-char32000_&n;

 %end;

 do o=1 to &o;

 call streaminit(123); * randomize Y-Y coordinates;

 x=(rand('uniform')*(&maxx-&minx))+&minx;

 y=(rand('uniform')*(&maxy-&miny))+&miny;

 %if &j^=0 %then %do;

 do j=1 to &j;

 num{j}=rand('uniform')*10;

 end;

 %end;

 %if &k^=0 %then %do;

 do k=1 to &k;

 char10_{k}="&char10";

 end;

 %end;

 %if &l^=0 %then %do;

 do l=1 to &l;

 char100_{l}="&char100";

 end;

 %end;

 %if &m^=0 %then %do;

 do m=1 to &m;

 char1000_{m}="&char1000";

 end;

 %end;

 %if &n^=0 %then %do;

 do n=1 to &n;

 char32000_{n}="&char32000";

 end;

 %end;

 output test;

 output testcum;

 end;

 run;

 %end;

%else %do; * incrementally build table if base table already exists;

 proc append base=testcum data=test;

 run;

 %end;

%let afterFile=%sysfunc(datetime(),datetime17.);

* compute file size;

proc sql;

 select filesize

 into :filesize

 from dictionary.tables

 where libname='WORK' and memname='TEST';

 quit;

run;

* GINSIDE the table that has been created;

%let beforeGINSIDE=%sysfunc(datetime(),datetime17.);

proc ginside data=test map=&map out=Gout;

 id &id;

run;

%let Gerr=&syserr;

%let afterGINSIDE=%sysfunc(datetime(),datetime17.);

12

* determine if GINSIDE produced the correct number of observations;

proc sql;

 select count(*)

 into :Gobs

 from work.Gout;

 quit;

run;

* compute runtime statistics;

data z (compress=yes);

 length filesize beforeFile afterFile beforeGINSIDE afterGINSIDE GINSIDEobs 8

 Map_Table GINSIDEerr $50;

 format beforeFile afterFile beforeGINSIDE afterGINSIDE datetime17.

 filesize 15.0;

 Data_Observations=&o;

 filesize=&filesize;

 Data_NumericFields=&j;

 Data_Char10Fields=&k;

 Data_Char100Fields=&l;

 Data_Char1000Fields=&m;

 Data_Char32000Fields=&n;

 beforeFile=”&beforeFile”dt;

 afterFile=”&afterFile”dt;

 secdiffFile=afterFile-beforeFile;

 beforeGINSIDE=”&beforeGINSIDE”dt;

 afterGINSIDE=”&afterGINSIDE”dt;

 secdiffGINSIDE=afterGINSIDE-beforeGINSIDE;

 Map_Table="&map";

 GINSIDEerr="&Gerr";

 GINSIDEobs="&Gobs";

run;

proc append base=statistics data=z force;

run;

 %put ITERATION: &counter of &tot;

 %let counter=%eval(&counter+1);

 %end;

 %end;

 %end;

 %end;

 %end;

 %end;

data statistics;

 set statistics;

 where ^missing(data_observations);

run;

%err: %put &err;

%mend;

13

APPENDIX B. WAFFLE_MAKIN MACRO (INCLUDES SPACETOCOMMA MACRO)

* SPACETOCOMMA accepts a space-delimited list and converts to a comma-delimited-

double-quotes-enclosed list;

* a character other than space can be utilized as defined by the SEP parameter;

options minoperator;

%macro spacetocomma (list= /* space-delimited or other-delimited list */,

 sep=SP /* the delimiter, defaulted to SPACE but can be any other character */);

%global spacetocommaout;

%local i;

%local list;

%local mod;

%let i=1;

%let mod=;

%let spacetocommaout=;

%if %length(&sep)=0 %then %let sep=SP;

%if "&sep" in "SP" "sp" "SPACE" "space" %then %do;

 %let sep=;

 %let mod=S;

 %end;

%do %while(%length(%scan(&list,&i,&sep,&mod))>1) and %eval(&i<10));

 %if %eval(&i=1) %then %let spacetocommaout="%scan(&list,&i,&sep,&mod)";

 %else %let spacetocommaout=&spacetocommaout,"%scan(&list,&i,&sep,&mod)";

