
Paper PH01

Coding For the Long Haul With Managed Metadata and Process Parameters

Mike Molter, d-Wise Technologies, Raleigh, NC

ABSTRACT

How robust is your SAS® code? Put another way, as you look through your program, how
sensitive is it to changing circumstances? How much code is affected when, for example, the
names of data sets to be analyzed or the names of variable within those data sets change?
How are those changes expected to be implemented? In this paper we discuss program
optimization and parameter management through the use of metadata. In the wide open, free-
text environment of Base SAS, we too often worry more about getting results out the door than
producing code that will stand the test of time. We’ll learn in this paper how to identify process
parameters and discuss programming alternatives that allow us to manage them without having
to touch core code. We’ll look at SAS metadata tools such as SQL Dictionary tables and PROC
CONTENTS, as well as tools for reading and processing metadata, such as CALL EXECUTE.
Finally, within our industry, we’ll take a brief look at how the Clinical Standards Toolkit puts
these methods into practice for CDISC compliance checking. This paper is intended for
intermediate-level Base SAS users.

INTRODUCTION

As SAS programmers, the first thoughts that enter many of our minds when we hear the word
“parameter” are those pertaining to macros. Macro parameters are the pieces of information
that a macro collects from a user that allow program code to be generated and executed under
a variety of circumstances. In this paper, however, we use the term in a broader sense. Simply
stated, in this paper, parameters are the input to a given task or process. To the extent that
such tasks are carried out by SAS code, parameters are also input to SAS programs. Whether
or not you’ve given much thought to this way of dissecting a program’s code, every program has
them. Every string of text that collectively makes up the code in every program can be
categorized in one of two ways - either SAS keywords and syntax (e.g. “FREQ”, “SUBSTR”,
“OUTPUT”, “=”, “;”, etc.), or the parameters or input upon which SAS syntax operates. As an
example, consider the code excerpt in Program 1 below.

Program 1:
 libname sdtm “my documents/mysdtm” ;
 proc freq data=sdtm.lb ;
 tables lbtestcd ;
 run ;

In Program 1, the underlined text represents the values of the program parameters. The first
parameter is the location of the data, the second is the name of the data set, and the third is the
name of a variable whose frequency we wish to analyze. In theory, it’s the values of the
program parameters that users can change while keeping everything else intact without
affecting the fundamental meaning and purpose of the program. In practice, not all programs
are written for changing circumstances. Some programs are only written for one-time use, while
others, though they may be executed multiple times, may have no need to change parameter
values. In such circumstances, identifying parameters may not be a high priority. In this paper,

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

2

however, we address the opposite scenario: under circumstances in which program code is
meant to be executed under multiple circumstances with changing parameter values, how do
we write program code that manages these parameters in an optimal way?

PARAMETER MANAGEMENT AND “HARD” AND “SOFT” PARAMETERS

The most primitive approach to handling parameter value changes is to allow users to directly
edit the code. In Program 1 above users are allowed to open the program, navigate to the code
that represents the parameter value they wish to change, and change it. This approach,
however, is far from being described as “parameter management”. This situation addresses the
concept of program access, and its importance can depend on factors such as how much code
is accessible and to how many users is it accessible. If I am the only user being asked to
generate these frequencies and there isn’t much more to the code in Program 1, then the
consequences of my having to browse through the code and change parameter values are
minimal. However, as the complexity, the scope, and the number of users increases, then it’s in
everyone’s best interest to keep users away from core code in an effort to maintain the integrity
and consistency of its purpose.

Keeping core code away from users generally means replacing specific instances of parameter
values in the program with parameter references whose values are initialized either in the
beginning of the program or in a separate program. For many SAS users this means an
automatic call to the macro facility. Program 2 below provides the same functionality as
Program 1, but is re-arranged in this manner.

Program 2
 %let path = my documents/mysdtm ;
 %let domain = lb ;
 %let variable = lbtestcd ;
 libname sdtm “&path” ;
 proc freq data=sdtm.&domain ;
 tables &variable ;
 run ;

In this case parameters values are specified at the top of the program, but alternatively, the
program author could have placed these specifications in a separate program that includes
%include after the specifications to invoke the core code.

Of course when macro variables are the subject of conditional statement execution, iterative
processing, or other types of more advanced code generation logic, programmers will write
parameterized macros. These keep users away from core code in a way similar to that in
Program 2 - by having users supply parameter values with the call to the macro. Program 3a is
a macro that allows users to specify any number of variables from any number of data sets
within a chosen directory. Each domain/variable combination is meant to be specified in the
form domain.variable.

Program 3a
 %macro freq(path=, domains=) ;
 libname sdtm “&path” ;
 /* Determine how many domains are requested */
 %let domainnbr=%sysfunc(countw(&domains)) ;
 /* Loop through the domain/variable list */
 %do i=1 %to &domainnbr ;
 /* Parse the ith domain/variable in the list */
 %let domain=%scan(%scan(&domain,&i,%str()),1,%str(.)) ;

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

3

 %let variable=%scan(%scan(&domain,&i,%str()),2,%str(.)) ;
 proc freq data=sdtm.&domain ;
 tables &variable ;
 run;
 %end;
 %mend ;

Because macros are compiled programs in catalogs and with SAS tools such as the autocall
facility, it’s easy for users to call macros at a safe distance from the core macro code. Program
3b illustrates a call to the macro defined in Program 3a.

Program 3b
 %freq(path=my documents/mysdtm, domains=lb.lbtestcd eg.egtestcd vs.vstestcd) ;

Up to this point, if you have any experience at all with macros or even just macro variables, you
haven’t seen anything new. But this paper isn’t about the macro facility. Sometimes the way a
parameter value is specified for a task determines the best way to write code for it. Sometimes,
even when the code for a parameterized task is expected to be executed multiple times on
multiple occasions by multiple users who need to be kept away from the core code, the macro
facility may not be the necessary solution. This brings us to the distinction between hard and
soft parameter specifications.

