Paper BB-05-2013

Introducing the New ADAPTIVEREG Procedure for Adaptive
Regression

Warren F. Kuhfeld and Weijie Cai, SAS Institute Inc.

ABSTRACT

Predicting the future is one of the most basic human desires. In previous centuries, prediction methods
included studying the stars, reading tea leaves, and even examining the entrails of animals. Statistical
methodology brought more scientific techniques such as linear and generalized linear models, discriminant
analysis, logistic regression, and so on. In this paper, you will learn about multivariate adaptive regression
splines (Friedman 1991), a nonparametric technique that combines regression splines and model selection
methods. It extends linear models to analyze nonlinear dependencies and to produce parsimonious models
that do not overfit the data and thus have good predictive power. This paper shows you how to use
PROC ADAPTIVEREG (a new SAS/STAT® procedure for multivariate adaptive regression spline models) by
presenting a series of examples that show the relationship between adaptive regression models and other
statistical modeling techniques.

INTRODUCTION

The ADAPTIVEREG procedure fits multivariate adaptive regression splines, which were proposed by
Friedman (1991). Multivariate adaptive regression splines extend linear models to analyze nonlinear
dependencies and produce parsimonious models that do not overfit the data and thus have good predictive
power. This method is a nonparametric regression technique that combines both regression splines and
model selection. It constructs spline basis functions in an adaptive way by automatically selecting appropriate
knot values for different variables, and it obtains reduced models by applying model selection techniques.
The method does not assume parametric model forms and does not require specification of knot values.

This paper explains the basics of PROC ADAPTIVEREG by using a series of examples that include linear,
logistic, and Poisson models. The first three examples demonstrate some basic capabilities of PROC
ADAPTIVEREG and show how it constructs the basis functions. These examples explain the algorithms that
are used by PROC ADAPTIVEREG by showing you ways in which they correspond to more familiar multiple
regression models. The logistic regression junk e-mail example is the most comprehensive example and
illustrates the most important capability of PROC ADAPTIVEREG, namely prediction. That example shows
you how to build a model and use it to score observations that were not used in the initial model. When the
correct classification is known, the scored observations are used to evaluate the goodness of the predictions.
The final example illustrates a nonparametric Poisson regression model.

PROC ADAPTIVEREG is available as an experimental procedure in SAS/STAT 12.1, which was released in
2012. The examples in this paper were run in SAS/STAT 13.1, which will be available in 2013. All example
code also works in the SAS/STAT 12.1, but the results might differ in some cases.

PROC ADAPTIVEREG FEATURES

The ADAPTIVEREG procedure provides the following features:

+ fits nonparametric regression models (linear, logistic, and Poisson)

 supports quantitative and classification variables

* can run using multiple threads

 enables you to force effects in the final model or restrict variables in linear forms

* supports options for fast forward-selection

+ supports data that have response variables that are distributed in the exponential family (Buja et al.
1991)

* supports partitioning of data into training, validation, and testing roles
* provides leave-one-out and k-fold cross validation

 produces a graphical representation of the selection process, model fit, functional components, and fit
diagnostics

» produces an output data set that contains predicted values and residuals
» produces an output data set that contains the design matrix of basis functions

 can score multiple data sets

NONLINEAR FIT FUNCTION EXAMPLE

The following DATA step creates artificial data, and the PROC SGPLOT step shows loess and penalized
B-spline fit functions (see Figure 1). The final step uses PROC ADAPTIVEREG to find a nonparametric fit
function (see Figure 2):

data x;
do i =1 to 500;
x =1 + uniform(121) « 4;
y = sin(x) + 0.2 * normal(121);
output;
end;
run;

proc sgplot;

loess y=y x=x;

pbspline y=y x=x / nomarkers;
run;

ods graphics on;

proc adaptivereg plots=all details=bases;
model y = x;

run;

The ODS GRAPHICS ON statement enables ODS Graphics so that PROC ADAPTIVEREG will produce
graphs.! The PROC ADAPTIVEREG fit function in Figure 2 shows that the relationship between y and
x in these data is nonlinear. PROC ADAPTIVEREG finds a piecewise linear fit function that tracks the
continuous nonlinear function. In contrast, the loess and penalized B-spline fit functions in Figure 1 are
continuous, smooth, and virtually indistinguishable from each other for these data. All three methods show
that the underlying function is a section of a sine curve. If your goal is to find a nonlinear fit function with
two continuous variables, then you might prefer the loess or penalized B-spline model. However, PROC
ADAPTIVEREG can handle models that are much more general than the model that this example uses. This
example uses the simple nonlinear fit function as a convenient way to introduce some basic properties of the
method.

PROC ADAPTIVEREG first constructs a set of basis functions and then uses variable selection to find a
model. Figure 3 displays the transformations that are used to generate the basis matrix for the piecewise
linear fit.

10ODS Graphics is enabled and not subsequently disabled, so ODS Graphics remains enabled for the duration of this paper.