 %let i=%eval(&i+1);

 %end;

&spacetocommaout

%mend;

* WAFFLE_MAKIN builds the matrix of rectangles that cover the region of the map data;

* it is called by WAFFLE_EATIN when a specific waffle matrix cannot be found;

* the map limits are first established, which is divided into four rectangles;

* any rectangle wholly inside the polygon of the map data set is attributed as such;

* other rectangles are subdivided into 4 more rectangles in successive iterations;

libname waffles ‘\\sas\libraries\gis\waffles\’; *set to applicable location;

options minoperator;

%macro WAFFLE_MAKIN(lib= /* library in which the SAS map data set is located */,

 map= /* SAS map data set for which waffles are being created */,

 id= /* space-delimited list of variables used to group map data set, which

 MUST BE IN IDENTICAL ORDER AS MAP DATA SET IS SORTED! */,

 maxiter= /* the maximum number of iterations (rectangle divisions) */);

%local lenlist;

%local dist;

%local i;

%local j;

* determine the field lengths that should be utilized and place in LENLIST variable;

proc sql:

 select (strip(name) || ' $' || strip (put(length,8.))) as lenlist

 into :lenlist separated by ' '

 from dictionary.columns

 where libname="%upcase(&lib)" and memname="%upcase(&map)" and upcase(name)

 in(%upcase(%spacetocomma(list=&id)));

 quit;

run;

* determine the min and max coordinates of the shapefile/polygon;

%let dist=.001; *distance in radians between each point that is generated;

data _null_;

 set &lib..&map (keep=x y) end=eof;

14

 length minx miny maxx maxy 8;

 if missing (minx) or x<minx then minx=x;

 if missing (maxx) or x>maxx then maxx=x;

 if missing (miny) or y<miny then miny=y;

 if missing (maxy) or y>maxy then maxy=y;

 retain minx maxx miny maxy;

 if eof then do;

 call symput ('minx',minx);

 call symput ('maxx',maxx);

 call symput ('miny',miny);

 call symput ('maxy',maxy);

 end;

run;

data rectangles;

 length x1 y1 x2 y2 8 &lenlist;

 format x1 y1 x2 y2 16.14;

run;

data miss;

 length x1 y1 x2 y2 8;

 format x1 y1 x2 y2 16.14;

 x1=&minx;

 y1=&miny;

 x2=&maxx;

 y2=&maxy;

run;

* divides each rectangle into four equally sized rectangles;

%let i=1;

%do %while(%sysevalf(&i<=&maxiter));

data test (keep=x1_ y1_ x2_ y2_);

 set miss;

 x1_=x1;

 y1_=y1;

 x2_=((x2-x1)/2)+x1;

 y2_=((y2-y1)/2)+y1;

 output;

 x1_=((x2-x1)/2)+x1;

 y1_=y1;

 x2_=x2;

 y2_=((y2-y1)/2)+y1;

 output;

 x1_=x1;

 y1_=((y2-y1)/2)+y1;

 x2_=((x2-x1)/2)+x1;

 y2_=y2;

 output;

 x1_=((x2-x1)/2)+x1;

 y1_=((y2-y1)/2)+y1;

 x2_=x2;

 y2_=y2;

 output;

run;

* form the dotted outline of each interior square;

data test2;

 set test;

 length x y n 8;

 do x=x1_ to x2_ by &dist; * make the horizontal sides of box;

 n=_n_;

 if x<x2_ then do;

 y=y1_;

 output;

 y=y2_;

 output;

 end;

15

 end;

 x=x2_;

 y=y1_;

 output;

 y=y2_;

 output;

 do y=y1_ to y2_ by &dist; *make the vertical sides of box;

 if y<y2_ then do;

 x=x1_;

 output;

 x=x2_;

 output;

 end;

 end;

 y=y2_;

 x=x1_;

 output;

 x=x2_;

 output;

run;

proc ginside data=test2 map=&lib..&map out=test_gin; *determine if rectangle in shape;

 id &id;

run;

proc sort data=test_gin out=sort_gin;

 by n &id;

run;

data sort_gin2 rectangle_plus (keep=x1_ y1_ x2_ y2_ &id rename=(x1_=x1 y1_=y1 x2_=x2

 y2_=y2)) miss (rename=(x1_=x1 y1_=y1 x2_=x2 y2_=y2)

 keep=x1_ y1_ x2_ y2_);

 set sort_gin end=last;

 by n &id;

 if first.n then bad=.;

 if ^first.n and (

 %let j=1;