In this paper, a hard parameter specification or value is one in which the parameter value(s) is
explicitly stated. A soft specification, on the other hand, is less specific and more of a
description of the input. For an example of each, let’s examine two ways in which frequencies
are requested.

Hard Parameter Specification
Please provide frequencies of LB.LBTESTCD, EG.EGTESTCD, and VS.VSTESTCD from the

domains in the “my documents” directory.

Whether this represents a one-time request for frequencies or one in a series of requests in
which the domains and variables change, the values of these parameters are stated explicitly.
For purposes of this paper, let’s imagine the latter case. The “hard” nature of the parameter
specification leads us to three conclusions.

1. Each time such an analysis is needed, the wording of the request changes to reflect the
specific variables needing analysis.

2. Carrying out the analyses with code means translating the request into the appropriate
parameter specifications in code, which means some level of effort by the user to
receive these values and insert them into the code.

3. To minimize the effort in #2 above as well as maintain consistency, the core code needs
to be kept separate from the parameter specifications

What’s key here is the nature of the parameter specification and in particular, the way that
specification is “captured” and implemented in code. Now imagine that the following task is
expected to be executed regularly.

Soft Parameter Specification
Please provide frequencies of all --TESTCD variables in the “my documents” directory.

Furthermore, let’s assume that this request will never change, but what may change is the
contents of the directory. We might say that even though the wording of the request remains

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

4

the same, parameter values are still changing implicitly because the word “all” encapsulates
something different at each execution. The “soft” nature of the specification also leads us to
three conclusions, two of which are stated here.

1. The wording of the request remains the same across executions
2. Carrying out the analyses with code still means translating the request into code, but the

implicit nature of the specification requires more effort to capture parameter values.

Contrast these with the first two conclusions about hard parameter specifications. The extra
effort described in #2 above is the effort needed by the user to translate the soft specification
into a hard one at a point in time. In this case, the user must determine at the time of execution
what variables in what domains match the description, and make sure all of the items on this list
are analyzed. Programmers may see the changing nature of such a request and consider a
macro in an effort to introduce consistency and reduce programmer error in writing the code, but
let’s ask ourselves just how much error would be reduced. Any analysis and the code that
supports it is only as good as the parameter values we supply it and the method in which we
supply them. Whether or not a macro is used, the user is still forced to spend effort determining
the analysis variables. While the macro approach is no worse than any other approach and
may add value to some aspects of this task, it does nothing to reduce the potential for error in
determining parameter values.

So where are parameter values? How do they get translated into code? Hard parameter
values often get to code by way of the user’s brain involving a translation of a “non-readable”
request. Maybe your boss verbalizes her request for a frequency during a meeting, or maybe
she’s more formal and records it onto a form. Either way, you’re forced to cognitively consume
this input and translate your interpretation into code. Your code is static in the sense that no link
exists between the request and the code. A new request requires a manual update to the code.
At any given execution of the code, soft parameter values must be translated into hard values.
The robustness of the code, your ability to keep users away from core code, and the ease with
which these hard values are determined from a soft specification depends on how you choose
to go about this translation. When translated manually, soft parameter values can be more
burdensome than hard ones because of the extra cognitive translation required. However,
sometimes these translations already exist in data - metadata. By taking advantage of this data,
programmers can write code that not only automates code generation, but also automatically
captures “readable” parameter specifications from metadata, thereby eliminating the need for
the manual cognitive translation while at the same time keeping users away from core code and
maintaining a link between the request and the code. This leads us to our third conclusion
about soft specifications.

3. To minimize the effort in #2, we write code that captures parameter specifications from
metadata.

The remainder of this paper is divided into three parts - Tools, Examples, and a case study. In
the Tools section, we’ll examine what SAS gives us for metadata. We’ll also discuss
programming tools that help us to use this metadata. In Examples, we’ll start to see how these
tools can be applied to the capture of soft parameter specifications. Finally, we’ll look at SAS’s
Clinical Standards Toolkit (CST) as a case study. In this section, we’ll see that the development
of a parameterized process doesn’t have to depend only on the metadata discussed in the
Tools section. On the contrary, we’ll see a framework for CDISC compliance checking of
submission data that offers compliance checking parameters through a well-planned, carefully
designed set of metadata.

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

5

TOOLS

METADATA SOURCES
SAS has two main sources of metadata that describe data in your system. Maybe the more
well-known of the two comes from the CONTENTS procedure. When the procedure code
includes only the name of the data set without other options, the output contains a combination
of data set- and variable-level metadata. At the data set level, this includes number of
observations and variables, path and file name, and creation date. At the variable level, the
name, type, and length of each variable is provided. Most noteworthy under these
circumstances though is the fact that this information is provided by way of an output file (e.g.
pdf, html, or other ODS output destinations). This is an acceptable solution when a user needs
to cognitively process metadata but isn’t ideal when metadata needs to be read or captured
programmatically.

Figure 1 - Output from the CONTENTS procedure

We mentioned earlier that soft parameter values can be automatically generated when they can
be captured from readable metadata. For that reason, the CONTENTS procedure through the
OUT= option on the PROC statement gives users an opportunity to dump metadata to a data
set. This data set contains one record per combination of LIBNAME (libref), MEMNAME (data
set), and NAME (variable) and is sorted in this order.

