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ABSTRACT 

An important branch of statistics is survival analysis, which involves the modeling of time to event data. Within the 
context of clinical trials, this can represent the time between when a patient enrolls in a study and when a medically 
significant event occurs. Such analysis allows investigators to deduce, for example, the probability that an individual 
will survive past a certain time. A common problem in the analysis of clinical trials is how to appropriately consider 
censored data. The Kaplan-Meier (K-M) estimator (Kaplan, Meier 1985) of the survival function provides an elegant 
and robust method of survival analysis while properly handling censored data. Although it is common practice for 
SAS® programmers in the research community and pharmaceutical industry to implement the LIFETEST procedure 
to generate outputs, a comprehensive understanding of K-M survival analysis is required the appropriately interpret 
results. The objective of this presentation is to not only demonstrate the correct implementation of the LIFETEST 
procedure when studying survival data but also to describe the statistical fundamentals, the underlying calculations 
and the appropriate analytical tools so that the reader is well equipped to incorporate K-M analysis in their own 
research.   

INTRODUCTION 

Techniques that model the time until an event takes place are widely used in the medical, social and economic 
sciences. Known as survival analysis, this branch of statistics can answer questions such as: how long do people 
remain unemployed after job loss in different economic climates? Or, is the time it takes for a product to break 
different when originating from different manufacturing facilities? In the medical field a common application of survival 
analysis would be to determine whether or not a new drug aimed at treating a disease significantly improves the 
survival time of patients relative to a control. To answer such a question, it is initially tempting to employ standard 
parametric and non-parametric statistics for comparing the average survival time between the treatment and the 
control. However, how will patients who survive after the study ends be handled? Theoretically, they could survive an 
additional 20 days after the study or 20 years after the study, so it is not appropriate to assign any definite survival 
time to them to calculate an average. It is also very common in clinical trials to lose contact with patients during the 
study, obfuscating information about their survival. Especially when clinical trials are small, it is vital to incorporate 
any useful information about patients lost to follow-up in subsequent analysis. For example, while an investigator may 
not know how long a patient survived after losing contact, there is still useful information in the fact that the patient 
was enrolled in the study for six months before losing contact.  

In this instance, rather than determining the average survival time, the appropriate analysis would be to calculate the 
probability that a patient will survive past a certain time. This is known as the survival function. As we will see, the 
Kaplan-Meier (K-M) estimator is an elegant method to compute the survival function while addressing the significant 
difficulties described above.  

DERIVATION OF THE K-M ESTIMATE USING THE GEHAN DATA SET 

The Gehan data set(Cox 1984) contains the length of remission in weeks for two groups of leukemia patients, 
treatment and control.Survival analysis traditionally considers death as the event of interest, however when using the 
Gehan data set we must consider the time at which remission ends. The goal of the K-M method is to derive a 
function that will tell us the likelihood that a patient will be “event-free” over a given period of time (this is typically 
called the “survival function”, regardless of application). In the case of the Gehan data set, that event will be the end 
of remission. The raw data for the amount of time each patient was in remission is presented below (note that * 
indicate patients who were lost due to follow-up, therefore we have no information regarding when or if remission 
ended, only that they continued to be in remission at least until the time denoted below): 
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Remission Time of 

each patient 

(weeks) 

Treatment Control 

6 1 

6 1 

6 2 

6* 2 

7 3 

9* 4 

10 4 

10* 5 

11* 5 

13 8 

16 8 

17* 8 

19* 8 

20* 11 

22 11 

23 12 

25* 12 

32* 15 

32* 17 

34* 22 

35* 23 

  

Let us first consider the control group to understand how the survival function is calculated without the need for 
censoring. Time to event data can be thought of as discrete events separated by intervals. In this case, the event 
would be whenever remission ends for a patient. The conditional survival probability, Pc, is the probability of surviving 
to a specific event, given that you survived all previous events. For a sample, this is simply the number patients in 
remission at an event divided by the number of patients surviving and available just prior to the event (otherwise 
known as the patients “at risk” of the event). This is often more easily calculated as 1 minus the conditional failure 
rate: 

 

In this equation, di is the number of patients who ended remission at event iand ni is the number of patients at risk (or 
in remission and enrolled in the study) just before event i. At the start of this study, the control group contains 21 at 
risk patients and the first event takes place at week 1. Here, remission ended for two patients. Therefore the 
conditional failure rate is 2/21 = 0.095 and the conditional survival rate is 1 – 0.095 = 0.905. The next event takes 
place at week 2, where again remission ended for 2 patients. However, because remission ended for two patients in 
the previous event they are no longer in the risk group. Thus the calculation of the conditional failure rate is 2 / (21 – 
2) = 0.105 and the corresponding conditional survival rate is 1 – 0.105 = 0.895. 