2

Figure 1: Artificial Data Nonlinear Fit Functions Figure 2: Adaptive Regression Fit Function

Fit fory
15 o GCV =0.038

1.0

05

-1.0

Loess Penalized B-spline X

Figure 3 Basis Information

Basis Information

Name Transformation

BasisO 1

Basisl BasisOxMAX(x — 1.7864668056,0)
Basis2 BasisOx*MAX (1.7864668056 - x,0)
Basis3 BasisOxMAX (x — 4.144699182,0)
Basis4 BasisOxMAX(4.144699182 - x,0)
Basis5 BasisOxMAX (x - 2.248159588,0)
Basisé6 BasisOxMAX(2.248159588 - x,0)
Basis7 BasisOxMAX (x — 3.3424134209,0)
Basis8 BasisOx*MAX (3.3424134209 - x,0)
Basis9 BasisO*MAX (x — 4.7488998378,0)
BasislO BasisOx*MAX (4.7488998378 - x,0)
Basisll BasisOxMAX (x - 2.5060771599, 0)
Basisl2 Basis0O*MAX (2.5060771599 - x,0)
Basisl3 BasisOx*MAX (x — 2.2847246254,0)

Basisl4 BasisOx*MAX (2.2847246254 - x,0)
Basisl5 BasisOxMAX (x - 1.3344822118,0)

Basislé6 BasisOx*MAX (1.3344822118 - x,0)
Basisl?7 BasisOxMAX(x — 2.1473751837,0)
Basisl8 Basis0OxMAX (2.1473751837 - x,0)

Basisl?9 BasisO+*MAX (x — 2.3238101869,0)
Basis20 Basis0Ox*MAX (2.3238101869 - x,0)

The first basis function, Basis0 = 1, is the intercept. The second basis function, Basis1, is x — 1.7864668056
when x > 1.7864668056 and 0 otherwise (where k = 1.7864668056 is a knot). The third basis function,
Basis2, is 1.7864668056 — x when x < 1.7864668056 and 0 otherwise. Other basis functions are constructed
in a similar manner by using other knot values. The knots are automatically chosen. These bases are
constructed by using truncated power functions.

) X" 1 x>0
+Tl0 - ox<o0
(x —k)y = max(x — k,0)
The exponent, n, is 1 for the piecewise linear splines that PROC ADAPTIVEREG uses.

3

Figure 4 displays the parameter estimates and the selected basis variables.

Figure 4 Parameter Estimates

Regression Spline Model after Backward Selection
Name Coefficient Parent Variable Knot
BasisO 1.2339 Intercept
Basis2 -0.5857 BasisO b3 1.7865
Basis3 0.3277 BasisO x 4.1447
Basis7 0.3681 BasisO X 3.3424
Basis?9 0.8970 BasisO b3 4.7489
Basisll -0.5508 BasisO x 2.5061
Basisl5 -0.5206 BasisO X 1.3345

The following steps create and display the basis functions as a function of x. The coding details of these
steps are not important. Briefly, PROC ADAPTIVEREG creates an output data set that contains the basis
information from Figure 3 (which provides the information needed to write the statements that construct the
basis functions), the DATA _NULL_ step writes assignment statements and a LABEL statement to the file

code.sas to create the basis functions, the next DATA step creates those basis functions from the SAS® data
set x and the generated code, and the PROC SGPLOT steps display in Figure 5 and Figure 6 the basis
functions as a functions of x.

proc adaptivereg data=x details=bases;
ods output bases=b;
model y = x;

run;

data _null_;
set b end=eof;
file 'code.sas';
put name '= ' transformation ';'; /* Basis functions */
if eof then do; /* LABEL statement x/
put 'label';
do i =1 to 20;
put +6 'Basis' i 2. -L ' ="' i 2. '"';
end;
put +6 ';"';
end;
run;

data bases;

set x;

%$inc 'code.sas';
run;

proc sort data=bases; by x; run;

proc sgplot data=bases;
$macro s; %do i = 1 %$to 19 %by 2; series y=basis&i x=x; %end; %mend; $%s
yaxis label='Bases';

run;

proc sgplot data=bases;
$macro s; %do i = 2 %to 20 %by 2; series y=basis&i x=x; %end; %mend; %s
yaxis label='Bases';

run;

Figure 5: Odd-Numbered Basis Variables Figure 6: Even-Numbered Basis Variables

Bases
Bases
N

1 2 3 4 5 1 2 3 4 5
X X
1 3 5 7 2 4 6 8
9 11 13 15 10 12 14 16
17 19 18 20

The odd-numbered basis functions in Figure 5 capture the change in the fit function as x progresses beyond
each knot value and make no contribution to the predicted values when x is less than the knot. The
even-numbered basis functions in Figure 6 capture the change in the fit function as x decreases from each
knot value and make no contribution to the predicted values when x is greater than the knot. Basis function
Jj is redundant given variable x and basis function j — 1 for every even j (2 is redundant given 1, and so
on). Similarly, basis function j is redundant given variable x and basis function j + 1 for every odd j (1 is
redundant given 2, and so on). Piecewise linear splines (such as those used in the TRANSREG procedure)
are traditionally defined based on the variable x and the odd-numbered basis functions. Since the variable x
is not part of the model, at least one odd-numbered basis function and one even-numbered basis function
are required. In this case, there is one even-numbered basis function and the rest are odd.

Model selection in PROC ADAPTIVEREG consists of two phases:

1. The first phase is forward selection, in which pairs of corresponding basis functions are selected and
added to the model (basis functions j and j + 1 for odd j). The pair that results in the largest reduction
in the lack of fit (LOF) criterion (which is a function of the residual sum of squares) is added. Selection
stops when the LOF criterion change is minimal or the maximum number of basis functions has been
selected. This intermediate model overfits the data and probably does not have good power to predict
new observations.

2. The next phase is backward elimination of a single basis function in each step. PROC ADAPTIVEREG
chooses the basis function whose elimination minimizes the generalized cross validation criterion
(GCV), which is a function of the residual sum of squares. Backward elimination progresses until all
terms except the intercept are eliminated, and then the model with the minimum GCV is chosen.