 %do %while(%length(%scan(&id,&j))>1);

 %let thisid=%scan(&id,&j);

 %if &j=1 %then %do;

 first.&thisid

 %end;

 %else %do;

 or first.&thisid

 %end;

 %let j=%eval(&j+1);

 %end;

) then bad=1;

 if last.n then do; * if all points in polygon then add to rectangle_plus;

 if bad=1 then output miss;

 else if ^missing(%scan(&id,1)) then output rectangle_plus;

 end;

 output sort_gin2;

 retain bad;

run;

proc append base=rectangles data=rectangle_plus force;

run;

 %let i=%eval(&i+1);

 %end;

proc sql;

 select count(*)

 into :cnt

 from rectangles;

 quit;

run;

* produce waffle schema and print a map if rectangles were produced;

16

%if %eval(&cnt>1) %then %do;

 data waffles.&lib._&map._&maxiter;

 set rectangles;

 where ^missing(x1);

 run;

 data map (keep=x y segment &id);

 set rectangles;

 if ^missing(x1);

 segment=_n_;

 x=x1;

 y=y1;

 output;

 x=x2;

 y=y1;

 output;

 x=x2;

 y=y2;

 output;

 x=x1;

 y=y2;

 output;

 x=x1;

 y=y1;

 output;

 run;

 %if %eval(&cnt<10000) %then %do; * no HTML if too many rectangles exist;

 ods listing close;

 ods noproctitle;

 ods html path="%sysfunc(pathname(waffles))"

 file="&lib._&map._&maxiter..htm" style=sasweb;

 proc gmap map=map data=map all;

 id segment;

 choro &id;

 titlel "&map";

 run;

 quit;

 ods html close;

 ods listing;

 %end;

 %end;

%mend;

17

APPENDIX C. WAFFLE_EATIN MACRO

* WAFFLE_EATIN performs a more efficient GINSIDE, by first comparing known rectangles;

* if a waffle schema does not exist, one is created using the WAFFLE_MAKIN macro;

* macro variables CODE1-CODE[n] are created and parse each point mathematically;

* points falling inside known rectangles are attributed, others are GINSIDEd;

* after 9+ iterations, diminishing returns are experienced and efficiency gains lost;

%macro WAFFLE_EATIN (lib= /* library in which the SAS map data set is located */,

 map= /* SAS map data set for which waffles are being created */,

 tab= /* SAS data set that contains coordinate values X and Y */,

 outtab= /* SAS data set that is output, containing appended ID fields */,

 id= /* the ID variable (or space-delimited list) used to group map data set */,

 maxiter= /* the maximum number of iterations (rectangle divisions) */);

%global beforeWaffleReadFile;

%global afterWaffleReadFile;

%global beforeWaffleSubsetFile;

%global afterWaffleSubsetFile;

%global beforeWaffleGINSIDE;

%global afterWaffleGINSIDE;

%global beforeWaffleAppend;

%global afterWaffleAppend;

%global cntUnk;

%local lenlist;

%local i;

%local err;

* determine the field lengths that should be utilized and place in LENLIST macro;

proc sql;

 select (strip(name) || ' $' || strip(put(length,8.))) as lenlist

 into :lenlist separated by ' '

 from dictionary.columns

 where libname="%upcase(&lib)" and memname="%upcase(&map)" and upcase(name)

 in(%upcase(%spacetocomma(list=&id)));

 quit;

run;

* event handling;

%if %sysfunc(exist(waffles.&lib._&map._&maxiter)=0 %then %do; *try to create waffle

 schema if it does not exist;

 %waffle_makin (lib=&lib, map=&map, id=&id, maxiter=&maxiter);

 %end;

%if %sysfunc(exist(waffles.&lib._&map._&maxiter)=0 %then %do; *if the schema still

 does not exist, it could not be created because MAXITER value is too low;