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

6

Figure 2 - Partial illustration of the data set produced by PROC CONTENTS

The DATASETS procedure, among its other capabilities, offers the same functionality as the
CONTENTS procedure through the CONTENTS statement. Among the options available on
this statement are DATA= and OUT= which serve the same purpose they do on the PROC
statement of the CONTENTS procedure. The only difference is that in the DATASETS
procedure, the data set named in the DATA= option is a one-level data set name and is
assumed to reside in the library named in the LIBRARY= option on the PROC statement,
whereas the DATA= option on the PROC statement of the CONTENTS procedure can be a
one- or two-level data set name.

Whether or not an output data set is requested, the metadata produced by these two
procedures is only generated when the procedures are executed, and only reflects the data
requested in the procedures. The dictionary tables and dictionary views, on the other hand,
always exist, are updated automatically whenever SAS files are added, deleted, or modified in
any way, and reflect all data that reside in directories to which a libref has been assigned. The
dictionary views are found in the library associated with the sashelp libref. Examples include
VTABLES and VCOLUMN, which document table- and variable-level metadata respectively.
VFORMAT and VMACRO contain information about formats and macros respectively, while
others such as VOPTION and VLIBNAME contain other information about current SAS session
settings. Dictionary tables, on the other hand, are available only through the SQL procedure,
using the special dictionary libref. Many of these tables correspond to the sashelp views. For
example, dictionary.tables has much of the same information as sashelp.vtable, and
dictionary.columns overlaps with sashelp.vcolumn. Metadata about each of the dictionary
tables can be found in the view sashelp.vdctnry.

Just as the CONTENTS and DATASETS procedures can send to an output data set information
about selected data sets and variables, the FORMAT procedure can send information about
selected formats to a data set. By specifying a libref and catalog name with the LIBRARY=
option on the PROC statement, a data set name on the same statement with the CNTLOUT=
option, and optionally, the name of one or more formats with the SELECT statement, users can
capture metadata about each entry in a format or informat.

Program 4
 proc format library=fmtlib.mycatlg cntlout=fmtoutput ;
 select fmtname ;
 run;

Figure 3 - sample data set produced with CNTLOUT= option on PROC FORMAT

CALL EXECUTE - A TOOL FOR USING METADATA

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

7

We’ve now seen that SAS provides us with multiple sources of metadata. The next question is
how to capture that metadata and generate code from it without going through the manual,
error-prone method of typing code based on what we see in these data sets. For this we have
CALL EXECUTE.

CALL EXECUTE is an executable DATA step statement whose purpose is to build code across
DATA step iterations to be executed after the DATA step has finished executing. Because it’s
executable, it can be executed conditionally or iteratively. Its single argument is a valid SAS
expression whose resolution yields the code to be executed. The expression can be a
combination of literal text enclosed in quotation marks and references to variables (or functions
of variables) found in the data set being read. References to these variables resolve to their
value for the observation being read. Let’s look at a few examples.

Program 5
 data _null_ ;
 call execute(“data x; set y; where z=1; run;”) ;
 run;

Program 5 is a trivial example that works fine but doesn’t need the CALL EXECUTE. The DATA
step doesn’t actually read a data set. It simply generates a new DATA step that creates a data
set called X by reading a data set called Y - a task that can be accomplished without CALL
EXECUTE. However, suppose we only want to generate the DATA step that creates X if we
know that Y exists.

Program 6
 data _null_ ;
 if exist(“y”) then call execute(“data x; set y; where z=1; run;”) ;
 else put “SORRY, Y doesn’t exist!” ;
 run;

A more manual way to accomplish this task would have been for us to go searching through our
directory structure for Y. If we find it, we execute code that creates X, if we don’t, we don’t.
Perhaps we comment the code or even delete it. If it’s already commented and we find the data
set, then perhaps we un-comment it. Either way, this is a manual step we would have to take
every time we want to execute this task. In Program 6, we use the EXIST function to determine
if Y exists, and then generate the DATA step when it does. When it doesn’t, we send a
message to the log. In effect, by telling us whether or not a data set exists, the EXIST function
is providing us metadata. By invoking it, we’ve accomplished some of the goals stated above.
Namely, we’ve written code that automatically taps into metadata and executes code according
to what it finds. This saves us from manually looking for this metadata and taking action based
on our findings. It’s code that can remain constant, even as the data set Y appears and
disappears, without any need to manually wrap it in comments or remove comments.

Program 6 is still somewhat trivial in the sense that the DATA step still isn’t reading any data
and so it still isn’t generating code based on any data it reads. In Example 7 we have a series
of data sets that each needs to be sorted, each by its own unique set of sorting variables.
Perhaps the most intuitive way to accomplish this task is to simply start writing a series of
PROC SORTs. Assuming that no errors are made in the specification, interpretation, or
translation into code of the parameter values (data set names, names of the sorting variables for
each data set, etc.), this approach should be fine. But what happens when the same request is
made at a later time with different parameter values? Maybe you make changes to your code
(e.g. additional PROC SORTs, commenting or deleting unnecessary PROC SORTs, etc.)

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

8

according to the changes in parameter values. But once again, we see two problems here. The
first is the manual intervention, both in terms of consuming parameter values and turning them
into code, required each time the task is to be carried out. The second is the inability to have
code robust enough to be linked to the request, regardless of parameter values, thereby forcing
changes to core code.

Now let’s imagine that parameter values for this request and others like it are kept in a data set
called TABLES, as in Figure 4 below.

Figure 4 - TABLES.sas7bdat

Rather than manually typing each of the three PROC SORTs, we can use CALL EXECUTE to
generate them.