The progression of the backward elimination phase is displayed in Figure 7. The GCV criterion provides
an estimate of how well the model will perform with new data. The final model should have good predictive
properties. The table in Figure 4 and the graph in Figure 7 show that the final model consists of bases 2, 3,
7,9, 11, and 15 in addition to the intercept. Figure 7 shows that the backward elimination step eliminates
basis functions 1, 19, 17, 13, and 5. Fit diagnostics are displayed in Figure 8.

Figure 7: Selection Plot Figure 8: Diagnostics Panel

Backward Selection Progression of Model Fit Criteria for y Fit Diagnostics for y

300

200

Sum of Squared Error
Residual
Percent
Residual

5 o
°

Selected Step -10 -05 00 05 10 -056 -024 008 04 -2 0 2
0.6 Predicted Value Residual Quantile

Fit-Mean Residual

0.4 1.0
1.0
02 05 / 05
00 > 00
00 / 05
05 10
R N N N T T T T 40 e

’ %,& KN % 15 05 05 15
00 04 08 00 04 08 Predicted Value
Basis Sequence Proportion Less

GCV

Observations 500
GCV 00378
GCVR-Square 0938
Effective DF 13
R-Square 09409
Adjusted R-Square 0.9402
Mean Square Error 0.0363

The following steps use the information in Figure 3 and just the selected basis functions to regenerate the
chosen model:

data FinalModel;
set x;
Basis2 = max(1.7864668056 - x, 0);

Basis3 = max(x - 4.144699182, 0);
Basis7 = max(x - 3.3424134209, 0);
Basis9 = max(x - 4.7488998378, 0);

Basisll = max(x -
Basisl5 = max(x -
run;

.5060771599, 0);
.3344822118, 0);

R NAMW

proc reg;
model y = basis:;

run; quit;
The parameter estimates and R square (not shown) that are produced by the REG procedure in the preceding
step match those produced by PROC ADAPTIVEREG. However, you cannot easily duplicate the selection
method that is used by PROC ADAPTIVEREG. For example, the following step uses the GLMSELECT
procedure to find a model that is similar to the PROC ADAPTIVEREG model, but PROC GLMSELECT does
not select Basis9.

proc glmselect data=bases (drop=basisO0);
model y = basis: / selection=backward;
run;

The PROC ADAPTIVEREG R square (0.9409) and the PROC GLMSELECT R square (0.9402) are almost
identical.

You can score new data most easily by using a SCORE statement in PROC ADAPTIVEREG. For example:

data NewData;
do x =1 to 5 by 0.1;
output;
end;
run;

proc adaptivereg data=x details=bases;
model y = x;
score data=newdata out=scores;

run;

The following step displays the resulting scores in Figure 9:

proc sgplot data=scores;
series x=x y=Pred;
run;

Figure 9: Scores Created by Using the SCORE State-
ment

o o
o [

Predicted Value of y
)
a

Figure 10: Scores Created Manually

1.0

05

0.0

Yhat

-1.0

These steps show the principles that are involved in scoring by creating ODS output data sets from the basis
information and the parameter estimates tables and then combining them to generate scoring code:

proc adaptivereg data=x details=bases;
ods output bases=b bwdparams=p;
model y = x;

run;
proc sort data=b; by name; run;
proc sort data=p; by name; run;
data _null_;
merge b p(in=p); by name; if p;
file 'score.sas';
if n_ =1 then do; put 'BasisO = 1;';
put 'vhat + ' coefficient bestl6. ' x
run;

data Scores (drop=basis:);
set NewData;
%$inc 'score.sas';

run;

put

'Yhat = 0;'; end;
transformation +(-1) ';';

The basis information and parameter estimates tables are merged, and only the basis functions that are
selected (those that appear in the parameter estimates table) are used to create the scoring code. The DATA

NULL step generates the following scoring code:

BasisO0 = 1;

Yhat = 0;

yhat + 1.23385787751513 * 1;

yvhat + -0.550771231335 * BasisO*MAX (x
yhat + -0.5206207092575 * BasisOxMAX (x
yvhat + -0.5856576485722 * BasisOxMAX(1
yhat + 0.32765205975946 *x BasisOxMAX(x -
yhat + 0.36810578081331 * BasisOxMAX (x
yhat + 0.89695230303698 * BasisOxMAX (x

- 2.5060771599,0);
- 1.3344822118,0);
.7864668056 - x,0);

4.144699182,0);

- 3.3424134209,0);
- 4.7488998378,0);

The DATA SCORES step uses these statements to score new data. Most statements are SAS sum
statements.? The following step displays the results in Figure 10:

proc sgplot data=scores;
series x=x y=yhat;
run;

The graphs in Figure 9 and Figure 10 are identical.

AUTOMOBILE MILES PER GALLON EXAMPLE

The preceding example shows how you can use PROC ADAPTIVEREG to find a nonlinear fit function by
fitting a simple (nonparametric) regression model. This example shows how to fit a model with a quantitative
dependent variable (automobile miles per gallon or MPG) and multiple independent variables (attributes
of the automobile and its engine). The independent variables include both quantitative and categorical
variables. This example also shows how PROC ADAPTIVEREG creates the basis functions when some
data are missing. The following steps read the MPG data set from the University of California at Irvine (UCI)
Machine Learning Data Repository (Asuncion and Newman 2007):

title 'Automobile MPG Study'’;
%$let base = http://archive.ics.uci.edu/ml/machine-learning-databases;
proc format;
invalue q '?' = .;
run;

data AutoMPG;
infile "&base/auto-mpg/auto-mpg.data" device=url expandtabs lrecl=120 pad;
input MPG Cylinders Displacement HorsePower :q. Weight Acceleration Year Origin Name $50.;
name = propcase (left (tranwrd(name, '"', '')));

run;

The macro variable base enables you to construct a long URL from components that can be easily displayed
on a printed page. The Q informat enables SAS to read data in which missing values are indicated by a
question mark.