The calculations are similar for the treatment group, except patients who were lost to follow-up are now considered. 
In the K-M method, these patients do not represent end of remission events, but rather changes to the number of 
patients at risk. Consider the first event of the treatment group, which takes place at week 6. At this time, of the 
original 21 patients, remission ended for 3 of them and 1 was lost to follow-up. The conditional failure rate simply is 
3/21 = 0.143. The next event takes place at week 7 where remission ended for 1 patient. In this instance, the number 
of patients at risk decreases not only by the patients for whom remission ended in the previous event, but also the 
patient lost to follow-up because they are no longer in the study. Therefore, the conditional failure rate is 1 / (21 – 3 – 
1) = 0.058. In this way, the remission time of patients lost to follow-up is considered during their time in the study, but 
they are later censored after information about their clinical outcome is lost. The calculations for the first 4 events for 
the treatment group are shown below: 
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Week # end 

remission 

# lost # at risk Conditionalfailure Conditional 

survival, 

Pc 

6 3 1 21 3 / 21 = 0.142 0.8571 

7 1 0 21 – 3 – 1 =17 1 / 17 = 0.058 0.942 

9 0 1 17 – 1 – 0 = 16 0 / 16 = 0 1 

10 1 1 16 – 0 – 1 = 15 1 / 15 = 0.067 0.9333 

      

 

It is important to note that the previous calculations are for the conditional survival probability (Pc). This implicitly 
assumes that a patient has survived all events leading up to event i. In order to derive a survival function, we are 
interested in the probability that a patient cumulatively survived event i and all events prior to event i. This is known 
as the unconditional survival probability and, by the multiplication law of independent events, is calculated by multiply 
all conditional survival probabilities up to and including event i. The unconditional survival probability, Pu, is expressed 
as: 

 

A summary of the calculations for the cumulative survival probability of the treatment group is provided below: 

Week # end 

remission 

# lost # at 

risk 

Conditional 

Survival, Pc 

Unconditional 

Survival, Pu 

6 3 1 21 1-3/21 = .8571 .8571 

7 1 0 17 1-1/17 = .9411 .8067 

9 0 1 16 1-0 = 1 .8067 

10 1 1 15 1-1/15 = .9333 .7529 

11 0 1 13 1-0 = 1 .7529 

13 1 0 12 1-1/12 = .9167 .6902 

16 1 0 11 1-1/11 = .9090 .6275 

17 0 1 10 1-0 = 1 .6275 

19 0 1 9 1-0 = 1 .6275 

20 0 1 8 1-0 = 1 .6275 

22 1 0 7 1-1/7 = .8571 .5378 

23 1 0 6 1-1/6 = .8333 .4482 

25 0 1 5 1-0 = 1 .4482 

32 0 2 4 1-0 = 1 .4482 

34 0 1 2 1-0 = 1 .4482 

35 0 1 1 1-0 = 1 .4482 

      

 

Pu, also known as the K-M product limit estimate, is a function of time which gives the probability of survival from the 
start of the study to a specific time. It is this metric that we use to see if the survival difference between two groups is 
statistically significant. 

THE K-M METHOD IN THE SAS ENVIRONMENT 

While the previous hand calculations have been useful in understanding how K-M analysis calculates a survival 
function while also appropriately handling censored data, our next goal is to demonstrate how the SAS environment 
can programmatically perform such calculations. We will again be using the Gehan data set of remission times in 
leukemia patients. In its simplest form, using the LIFETEST procedure to perform K-M analysis requires essentially 
three pieces of information for each patient in a study. 1) Information regarding which treatment group the patient was 
placed in. 2) The amount of the time the patient was in the study. And finally, 3) whether or not the endpoint for the 
patient was due to the fact that the patient was lost to follow-up or that the event of interest occurred (in our Gehan 
example, this would signify the end of remission). This last element of the data is usually binary, in that ‘0’ typically 
denotes occurrence of the event of interest while ‘1’ denotes loss to follow-up. Below is an abbreviation of what K-M-
formatted data typically looks like in SAS: 
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Once survival data is appropriately formatted, using the LIFETEST procedure is relatively straightforward. Although a 
comprehensive overview of all the LIFETEST procedure options is beyond the scope of this discussion, there are key 
outputs and configurations that are fundamental to a statistical interpretation of the results. Presented below is 
sample code that will output the information required to correctly interpret results within the context of the previous 
statistical discussion: 

 

In this example, GEHAN is the name of our appropriately formatted data set of survival information and our method 
will be KM for Kaplan-Meier analysis. Other key syntax includes the TIME statement, wherein the first argument 
denotes that variable that signifies time-until-event data and the second argument denotes the variable that signifies 
whether the record is censored or not. Importantly, one must set what value is defined as censored in the 
parentheses following the second argument. Here we are setting ‘1’ to denote censored data. Finally, the STRATA 
statement is included to denote how the observations are grouped into different treatment strata.  