Program 7
 data _null_ ;
 set tables ;
 call execute(“proc sort data=” || domain || “ out=sorted_” || left(domain) || “; by
“ sortvars ||”; run;”) ;
 run;

Unlike the previous two examples, Program 7 is generating code with every observation it reads
from the data set TABLES. In particular, as it reads an observation, it generates a PROC SORT
in which the value of the DOMAIN variable from TABLES becomes the value of the DATA=
option on the PROC statement generated. Note also that an output data set is created by
generating an OUT= option whose value is a concatenation of the literal text “sorted_” and the
value of DOMAIN. The value of SORTVARS is plugged into the BY statement that’s being
generated.

Once again, central to our theme, this is code that works without any manual intervention in the
core code, regardless of the parameter values, thanks to the stability and the manner in which
they are captured. Earlier, we talked about the possibility of using output from SAS procedures
such as CONTENTS or metadata from SAS dictionary tables as a source of metadata and code
generation. In this case, rather than counting on what SAS makes available, we chose to store
parameter values in a data set. In other words, rather than burying them in core code, we have
pulled them out and put them into a separate file to which we grant user access. Here we show
them in a data set, but we can imagine that the data set was built from input into a simple
interface. For example, users who want to sort data sets might enter the name of the data set
along with the sorting variables into an Excel spreadsheet that, after the push of a button, is
converted into the TABLES data set.

It’s also important to note that we haven’t completely eliminated the need for some kind of
manual intervention. In this case, that wasn’t possible. But what we did accomplish was the
transfer of that intervention from core code to an external file meant for public user access.

Let’s now turn to a more clinical example. Those familiar with SDTM know that each class of
domains has a set of variables that members of its class are allowed to contain. If other

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

9

variables containing information related to the domain are collected, then the values of those
variables are put into a suppqual data set. What’s peculiar about the Suppqual is that in order
to keep the number of variables under control, the Suppqual has a vertical structure. So when
variables are moved from a parent domain to a Suppqual, they aren’t moved as individual
variables, but rather, as values of one variable (QVAL) with a separate variable (QNAM) to keep
track of the original variable names. One of the requirements of any observation in a Suppqual
data set is that it contains information that links it back to the record(s) in the parent domain
from which it came. These parent domain records are identified by IDVAR and IDVARVAL.

Figure 5
ae.sas7bdat

suppae.sas7bdat

Figure 5 shows a small example of an AE data set along with its corresponding SUPPAE. From
the SUPPAE we find three variables - SUPP1, SUPP2, and SUPP3 - that have been collected
with other adverse event data but that didn’t have a place in the parent AE data set. From the
combination of values in IDVAR and IDVARVAL, we can see that the value VAL1 of SUPP1 and
VAL2 of SUPP2 tie back to both observations in AE. We also see that the value VAL3 of
SUPP3 ties back to record 1 in AE, and the value VAL4 of SUPP3 ties back to record 2.

To the extent that these supplemental variables are needed for analysis, it’s often necessary to
merge the supplemental information back in with the core data in the parent domain. In our next
example we attempt to build sustainable code that uses metadata to generate code that merges
supplemental data from SUPPAE into the parent domain.

For starters, because we want to bring the supplemental information back to the parent domain
as variables, we’ll use the TRANSPOSE procedure to transpose the vertical SUPPAE to a
horizontal structure that we’ll call SUPPAE_TRAN. The code for accomplishing this is left to the
user but the data set is illustrated in Figure 6.

Figure 6 - suppae_tran.sas7bdat

At first glance the merge may seem straightforward, but that perception changes when we
consider the merging variables. What’s unusual about Suppqual is that it contains data in the
QVAL variable, but in IDVAR it contains metadata. In this example, IDVAR tells us that to
merge SUPP1 and SUPP2 with the parent domain, we merge the values in IDVARVAL with

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

10

values in the parent domain’s AEGRPID. To merge SUPP3, we match values of IDVARVAL
with AESEQ in the parent domain. For that reason, we can merge SUPP1 and SUPP2 back
with AE at the same time, but SUPP3 must be merged back separately.

Much like we might do when writing a complicated macro, let’s paint a picture for ourselves of
what the code we want to generate might look like.

 proc sql ;
 create table ae1 as
 select a.*, b.supp1, b.supp2
 from ae a left join suppae_tran(where=(idvar eq ‘AEGRPID’)) b
 on a.usubjid=b.usubjid and a.aegrpid=b.idvarval ;

 create table ae2 as
 select a.*, b.supp3
 from ae1 a left join suppae_tran(where=(idvar eq ‘AESEQ’)) b
 on a.usubjid=b.usubjid and a.aeseq=input(b.idvarval,8.) ;
 quit;

The choice of SQL over the DATA step was a choice of convenience. The DATA step could
have been used but the SQL procedure doesn’t require the data sets being merged to be sorted
beforehand, and it allows for more complex merging conditions, including merging (or joining) by
variables whose names aren’t the same (note the second join condition in each query).

Now let’s give some thought to the kind of metadata we’ll need to generate this code. For
starters, we notice that we have one SQL query for each merging variable. Each of these
merging variables (i.e. values of IDVAR) is associated with a unique set of variables (i.e. values
of QNAM) to bring into the parent domain. These are the variables with the “b.” prefix on the
SELECT line. Each of these queries is also creating a data set whose name begins with the
name of the parent domain and is suffixed with a counter that increases by one with each query
(e.g. AE1 is created by the first query, AE2 by the second, and so on). The final requirement
that isn’t so obvious is the Type attribute (i.e. character or numeric) of the variable named in
IDVAR. We know that IDVARVAL is always character so when we join it with a numeric
variable like AESEQ, we need to convert AESEQ to character or IDVARVAL to numeric. This is
the reason for the INPUT function in the second query above. With some simple DATA step
code, most of this metadata structure can be derived from SUPPAE. The TYPE values for each
IDVAR value will have to be extracted from SAS metadata (e.g. dictionary tables or PROC
CONTENTS output). Compare the data set META illustrated in Figure 7 with the original
SUPPAE in Figure 6.