The following step fits an adaptive regression model for MPG:

proc adaptivereg data=autompg plots=all details=bases;
class cylinders year origin;
model mpg = cylinders displacement horsepower
weight acceleration year origin / additive;
run;

The variables Cylinders, Year, and Origin are classification variables; the other variables are continuous.
You can use the ADDITIVE option in the MODEL statement to request an additive model. The basis
information is displayed in Figure 11. As in the previous example, there is an intercept (Basis0). For
continuous variables, there are terms of the form max(v — k, 0) and max(k — v, 0) for variable v and knot .
The variable HorsePower has missing values, which are accounted for in Basis3 and Basis4. Basis3 is 1
when HorsePower is not missing and 0 otherwise. Basis4 is the reverse of Basis3 and enables the model
to estimate the missing value. Basis5 and Basis6 can have an effect when HorsePower is not missing.
This is illustrated for three observations in the following table:

HorsePower Basis3 Basis4 Basisb Basis6
95 1 0 (95—158); (158— 95),

. 0 1 0 0
100 1 0 (100—158); (158 —100),

2“yhat +” is equivalent to “yhat = yhat +” and also retains yhat (which is not important in this example).

8

If the variable Year is treated as a classification variable in an ordinary linear model with a less-than-full-rank
binary coding, then 13 binary variables are created, one for each of the 13 values of the variable Year.
Basis7 is the sum of those binary variables for the values of the variable Year: 80, 82, 81, 79, 78, 77,
73, and 72. PROC ADAPTIVEREG automatically determines how to combine the categories. Basis6 is
nonzero only when HorsePower is not missing. In the adaptive regression model, this dependence is part
of handling missing values and is not considered to be a departure from the main-effects-only model that is
specified by the ADDITIVE option. Basis19 and Basis20 are binary variables for describing three-cylinder
engines (Basis19) or not (Basis20). The final model is built from the 21 basis functions that are displayed in
Figure 11.

Figure 11 Basis Information

Automobile MPG Study
The ADAPTIVEREG Procedure
Basis Information
Name Transformation

BasisO 1

Basisl BasisO*MAX (Weight - 3139,0)

Basis2 BasisOxMAX (3139 - Weight, 0)

Basis3 BasisO*NOT (MISSING (HorsePower))

Basis4 Basis0O+*MISSING (HorsePower)

Basis5 Basis3xMAX (HorsePower - 102,0)

Basisé6 Basis3*MAX (102 - HorsePower, 0)

Basis7 BasisOx (Year = 80 OR Year = 82 OR Year = 81 OR Year = 79 OR Year = 78
OR Year = 77 OR Year = 73 OR Year = 72)

Basis8 BasisOx*NOT (Year = 80 OR Year = 82 OR Year = 81 OR Year = 79 OR Year =
78 OR Year = 77 OR Year = 73 OR Year = 72)

Basis?9 BasisO*MAX (Displacement - 85, 0)
Basisl0 BasisOxMAX(85 - Displacement, 0)
Basisll BasisOxMAX(Displacement - 97, 0)
Basisl2 BasisOx*MAX(97 - Displacement, 0)
Basisl3 BasisOx*MAX (Acceleration - 21,0)
Basisl4 BasisOxMAX(21 - Acceleration,0)
Basisl5 Basis3x*MAX(Displacement - 105,0)
Basisl6é Basis3xMAX(105 - Displacement, 0)

Basisl7 BasisOx (Origin = 3)
Basisl8 BasisOxNOT (Origin = 3)
Basisl9 BasisOx (Cylinders = 3)
Basis20 BasisO0xNOT (Cylinders = 3)

The final parameter estimates, chosen basis functions, and levels for basis functions that are constructed
from categorical variables are displayed in Figure 12.

Figure 12 Parameter Estimates

Regression Spline Model after Backward Selection
Name Coefficient Parent Variable Knot Levels
BasisO 29.3788 Intercept
Basis2 0.003577 BasisO Weight 3139.00
Basis3 -4.0349 BasisO HorsePower .
Basis5 -0.05079 Basis3 HorsePower 102.00
Basisé6 0.1925 Basis3 HorsePower 102.00
Basis7 2.6665 BasisO Year 10 12 11 9 8 7 3 2
Basis9 -0.6600 BasisO Displacement 85.0000
Basisll 0.6394 BasisO Displacement 97.0000
Basisl3 1.6047 BasisO Acceleration 21.0000
Basisl4 0.5071 BasisO Acceleration 21.0000
Basislé6 -0.2960 Basis3 Displacement 105.00
Basisl7 1.7761 BasisO Origin 2
Basisl9 -7.0066 BasisO Cylinders 0

The component panels are displayed in Figure 13 and Figure 14. These panels show the transformations
of the variables that are used in model fitting. The function of the variable Cylinders is binary (3 cylinders
versus 4, 5, 6, and 8 cylinders). The function of the variable Displacement is nonlinear, and the majority of
the nonlinearity is in the smaller values. The function of the variable HorsePower has two linear components
with a knot at 100. The function of the variable Weight is linear over the range 0 to 3139 and 0 outside that
range. (This transformation is based on one of the two basis functions for the variable Weight and knot
3139.) The function of the variable Acceleration has two linear components with a knot at 21. The functions
of the variables Year and Origin are binary.