 %let err=NO WAFFLE SCHEMA EXISTS OR COULD BE CREATED--TRY INCREASING MAXIMUM

 NUMBER OF ITERATIONS;

 %goto err;

 %end;

%let beforeWaffleReadFile=%sysfunc(datetime(),datetimel7.);

data _null_;

 set waffles.&lib._&map._&maxiter end=eof;

 length code $32000;

 format x1 y1 x2 y2 16.14;

 if _n_=1 then do;

 iter=0;

 i=1;

 end;

 if i=1 then code='';

 code=strip(code) || ifc(i=1 and iter=0,"if ","else if ") || put(x1,16.14)

 || "<=x<=" || put(x2,16.14) || " and " || put(y1,16.14) || "<=y<="

 || put(y2,16.14) || " then do; " ||

 %let i=1;

 %do %while(%length(%scan(&id,&i))>1);

 %let var=%scan(&id,&i);

18

 "&var=""" || strip(&var) || """;" ||

 %let i=%eval(&i+1);

 %end;

 "output &outtab;end;";

 if mod (_n_,150)=0 or eof then do;

 i=0;

 iter+1;

 call symput("code" || strip(put(iter,$8.)),strip(code));

 end;

 i+1;

 if eof then do;

 call symput("max", strip(put(iter,$8.))); * last code segment created;

 end;

 retain i iter code;

run;

%let afterWaffleReadFile=%sysfunc(datetime(),datetime17.);

%let beforeWaffleSubsetFile=%sysfunc(datetime(),datetime17.);

data &outtab; * data set must be reset;

 length &lenlist;

run;

data &outtab (drop=cntUnk) Unknown (drop=&id cntUnk);

 length &lenlist cntUnk 8;

 if _n_=1 then cntUnk=0;

 set &tab end=eof;

 %do i=1 %to &max;

 &&&code&i

 %end;

 else do;

 output Unknown;

 cntUnk+1;

 end;

 if eof then call symput('cntUnk',cntUnk);

 retain cntUnk;

run;

%let afterWaffleSubsetFile=%sysfunc(datetime(),datetime17.);

* now GINSIDE the remaining points that did not fall inside any waffles;

%let beforeWaffleGINSIDE=%sysfunc(datetime(),datetime17.);

proc ginside data=Unknown map=&lib..&map out=Unknown2(drop=density lat lon);

 id &id;

run;

%let afterWaffleGINSIDE=%sysfunc(datetime(),datetime17.);

%let beforeWaffleAppend=%sysfunc(datetime(),datetime17.);

* join the results;

proc append base=&outtab data=Unknown2;

run;

%let afterWaffleAppend=%sysfunc(datetime(),datetime17.);

%err: %put &err;

%mend;

19

REFERENCES

1
 SAS/Graph® 9.3: Reference, Third Edition: GINSIDE Procedure. Retrieved from

http://support.sas.com/documentation/cdl/en/graphref/65389/HTML/default/viewer.htm#p0ian43grdtjosn1midf
5xidk1ho.htm
2
 Army upgrades blue force tracking in Afghanistan to prepare for new network, February 13, 2013. Retrieved from

http://www.army.mil/article/96438/
3
 SAS/GRAPH® 9.3: Reference, Third Edition: GREDUCE Procedure. Retrieved from

http://support.sas.com/documentation/cdl/en/graphref/65389/HTML/default/viewer.htm#n1hhxy4sve4o36n1g1t
catc5nnk5.htm

ACKNOWLEDGMENTS

Special thanks to the employees of CACI-Wexford and JIEDDO for their assistance, encouragement, and
perseverance toward a noble mission.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/graphref/65389/HTML/default/viewer.htm#p0ian43grdtjosn1midf5xidk1ho.htm
http://support.sas.com/documentation/cdl/en/graphref/65389/HTML/default/viewer.htm#p0ian43grdtjosn1midf5xidk1ho.htm
http://www.army.mil/article/96438/
http://support.sas.com/documentation/cdl/en/graphref/65389/HTML/default/viewer.htm#n1hhxy4sve4o36n1g1tcatc5nnk5.htm
http://support.sas.com/documentation/cdl/en/graphref/65389/HTML/default/viewer.htm#n1hhxy4sve4o36n1g1tcatc5nnk5.htm