Figure 7 - meta.sas7bdat, to be used as parameter input for the task of merging supplemental AE data into
the AE data set

We now have most of the information in META that we need to generate the code above, but
given the way the values appear, we still have some work to do to generate the SQL code. For
example, the values of KEEPVARS in META will have to turn into a comma-separated list and
each item in the list will have to have “b.” prepended to generate the SELECT line. The number
found in COUNTER will have to be concatenated to the name of the parent domain to generate
the name of the data set being generated, and a value of “N” in TYPE will have to generate the

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

11

INPUT function. With a little more data manipulation code in the DATA step that created META,
we can generate a new and improved META2 that will make the CALL EXECUTE argument in
the final DATA step much simpler.

Figure 8 - meta2.sas7bdat

We’re now ready to write the DATA step that generates the SQL code. We start by noticing that
the PROC statement itself is generated only once at the beginning, and the QUIT statement is
generated just once at the end. Proper generation of these statements requires the use of
internal DATA step variables.

 data _null_ ;
 set meta2 end=thatsit ;
 if _n_ eq 1 then call execute (‘proc sql ;’) ;

 other code

 if thatsit then call execute (‘ quit; ‘) ;
 run;

Now let’s consider the “other code.” Using the PROC SQL above as a guide, we can see that
with every record we read from META2, we want to generate a query in which the name of the
data set being created is found in the DATASET variable of META2. The query will left join two
tables. In the first query, the left table (the table in which all records are kept) is the original
parent domain. In subsequent queries, it’s the data set created in the previous query. The right
table is always SUPPAE_TRAN subsetted down to only those records whose value for IDVAR
is the value of IDVAR in the observation being read from META2. The variables being selected
are everything from the left table, and only those from the right table that are in the current value
of the KEEPVARS variable in META2. Finally, the join condition equates the current value of
IDVAR from META2 with the expression in JOINCOND in META2. At this point, the only
information we don’t have in META2 is the name of the left data set (i.e. the data set created in
the previous query), so we’ll have to create it with the same DATA step that contains the CALL
EXECUTE.

 data _null_ ;
 length lastds $4 ;
 set meta2 end=thatsit ;
 if _n_ eq 1 then do;
 call execute ('proc sql; ') ;
 lastds='ae';
 end;
 retain lastds ;

 call execute ('create table '||data set||' as select a.*,'||left(keepvars)||' from
'||lastds a left join suppae_tran(where=(idvar eq "'||compress(idvar)||'")) b on
a.usubjid=b.usubjid and a.'||compress(idvar)||'='||left(joincond)||';');

 if thatsit then call execute(' quit; ') ;
 lastds=data set ;
 run;

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

12

Note that we’ve created a variable called LASTDS. When the first observation is read, this is
assigned the value “ae”. LASTDS is retained so when it’s assigned the value of DATASET at
the end of the DATA step, it keeps that value as it reads the next observation. This variable is
then referenced as the FROM clause is generated.

SOLVING THE SOFT PARAMETER PROBLEM

We’ve now seen some of the ways that SAS stores system information and metadata. We’ve
also seen that CALL EXECUTE is a tool that can read data through the DATA step and
generate code from it. In this section we turn back to the problem of writing sustainable code
based on soft parameter specifications. We’ll start with an example that has several possible
solutions. One involves CALL EXECUTE, the others involve unique ways of using familiar tools.

Example: Create a 0-observation data set called XYZ structured like the currently existing data
set ABC

Let’s first be clear on what “structured like” means. For purposes of this example, it means that
XYZ should have variables of the same name, length, type, label, and format as those found in
ABC. Additionally, the variables should be ordered in XYZ in the same way they are ordered in
ABC.

Figure 9a: ABC.sas7bdat (variable labels shown as column headers)

Figure 9b: Output data set ABCCON.sas7bdat from PROC CONTENTS of ABC.sas7bdat

Before exploring our options, let’s be clear on where the soft parameter specifications are in this
problem. A hard specification might be worded something like “create a data set called XYZ
whose first variable called NAME has a label of ‘Name of Student,’ whose length is 8, whose
type is character”, etc. Other variables and their attributes would also be explicitly stated. The
current way, however, in which this problem is stated has a soft nature because it requires the
user to determine what the variables and their attributes are.

Without tools, users might accomplish this task with one of any number of combinations of
ATTRIB, LENGTH, FORMAT, and LABEL statements. More importantly though, from where

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

13

and how would they get the attribute values? In an interactive environment users might double-
click on the ABC data set, then double-click on the variables that then opens a dialog box with
this information. Or perhaps they would run PROC CONTENTS and allow for the default
behavior where metadata is sent to a listing file. Either way, users would then transcribe it into
their program. And then next month, when the same request is made, the user goes through
the same exercise to see if anything has changed about ABC. The following methods save the
user all of that work.