Figure 13: Component Panel 1 Figure 14: Component Panel 2

Components Components

0 ° ° o ° -6

f(Cylinders)
f(Acceleration)

f(Displacement)

°
0
3 4 5 6 7 8 100 200 300 400 10 15 20 25
Cylinders Displacement Acceleration

o o o000 o0 o0 °
25

20
15

f(Weight)
f(Year)
f(Origin)

1.0

f(HorsePower)

0.5

o -~ N w &

000 o oo o 0.0-|0 °
50 100 150 200 2000 3000 4000 5000 70 75 80 1 2 3
HorsePower Weight Year Origin

Figure 15 displays the variable importance information. The importance of each variable is the square root of
the GCV value from a submodel from which all basis functions that involve that variable have been removed,
minus the square root of the GCV value for the selected model, then scaled so that the largest importance
value is 100. The variables HorsePower and Year are the most important in predicting MPG.

10

Figure 15 Variable Importance Table

Variable Importance

Number of
Variable Bases Importance
HorsePower 2 100.00
Year 1 89.34
Displacement 3 49.44
Acceleration 2 34.17
Origin 1 13.75
Weight 1 12.05
Cylinders 1 10.73

MEDIAN HOME VALUES EXAMPLE

This example shows you how to fit a nonadditive model. When you do not specify the ADDITIVE option,
PROC ADAPTIVEREG automatically builds two-way interactions into the model. All variables in this example
are quantitative. The following step reads the median home values data set from the UCI Machine Learning

Data Repository (Asuncion and Newman 2007):

title 'Median Home Values';
%let base = http://archive.ics.uci.edu/ml/machine-learning-databases;

data Housing(drop=_);

infile "&base/housing/housing.data" device=url expandtabs lrecl=120 pad;

input Crime Zone Industrial Charles Nox AvgRooms Age DistanceCenter HwyAccess
Tax PTRatio _

label Crime

Zone = 'Proportion of residential land zoned for lots over 25,000 sq.ft.
Industrial = 'Proportion of nonretail business acres per town'
Charles = 'Charles River (1 if tract bounds river; 0 otherwise)'
Nox = 'Nitric oxides concentration (parts per 10 million)'
AvgRooms = 'Average number of rooms per dwelling'

Age = 'Proportion of owner-occupied units built prior to 1940’
DistanceCenter = 'Weighted distances to five Boston employment centers'
HwyAccess = 'Index of accessibility to radial highways'

Tax = 'Full-value property-tax rate per $10,000'

PTRatio = 'Pupil-teacher ratio by town'

Lstat = 'Percent lower status of the population'

MedianValue = 'Median value of owner-occupied homes in $1000''s’';

run;

LStat MedianValue;
= 'Per capita crime rate by town'

The following step fits the adaptive regression model:

proc adaptivereg data=housing details=bases plots=all;

model medianvalue
run;

= crime —-- lstat;

11

v

The basis information is displayed in Figure 16.

Figure 16 Basis Information

Median Home Values
The ADAPTIVEREG Procedure

Basis Information
Name Transformation
BasisO 1
Basisl BasisOxMAX (LStat - 5.99,0)
Basis2 BasisOxMAX (5.99 - Lstat,0)
Basis3 BasisO*MAX (AvgRooms - 6.425,0)
Basis4 BasisOxMAX (6.425 - AvgRooms, 0)
Basis5 Basis0OxMAX (DistanceCenter - 1.4118,0)
Basisé6 BasisOxMAX (1.4118 - DistanceCenter, 0)
Basis7 Basis3xMAX (PTRatio - 19,0)
Basis8 Basis3*MAX (19 - PTRatio, 0)
Basis?9 BasislxMAX (Nox - 0.655,0)
BasislO Basisl*xMAX (0.655 - Nox,0)
Basisll Basis2xMAX (Tax - 304,0)
Basisl2 Basis2*xMAX (304 - Tax,0)
Basisl3 Basis6xMAX (AvgRooms - 6.219,0)
Basisl4 Basis6xMAX (6.219 - AvgRooms, 0)
Basisl5 Basis4xMAX (LStat - 19.77,0)
Basislé6 Basis4 xMAX (19.77 - LStat, 0)
Basisl?7 BasisOx*MAX (Crime - 0.0795,0)
BasislS8 BasisOxMAX (0.0795 - Crime, 0)
Basisl?9 Basisl7+MAX (AvgRooms - 7.82,0)
Basis20 Basisl7xMAX (7.82 - AvgRooms, 0)
Basis2l BasisOxMAX (PTRatio - 19,0)
Basis22 BasisOxMAX (19 - PTRatio, 0)
Basis23 Basis4*MAX (HwyAccess -— 2,0)
Basis24 Basis4 xMAX (2 - HwyAccess,0)