The remainder of the syntax presented are options that can be utilized for further statistical needs. The ODS output 
option CensoredSummary provides an at-a-glance summary of the number of patients that were censored and the 
number of patients that reached an endpoint due to the event of interest taking place (by default, SAS defines this 
event as ‘failure’):  
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The OUTSURV statement and the ODS output option ProductLimitEstimates are two options to present the 
calculated survival function discussed earlier. While the ProductLimitEstimates output provides a patient-by-patient 
breakdown of the survival function, the OUTSURV output provides the time points where either endpoints or 
censoring occurred, and the survival function at these points as well as confidence intervals for the survival function. 
Presented below is the OUTSURV output for the Gehan data set, abbreviated to present only the treatment group: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the plots = (s) statement outputs the survival curves for the data set: 
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The survival curve is simply a depiction of how the survival function decreases over time. In the case of the Gehan 
data set, both treatment groups start at 100% survival because patient have yet to either reach an endpoint or be 
censored out of the study. Each ‘step’ in the survival curve represents a timepoint where a patient reached an 
endpoint in the study whereas each open circle is a point where a patient was censored from the study.Recall that the 
survival probability is 1 – (the number of patients lost divided by the number of patients at risk just before the event). 
Remember that at week six in treatment group, three patients reached the endpoint because their remission ended 
and one patient was censored from the study.  This is reflected in the survival curve by a step-down in survival from 
100% to 85.7% at week 6 and one open circle at the step. 

The Log-Rank Test 

A simple glance at the survival curves generated by the LIFETEST procedure suggests that there is a difference 
between the treatment and control groups of the Gehan data set. Judging by the separation in the two curves, 
patients appear to reach an endpoint (end of remission) relatively later and fewer patients seem to reach an endpoint 
at all in the treatment group relative to the control. From the CensoredSummary output, we know that a total of 21 
patients were in each group. Therefore, are these apparent differences in the survival of patients between the groups 
due to the treatment introduced in the study or could it be chance variation due to the relatively small sample size? 
This question requires the introduction of a statistical test.  

When censored observations are considered, a widely used method is the log-rank test. While a complete derivation 
of the log-rank test is beyond the scope of this discussion, the general motivations for the test are described here. 
This test equally weights the failure rates (this is also commonly referred to as the hazard rate) over time as the study 
progresses. For each ‘step’ in the survival curve, the expected number of failures is calculated assuming the 
populations are the same (in other words, the failure rates are the same). This expected value is compared to what 
was actually observed during the study. If the expected value varies significantly from the observed value, then we 
can say that the differences seen in the survival curve graph are not due to random chance, but rather because of the 
treatment given to the experimental group. For each step in the survival curve, that is, every time an event occurs, a 
conditional probability table is constructed to calculate the expected number of events. The table below represents 
how a typical conditional probability table would be constructed to calculate the expected number of failures 
assuming the failure rates are the same: 

Treatment Group 

 
Event Occurred Event Did not Occur Total patients 

Treatment 
 

d1 n1 – d1 n1 

Control 
 

d2 n2 – d2 n2 

Overall 
 

d = d1 + d2 N - d N = n1 + n2 

 

For each treatment group, d denotes the number of patients where an event occurred at this step and N is the total 
number of patients at risk at this step. Assuming a common failure rate between the two treatment groups, d_i is a 
hypergeometric random variable with an expected value E(di) and variance V(di) where:  
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These tables are constructed and E(di) and V(di) are calculated for each step of the survival function and the overall 
sums are computed for one treatment group (you can choose any one of the groups). Specifically, E = ΣE(di), V = 
ΣV(di)and the total observed events, O is the sum of all observed events over the course of the study, Σdi.The log-
rank Chi-squared test statistic is then calculated as: 
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Performing the calculations for each step in the Gehan data set and then calculating O, E and V, the chi-squared test 
statistic is calculated as  
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With 1 degree of freedom, this corresponds to a p-value of .00004. At an alpha level of 0.05 we can confidently reject 
the null hypothesis that the failure rates are the same between the treatment and control group and thus we can say 
that the difference seen in the survival curves is due to the treatment given in the study. Please note that the same 
test statistic is obtained if we instead considered other treatment group. The log-rank test can be easily implemented 
in the LIFETEST procedure using the ODS output option HomTests. The HomTests output for the Gehan data set is 
presented below:  

 

 

 

 

The first observation in the HomTests output displays the chi-squared value and p-value for the Log-Rank test as 
described above. As expected, the LIFETEST procedure correctly computes a chi-squared value of 16.79 and a p-
value < .0001. Again, from this data we can reject the null hypothesis that the failure rate is the same between the 
treatment and control groups. We can therefore conclude that in the Gehan data set, the treatment given in the study 
significantly increases the survival time for patients.  

CONCLUSION 

Survival analysis methods are common in clinical trials and provide valuable information regarding the time it takes 
for death, relapse or treatment response. Because it is such an essential element of clinical analysis, programmers 
and investigators unfamiliar with statistically underpinnings of this analysis would still benefit greatly from a basic 
understanding of its methodology and implementation in SAS. Here, we have presented the computation behind the 
Kaplan-Meier Estimator and how the LIFETEST procedure can be used to generate the figures and statistics needed 
for Kaplan-Meier analysis. As demonstrated, the implementation is fairly straightforward and similarly the underlying 
methodology is fairly intuitive.  Hopefully, the reader is left not only with confidence regarding using the LIFETEST 
procedure, but also with an understanding of the outputs and a rationale behind the calculations. 
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