The most straightforward option is with the familiar SET statement. We sometimes think of this
statement as more of an executable statement than a compile statement, but the fact is that it’s
both. At compile time, SAS will begin the creation of XYZ by defining its variables based on
what it finds in ABC, the data set named in the SET statement. It’s only when execution begins
that it starts reading data from ABC, and it’s at the end of a DATA step iteration when it creates
an observation. If you don’t want any observations created, the STOP statement will halt
execution before observations are written.

 data XYZ ;
 set ABC ;
 stop ;
 run;

A second option is available through PROC SQL with the keyword LIKE on the CREATE TABLE
statement.

 proc sql ; create table XYZ like ABC ;

A third option is to use CALL EXECUTE in the DATA step to generate ATTRIB statements. As
with any other code-generating task, let’s first be sure we know what code we want to generate.

 data XYZ ;
 attrib NAME label=’Name of Student’ length=$8 ;
 attrib SEX label=’Gender’ length=$1 format=$sex. ;
 attrib AGE label=’Age of student’ length=8 ;
 attrib HEIGHT label=’Height on 1st day’ length=8 ;
 attrib WEIGHT label=’Weight on 1st day’ length=8 ;
 stop;
 run;

Before generating the code, let’s make a few observations. First, as every DATA step
programmer knows, the DATA statement appears once in the beginning and the RUN statement
appears once at the end. As we did earlier, we’ll want to generate each of these statements
when the first and last observations of ABCCON are read. Second, by comparing the code we
want to build to the data set ABCCON, it’s clear that each observation read from ABCCON will
generate an ATTRIB statement. Third, we note that the order of the ATTRIB statements
determines the order of the variables in XYZ. For that reason, before reading ABCCON, we’ll
want to make sure it’s sorted by VARNUM.

 proc sort data=abccon ;
 by varnum ;
 run;

Fourth, keep in mind that the specification of length includes a dollar sign for character
variables. And finally, fifth, we notice that when the FORMAT variable in ABCCON is null, we
don’t generate “format=” text.

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

14

 data _null_ ;
 set abccon end=thatsit ;
 if _n_ eq 1 then call execute(‘ data xyz ; ‘) ;

Once again, we use the END= option on the SET statement that allows us to identify the last
observation being read from ABCCON so that we have a condition upon which we can base the
generation of the STOP and RUN statements. We’ll now generate the ATTRIB statement and
the LABEL= option. Keep in mind that quotation marks are required to surround the label. Here
we’re using single quotes to surround literal text arguments of CALL EXECUTE, so we’ll
generate double quotes to surround the label.

 call execute(' attrib '||compress(name)||' label="'||trim(left(label))||'" ') ;

Now we’ll generate the LENGTH= attribute, but we’ll generate the dollar sign when the variable
whose attribute we’re defining is character.

 if type eq 1 then call execute(' length='||compress(put(length,best.))) ;
 else call execute(' length=$'||compress(put(length,best.))) ;

Now we’ll generate a FORMAT= option if a format is attached to the variable.

 if not missing(format) then call execute(' format='||compress(format)||'.') ;

Keep in mind that the last the last three steps have all been generating different options on the
same ATTRIB statement. We’re now finally ready to generate the semicolon that ends this
statement.

 call execute(‘;’) ;

And finally the end of the DATA step.

 if thatsit then call execute(‘stop; run;’) ;

In our next example, we return to a problem stated early on this paper.
Example: Provide frequencies for all --TESTCD variables in the My Documents directory.

Assuming we have assigned the libref mysdtm to this directory, we first use PROC CONTENTS
to produce a data set that tells us the names of all --TESTCD variables (NAME) and in which
data sets they live (MEMNAME) in this directory.

 proc contents data=mysdtm._all_ noprint out=contents(where=(index(name,’TESTCD’) gt
0)) ;

Knowing that any data set can contain only one such variable, each observation read should
generate its own PROC FREQ.

 data _null_ ;
 set contents ;
 call execute(‘proc freq data=sdtm.’||compress(memname)||’; tables
‘||compress(name)||’; run; ‘) ;
 run;

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

15

In our final example, we address a problem of interest to SDTM users. The SDTM structure
comes with a set of rules that are laid out in an “unreadable” PDF-formatted implementation
guideline (SDTMIG) document. Being unreadable means that without intelligent metadata,
programmers wishing to programmatically check the compliance of their SDTM data must
cognitively capture what is subject to those rules and translate into code. Sometimes the
metadata is something available from the output of PROC CONTENTS or dictionary tables, but
not always. When it’s not, then defining custom metadata in readable SAS data sets allows for
the possibility of code generation in ways we’ve discussed up to this point.

For example, SDTM has the concept of “required” variables. Variables that are deemed
required must be present and must never have null values. Examples include the variable
USUBJID in all subject-related domains, VSTESTCD from VS, AETERM and AESEV from the
AE domain, and many more. Writing code to check that VSTESTCD (and other required
variables) exists and is always populated should be relatively straightforward. What we’re
concerned with here is how we get VSTESTCD into the list of variables to be checked in the first
place.

Example: Identify all required variables that are not present or that have null values.

The soft specification here is “all required variables.” The user is left with determining what
these are and then implementing the rule for each. The SDTMIG provides tables that tell us
which variables are required, so again, we can’t get away from some minimal amount of manual
intervention in translating from PDF to SAS. The question is how.

Of course we can always take the straightforward code we mentioned above for VSTESTCD
and simply repeat it, making sure to change data set and variable name references, but as
we’ve seen up to this point, this approach doesn’t always stand the test of time and change.
Imagine if the SDTM standards changed so that more required variables are introduced, or that
variables that in one version were not required are now required. Or imagine that an individual
sponsor in a particular therapeutic area wants to require a variable that CDISC did not require.
Once again, with this approach, changing circumstances require manual intervention inside the
core of such code.

On the other hand, instead of program code with repeated blocks of the same kind of code that
differ only by the parameter values, let’s imagine metadata that documents whether or not an
SDTM variable is required or not. Of course such metadata is not available through dictionary
tables or PROC CONTENTS, but there isn’t any reason we can’t create it ourselves. Figure 10
below illustrates a data set META.sas7bdat containing this information.