Bases consist of the intercept (Basis0), truncated power functions (Basis1 through Basis6, Basis17, Ba-
sis18, Basis21, and Basis22), and additional terms. These additional terms consist of two-way interactions
between a previously defined truncated power function and a newly defined truncated power function.
Examples include Basis7 = Basis3 x (PTRatio — 19); and Basis24 = Basis4 x (2 — HwyAccess).. This
model is not additive. Some predictors are interactions of truncated power functions. By default, with m
predictor variables, there are a maximum of 2 x m + 1 = 25 basis functions. You can change the number of
basis functions by specifying the MAXBASIS= option. By default, the maximum order of interactions is 2.
You can change the maximum order by specifying the MAXORDER-= option. The following step illustrates
the MAXORDER= option:

proc adaptivereg data=housing details=bases;
model medianvalue = crime -- lstat / maxbasis=100 maxorder=3;
run;

The results of this step are not shown. However, the basis functions consist of an intercept, truncated power
functions (for example, Basis19 = (0.0795 — Crime).), two-way products of truncated power functions
(for example, Basis23 = Basis19 x (AvgRooms — 8.04).), and three-way products of truncated power
functions (for example, Basis51 = Basis23 x (Nox — 0.55),.). Compared to the additive model (not shown),
the nonadditive model has a smaller GCV value. For highly structured data, increasing model complexity by
adding interactions might help improve predictive power.

12

LOGISTIC REGRESSION JUNK E-MAIL EXAMPLE

The preceding examples result in a final linear model after basis creation and selection. This example shows
how you can use PROC ADAPTIVEREG to fit nonlinear models by specifying a nonnormal distribution. This
example fits a logistic regression model by specifying a binomial distribution.

This example models whether an e-mail is junk or not. The quantitative predictor variables record the
frequencies of some common words and characters in e-mails, and they record lengths of uninterrupted
sequences of capital letters. The data are available at the UCI Machine Learning repository (Asuncion and
Newman 2007). The following steps read and analyze the data:

title 'Junk Email Classification’';
proc format; value junk 1 = 'Junk' 0 = 'Good'; run;

$let base = http://archive.ics.uci.edu/ml/machine-learning-databases;
data junkemail;
infile "&base/spambase/spambase.data" device=url dsd dlm=',';
input Make Address All _3d Our Over Remove Internet Order Mail Receive
Will People Report Addresses Free Business Email You Credit Your Font
_000 Money HP HPL George _650 Lab Labs Telnet _857 Data _415 _85
Technology _1999 Parts PM Direct CS Meeting Original Project Re Edu
Table Conference Semicol Paren Bracket Bang Dollar Pound Cap_Avg
Cap_Long Cap_Total Class;
format class junk.;
run;

proc adaptivereg data=junkemail seed=10359 details=bases;
class class;
model class = make —-- cap_total / additive distribution=binomial;
partition fraction(test=0.333);
output out=JunkOut p(ilink);
run;

The dependent variable is a binary classification variable that indicates junk e-mail (1) or not (0). Most of the
115 basis variables (not displayed) are pairs that are constructed from a predictor variable and a single knot.
A few have two knots. The final model has 90 basis functions and involves most of the predictor variables.

The variable importances are displayed in Figure 17. The variables George and HP (which contain the
number of times 'George' and 'HP' appear in the e-mail, respectively) are important because the e-mail
recipient is George Forman from HP.

13

Figure 17 Variable Importance Table

The ADAPTIVEREG Procedure
Variable Importance
Number of
Variable Bases Importance
George 1 100.00
HP 2 66.92
Remove 2 47 .54
Edu 3 40.86
Bang 3 35.63
Cap_Long 3 34.78
Meeting 3 33.10
Free 3 30.44
Business 5 29.32
_1999 2 27.27
Semicol 2 24 .57
Dollar 3 20.67
Over 3 19.73
Money 3 18.09
Our 2 18.02
Cap_Avg 4 16.68
Cap_Total 3 13.77
Re 2 13.71
Internet 4 13.41
Pound 2 8.00
Receive 2 6.99
_000 1 6.77
Paren 2 5.88
Project 1 5.71
PM 1 5.34
Will 2 4.50
Addresses 2 4.34
Technology 2 4.15
Conference 1 3.75
Order 2 3.72
Address 2 3.52
Parts 2 3.46
Cs 1 3.42
Report 2 2.55
_650 1 2.04
Direct 1 1.70
Email 2 1.66
You 2 1.43
Telnet 2 1.21

In this example, the PARTITION statement randomly selects two-thirds of the observations to fit the model
and uses the remaining one-third to test the model. The explicit random number seed that is specified in the
PROC ADAPTIVEREG statement ensures that you can reproduce the same results in subsequent runs. The
P(ILINK) option outputs the predicted probabilities from the logistic model to the SAS data set JunkOut.

An e-mail is classified as junk if the predicted modeled probability of event (Class = ‘0’, which classifies the
e-mail as not junk) is less than 0.5.

14

The following statements evaluate the classification results and create Figure 18:

data test;
set junkout (where=(_ROLE_ = 'TEST'));
Prediction = (pred < 0.5);
format class prediction junk.;

run;

proc freq data=test;
tables class * prediction / norow nocol;
run;

Figure 18 Test Data Set Classification Errors, Full Model

The FREQ Procedure
Frequency Table of Class by Prediction
Percent
Prediction

Class Good Junk Total

Good 885 59 944
56.26 3.75 60.01

Junk 37 592 629
2.35 37.64 39.99

Total 922 651 1573
58.61 41.39 | 100.00

Compared to results from other statistical learning algorithms (Hastie, Tibshirani, and Friedman 2001),
the PROC ADAPTIVEREG results are competitive. Exact comparisons of the error rates between the two
sources are not meaningful with different random samples of the data. Also, if you specify different random
number seeds, you will get different results. However, you can compare the results if you have the same
sample. Hastie, Tibshirani, and Friedman (2001) provide a binary variable that shows which observations
they used for training (Test = 0) and which they used for testing (Test = 1). The following steps read the
Hastie, Tibshirani, and Friedman (2001) Test variable and merge it with the JunkEmail data set:

%let base = http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets;
data Test;

infile "&base/spam.traintest" device=url dsd;

input Test;
run;

data junkemail2;
merge test junkemail;
run;

The following step fits the model by using the same training and test set that Hastie, Tibshirani, and Friedman
(2001) used:

proc adaptivereg data=junkemail2 details=bases;
class class;
model class = make —-- cap_total / additive distribution=binomial;
partition rolevar=test (test='l' train='0");
output out=JunkOut p(ilink);
run;

The option ROLEVAR=TEST(TEST="1" TRAIN='0’) names the Test variable as the variable that contains
testing and training information, and it specifies the values for each role. The results of this step are not
shown; just the output data set is used. The JunkOut data set is processed as before to evaluate the
prediction of the test observations.

15

The following steps produce Figure 19:

data test;
set junkout (where=(_ROLE_ =
Prediction = (pred < 0.5);
format class prediction junk.;
run;

'TEST')) ;

proc freq data=test;
tables class * prediction / norow nocol;
run;

Figure 19 Test Data Set Classification Errors, Full Model

The FREQ Procedure
Frequency Table of Class by Prediction
Percent
Prediction
Class Good Junk Total
Good 898 43 941
58.46 2.80 61.26
Junk 35 560 595
2.28 36.46 38.74
Total 933 603 1536
60.74 39.26 | 100.00

Hastie, Tibshirani, and Friedman (2001) report the following results:

Prediction
Class Good Junk
Good 585% 2.5%
Junk 2.7% 36.2%

The two sets of results are quite similar.

PROC ADAPTIVEREG uses 115 as the maximum number of basis functions in this example. You can specify
a smaller number in the MODEL statement. For example, the following step specifies MAXBASIS=61:

proc adaptivereg data=junkemail seed=10359 details=bases;
class class;
model class = make —- cap_total / additive distribution=binomial maxbasis=61;
partition fraction(test=0.333);
output out=JunkOut2 p(ilink);
run;

data test;
set junkout2 (where=(_ROLE_ =
Prediction = (pred < 0.5);
format class prediction junk.;
run;

'TEST'));

proc freq data=test;
tables class * prediction / norow nocol;
run;

16

Figure 20 displays the classification results.

Figure 20 Test Data Set Classification Errors, Reduced Model

The FREQ Procedure
Frequency Table of Class by Prediction
Percent
Prediction

Class Good Junk Total

Good 898 46 944
57.09 2.92 60.01

Junk 37 592 629
2.35 37.64 39.99

Total 935 638 1573
59.44 40.56 | 100.00

When you specify a smaller number of basis functions, you might get a simpler model that runs more quickly
and has fewer opportunities for overfitting. In this case, the prediction results for the reduced model are in
the range of results that are reported previously.

MACKEREL EGG DENSITY EXAMPLE

This example demonstrates how you can use PROC ADAPTIVEREG to fit a nonparametric Poisson regres-
sion model. The data are a subset of the 1992 mackerel egg survey that was conducted over the Porcupine
Bank west of Ireland (Bowman and Azzalini 1997). Scientists took samples by hauling a net up from the
deep sea. They counted the number of spawned mackerel eggs and used other geographic information to
estimate the sizes and distributions of spawning stocks. The following steps read the data from the SAS
sample library entry for the fourth PROC ADAPTIVEREG example and create the SAS data set Mackerel:

data _null_;
infile 'http://support.sas.com/documentation/onlinedoc/stat/ex_code/121/adptex4.html’
device=url;
file 'junk.junk';
retain pre O;

input;

if pre then put _infile_;

if _infile eq ';' then pre = 0;

if index(_infile_, '<pre>') then pre = 1;
run;

%inc 'junk.junk' / nosource;

The SAS statements that create the SAS data set are embedded in a Web page. The statements begin after
the HTML preformatted tag (“<pre>") and extend through a line that consists of a single semicolon. This
data set contains 634 observations and five variables. The response variable Egg_Count is the number of
mackerel eggs that are collected from each sampling net. The variables Longitude and Latitude provide
the location of each sample station. The variable Net_Area is the area of the sampling net in square meters.
The variable Depth records the sea bed depth in meters at the sampling location. The variable Distance is
the distance in geographic degrees from the sample location to the continental shelf edge. You can use the
CONTENTS and PRINT procedures to learn more about this data set.

17

Mackerel egg density is defined as

density = E(count) / net_area
This equation is equivalent to a Poisson regression with the response variable Egg_Count, an offset variable
log(net_area), and other covariates.
The following statements produce a plot of the mackerel egg density with respect to the sampling station
locations:

data plotdata;
set mackerel;
density = egg_count / net_area;
run;
%let off0 = offsetmin=0 offsetmax=0 linearopts=(thresholdmin=0 thresholdmax=0);
proc template;
define statgraph surface;
dynamic _title _z;
begingraph / designwidth=defaultDesignHeight;
entrytitle _title;
layout overlay / xaxisopts=(&off0) yaxisopts=(&of£f0);
contourplotparm z=_z y=latitude x=longitude / gridded=FALSE;
endlayout;
endgraph;
end;
run;

proc sgrender data=plotdata template=surface;
dynamic _title='Mackerel Egg Density' _z='density';
run;
Figure 21 displays the mackerel egg density in the sampling area. The black hole in the upper right corner is
caused by missing data in that area.