Figure 10

Again, because its root is in a PDF format, META will have to be created manually, and
changes will also have to be made manually, but not to core code. Those responsible for

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

16

maintaining changes can do so through code that creates META, or better yet, through an
interface (e.g. Excel) that creates it. Core code that uses META can then be left untouched.

 proc sort data=mysdtm ; by memname name ; run;
 proc sort data=meta (where=(core eq ‘Req’)) out=metasort; by data set variable ;
run;

 /* Check for the existence of required variables */
 proc contents data=sdtm._all_ out=mysdtm noprint ; run ;

 data reqnotexist ;
 merge metasort(in=m) mysdtm(in=mys rename=(memname=data set name=variable)) ;
 by data set variable ;
 if m and not mys ;
 run;

 /* Check for unpopulated required variables */
 data _null_ ;
 set metasort ;
 by data set variable ;

 if first.data set then call execute(“data reqnull_” || compress(data set) ||”; “
 ||” set sdtm.” || compress(data set) || “;”
 || “ where missing (“ || compress(name) || “)”) ;

 else call execute(“ or missing(“ || compress(name) || “)”) ;

 if last.data set then call execute(“ ; run; “) ;
 run;

Due to the approach we took, with parameter values being managed in META, the code above
can remain the same even as these values change. The first DATA step simply merges
METASORT (the sorted version of META with only required variables) with PROC CONTENTS
output of the SDTM directory. Observations in METASORT that have no matches in this output
equate to variables deemed through metadata as required that aren’t in the data itself. The
second DATA step uses first. and last. logic to generate DATA step code for each domain that
has required variables. In particular, for each such domain, a data set whose name starts with
REQNULL_ and ends with the domain name is created. Observations from the corresponding
domain are put in this data set if any of the required variables have a missing value for that
observation. This is achieved by generating code of the form

 if missing(x1) or missing(x2) or missing(x3) etc ;

The tables in the SDTMIG contain other information about SDTM variables. Some of it is
informational only, but some of it might be entered into META as additional variables that could
be used for additional compliance checks. For example, the SDTMIG also provides the name of
a codelist of allowable values for each applicable variable.

Figure 11

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

17

THE CLINICAL STANDARDS TOOLKIT - A CASE STUDY IN PARAMETER AND
METADATA MANAGEMENT

On the surface, the Clinical Standards Toolkit (CST) is a set of SAS files available free of
charge to any BASE SAS license, that is used to execute compliance checks against SDTM
data and to build define.xml. The real defining characteristic of the CST, however, is its
framework - the way that its files are used with each other. As we’ll see here, this framework
takes full advantage of the notion of parameter management.

For starters, SAS has done us the favor of creating the metadata suggested in our last example,
and any other metadata needed for certain compliance checks. In other words, SAS has gone
to the trouble of cognitively consuming rules and metadata found in the SDTMIG and organizing
it into two SAS data sets referred to as reference metadata (one for table-level metadata and
the other for variable-level). The content of these data sets includes metadata for all domains
that are documented in detail in the SDTMIG, plus all variables these domains can contain. In
reality, companies developing standards based on SDTM will not need all of these, and may
also need additional custom domains. For this reason, it is expected that these will need
customizing. Companies need to define processes for managing the content and the changing
nature of these data sets but what SAS provides us in the CST is a good start.

Among other files that come installed with the CST are well over 100 macros. These macros
and their relationship to each other are key to the operation of any CST process. A handful of
these are dedicated to specific standards such as SDTM and ADaM. These macros are located
in directories that live alongside directories that house the reference metadata (referred to in this
paper as the user area). Although it shouldn’t usually be necessary, placing these macros in
this location with this kind of user visibility allows users to make custom modifications to them,
and if desired, even combine them with user-written standard-specific macros for the sake of
organization. Most CST macros, however, that are dedicated to general CST processes, are
buried with other SAS installation files, often in hidden, or at least read-only locations that are
not meant to be visible to users. These macros, sometimes referred to as framework macros,
unlike the standard macros, automatically become part of the autocall facility and so are
automatically available for use. While some of these are meant for direct use by users, many
are meant only to be called within the call of other macros.

Considering all of the information that a compliance-checking process needs, it’s easy to see
that it is a highly parameterized process. Such information includes the location of the data to
check, and which checks should be executed. We mentioned that SDTM rules are documented
in reference metadata, but the process needs to know where this metadata is. Frequent users
of the macro facility might then assume that the macro that kicks off the process is defined with
parameters designed to collect this information from the user. These same users would then be
surprised to find out that sdtm_validate, the macro that initiates the validation of SDTM
compliance, has no defined macro parameters.

CST STARTER DATA SETS

It takes an open SAS mind and a bit of imagination for SAS users to realize that process
parameters don’t have to be implemented through macro parameters, even if the process is
highly driven by macros, as CST processes are. Up to this point in the paper we’ve introduced
the notion of parameter management through well-planned metadata, documented in SAS data
sets. If administrators of such metadata can collect these parameters from users in intuitive,

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

18

user-friendly ways, such as through interfaces, then they can give these users the flexibility to
easily alter parameter specifications while at the same time, keep them away from core code.
Many CST macros are defined with parameters, but the kickoff macros for CST validation
processes, without parameters, force the same approach on CST users - define a small group
of administrators to maintain metadata, macros, formats, and other utilities, and define a larger
group to define parameter values and execute CST macros.

In addition to reference metadata, as part of the CST, SAS provides us with several other starter
data sets. At the highest level outside of any specific standard context are two data sets called
STANDARDS and STANDARDSASREFERENCES. These data sets contain information about
the location of important files for each standard. A standard is said to be registered with CST if
this information about the standard is in these two data sets (a procedure that uses a CST
macro). The location of these two data sets is expected by certain macros and so cannot
change, but directory structure for standards and their files is more flexible, as long as it’s
accurately reflected in these two data sets.

CST is installed with certain starter pre-registered standards, including a starter SDTM standard
based on the SDTMIG. Each of these standards is accompanied by starter data sets and other
files that each contain unique input to CST processes. Among these files is the reference
metadata mentioned earlier, that contains table- and column-level metadata about all domains
and their variables that are mentioned in SDTMIG.

Each standard also comes with a Properties file. Property files are simply text files with name-
value pairs. Within a standard, these pairs represent standard-specific properties. The starter
files contain default values. CST also comes installed with a special Framework standard which
is mostly defined by its properties file which contains CST property assignments that are more
global in nature.

Every standard that supports compliance checking also comes with a data set called
VALIDATION_MASTER. This data set documents all the checks to which a standard is subject.
Version 1.4 has more than 200 checks for SDTM data. Information about each check includes
the severity of a violation (i.e. Info, Warning, Error), the source of the check (e.g. WebSDM,
SAS, OpenCDISC), and the status of the check (e.g. ready for use, not ready). Some of this
information is used only in reporting, but other information is read and used as a vital part of the
checking process itself. For example, the values of CODESOURCE represent macro names.
After some initial setup, kickoff macros like sdtm_validate call these macros. For certain
checks, the variable CODELOGIC is populated with valid SAS code that certain macros expect
to execute.

VALIDATION_MASTER is named the way it is because it represents a master list of all
validation checks applicable to a process. Again, what SAS gives us is meant to be a starter
file, but through time, administrators may discover that certain checks are never executed in
their environment and so can be deleted. Many administrators, on the other hand, may have a
need to execute custom compliance checks. To do this requires an intimate knowledge of how
this file is used by sdtm_validate and other macros, as well as what sdtm_validate does with the
results. Administrators should take the time to get comfortable with this and develop processes
around the addition of custom checks to the master file.

Although in theory this data set has everything needed for a compliance checking process, in
reality, it contains too many checks to execute all at one time. For that reason, best practice
dictates that each execution only runs a subset of the master list of checks. Because the subset

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

19

list of checks to execute is itself, a parameter, the act of subsetting the master list must involve
the creation of a new data set for the process to read.

Finally, one other way in which the process is parameterized is in the messages generated as a
result of execution. As with properties, CST has framework messages as well as standard-
specific messages. The former are documented in a MESSAGES data set in the framework
standard. These are general messages that pertain not to specific compliance checking results,
but more generally to results of program execution. Think of them as messages you might see
in your log. In short, many of the CST macros try to capture other issues outside of compliance
that may have come up in the job, and report on them with messages from this data set. To
some extent, this saves users from having to browse through a long log for colored text for
troubleshooting program execution. Standard-specific messages, on the other hand, do convey
compliance-specific issues.

One final data set that all CST processes use is the SASREFERENCES data set. This data set
documents the location of all files and directories important for the process. Many observations
in this data set are pulled from the STANDARDSASREFERENCES mentioned earlier, such as
location of reference metadata for the standard, and location of the data set containing the
subset of VALIDATION_MASTER. In addition to these though, this data set may include study-
specific locations such as the location of study data, or custom macro or format directories. In
addition to directory and file locations, other variables in this data set represent filerefs and
librefs, as well as the order in which multiple macro or format libraries are to be searched.

A CST process like compliance checking is kicked off with a macro like sdtm_validate, but prior
to this macro call, the framework properties file and the SASREFERENCES file must be
processed. Macro calls to process these files along with a kickoff macro like sdtm_validate are
executed in a driver program. Processing the framework properties file simply means executing
a macro that creates macro variables from the property names and assigns them the property
values. One of the framework properties indicates the location of the SASREFERENCES file.
With this information, another macro will read SASREFERENCES, execute FILENAME and
LIBNAME statements according to the directory and file locations it finds, add macro libraries it
finds to the autocall facility, and define a FMTSEARCH path for any format catalogs it finds.
With all of this information now known to CST, it’s ready to begin compliance checking.

As with any task that involves executing parameterized code, the user’s main responsibility is to
make sure that parameter values reflect the current circumstances. With this kind of approach,
this equates to making sure that metadata content that holds parameter specifications is
accurate. This is a form of manual intervention, and depending on how the metadata is created,
may even involve some code intervention, but the core code that’s at the heart of the task is left
alone.

CONCLUSION

Every program we write reflects one or more parameterized tasks from which, one way or
another, parameter values must be consumed and written into the program. The SAS language
is written in a way that naturally mixes parameter values with core code. Under many
circumstances this is ok but as parameter values change, other factors must be considered.
We often want to reach for the macro facility in this case, but in this paper we considered a
different kind of change in parameter values. Namely, we considered soft parameter values in
which the wording of the specification doesn’t change but the specifics of its meaning does. In
some cases the meaning of the soft parameter could be found in SAS-provided metadata, but in

Coding For the Long Haul With Managed Metadata and Process Parameters, continued

20

cases where it isn’t, we discovered that we could gain the same benefits with carefully designed
pre-defined metadata. Such benefits include the inclusion of code parts in our metadata, and
the ability to use SAS tools to read this metadata and generate code. This has the effect of
removing parameter values from core code and maintaining them in a separate location. With
careful process planning, users have the flexibility to customize parameter values without any
access to core code, thereby maintaining its integrity and sustainability.

CONTACT INFORMATION
Please feel free to contact me with comments or questions in any of the following ways:

Mike Molter
d-Wise Technologies
919-414-7736 (mobile)
919-600-6237 (office)
mike.molter@d-wise.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:mike.molter@d-wise.com