Figure 21: Mackerel Egg Density Figure 22: Predicted Mackerel Egg Density

Mackerel Egg Density Predicted Mackerel Egg Density

200

Latitude
Latitude

5.0 25 -12.5 -10.0 7.5 -5.0 -25
Longitude

-12.5 -10.0 75
Longitude

In this example, the dependent variable is mackerel egg count, the independent variables are the geographical
information about each of the sampling stations, and the logarithm of the sampling area is the offset variable.

18

The following statements use the DIST=POISSON option to fit the nonparametric Poisson regression model:

data mack2;

set mackerel;

log_net_area = log(net_area);
run;

proc adaptivereg data=mack2;
model egg_count = longitude latitude depth distance
/ offset=log_net_area dist=poisson;
output out=mackerelout p(ilink);
run;

Figure 23 lists basic model information such as the offset variable, distribution, and link function.

Figure 23 Model Information

Mackerel Egg Density Study
The ADAPTIVEREG Procedure

Model Information

Data Set WORK . MACK2
Response Variable Egg_Count
Offset Variable log_net_area
Distribution Poisson

Link Function Log

Figure 24 lists fit statistics for the final model.

Figure 24 Fit Statistics

Fit Statistics

GCV 6.94340
GCV R-Square 0.79204
Effective Degrees of Freedom 29
Log Likelihood -2777.21279
Deviance 4008.60601

The final model consists of basis functions and interactions between basis functions for three geographic
variables. Figure 25 lists seven functional components of the final model, including three one-way spline
transformations and four two-way spline interactions.

19

Figure 25 ANOVA Decomposition

ANOVA Decomposition
Functional Number of ———Change If Omitted---
Component Bases DF Lack of Fit GCV
Longitude 3 6 2035.77 3.3216
Depth 1 2 420.59 0.6780
Latitude 1 2 265.05 0.4104
Longitude Latitude 2 4 199.17 0.2496
Depth Distance 3 6 552.75 0.8030
Depth Latitude 2 4 680.45 1.0723
Depth Longitude 2 4 415.717 0.6198

The “Variable Importance” table in Figure 26 displays the relative variable importance among the four
variables. Longitude is the most important variable.

Figure 26 Variable Importance

Variable Importance
Number of
Variable Bases Importance
Longitude 7 100.00
Depth 8 30.26
Latitude 5 18.93
Distance 3 8.56

The following steps create and display in Figure 22 the predicted mackerel egg density over the spawning
area:

data mackplot;

set mackerelout;

pred = pred / net_area;
run;

proc sgrender data=mackplot template=surface;
dynamic _title='Predicted Mackerel Egg Density'
_z='pred';
run;

The graphs in Figure 21 and Figure 22 are quite similar.

CONCLUSIONS

The multivariate adaptive regression spline method of Friedman (1991), which is implemented in PROC
ADAPTIVEREG, produces parsimonious models that do not overfit the data and thus have good predictive
power. PROC ADAPTIVEREG can fit both linear and nonlinear nonparametric regression models. SAS/STAT
software offers various tools for nonparametric regression, including the GAM, LOESS, and TPSPLINE
procedures. Typical nonparametric regression methods involve a large number of parameters in order to
capture nonlinear trends in data. Thus, the nonparametric model space is much larger than the parametric
model space. The LOESS and TPSPLINE procedures are limited to problems in low dimensions. PROC
GAM fits generalized additive models and can handle larger data sets than PROC LOESS and PROC
TPSPLINE can handle. However, the additivity assumption ignores variable interactions in high-dimensional
space, and convergence for nonnormal distributions is not guaranteed. PROC ADAPTIVEREG can fit models

20

that these other procedures cannot fit. PROC ADAPTIVEREG is easy to use because it automatically selects
the knots, creates the basis functions, performs the initial forward selection, and the final backward selection
to generate the final model. Simple options enable you to train, test, validate, score, and predict new data.

SOFTWARE CREDITS

The ADAPTIVEREG procedure was designed and programmed by Weijie Cai, Principal Research Statistician
at SAS.

ACKNOWLEDGMENTS

The authors are grateful to Anne Baxter, Funda Giines, and Tim Arnold of SAS Institute Inc. for their valuable
assistance in the preparation of this paper.

CONTACT INFORMATION

Warren F. Kuhfeld Weijie Cai

SAS Institute Inc. SAS Institute Inc.

S6018 SAS Campus Drive S6048 SAS Campus Drive
Cary, NC, 27513 Cary, NC, 27513

(919) 531-7922 (919) 531-0359
Warren.Kuhfeld@sas.com Weijie.Cai@sas.com
REFERENCES

Asuncion, A. and Newman, D. J. (2007), “UCI Machine Learning Repository,” http://archive.ics.uci.
edu/ml/.

Bowman, A. W. and Azzalini, A. (1997), Applied Smoothing Techniques for Data Analysis, New York: Oxford
University Press.

Buja, A., Duffy, D., Hastie, T. J., and Tibshirani, R. (1991), “Discussion: Multivariate Adaptive Regression
Splines,” Annals of Statistics, 19, 93—-99.

Friedman, J. H. (1991), “Multivariate Adaptive Regression Splines,” Annals of Statistics, 19, 1-67.

Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001), The Elements of Statistical Learning, New York:
Springer-Verlag.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

21

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

