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ABSTRACT  

This paper expands upon Bell et al.’s (2013) “A Multilevel Model Primer Using SAS® PROC MIXED” in which we 
presented an overview of estimating two and three-level linear models via PROC MIXED. However, in our earlier 
paper, we, for the most part, relied on simple options available in PROC MIXED.  In this paper, we present a more 
advanced look at common PROC MIXED options used in the analysis of social and behavioral science data, as well 
introduce users to two different SAS macros previously developed for use with PROC MIXED: one to examine model 
fit (MIXED_FIT; Ene, Smiley, & Bell, 2012) and the other to examine distributional assumptions (MIXED_DX; Bell et 
al., 2010).  Specific statistical options presented in the current paper include (a) PROC MIXED statement options for 
estimating statistical significance of variance estimates (COVTEST, including problems with using this option) and 
estimation methods (METHOD =), (b) MODEL statement option for degrees of freedom estimation (DDFM =), and (c) 
RANDOM statement option for specifying the variance/covariance structure to be used (TYPE =).  Given the 
importance of examining model fit, we also present methods for estimating changes in model fit through an illustration 
of the SAS macro MIXED_FIT. Likewise, the SAS macro MIXED_DX is introduced to remind users to examine 
distributional assumptions associated with two-level linear models, including normality and homogeneity of level-1 
and level-2 residuals.  To maintain continuity with the 2013 introductory PROC MIXED paper, thus, providing users 
with a set of comprehensive guides for estimating multilevel models using PROC MIXED, we use the same real world 
data sources that we used in our earlier primer paper (Bell et al., 2013).  
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INTRODUCTION  

 Hierarchically organized data are commonplace in educational, clinical, and other research settings. Thus, it is 
imperative that researchers account for each level of nesting in any data set.  Luckily, SAS has several procedures 
that allow researchers to estimate multilevel models, thus, accounting for the nested structure of the data, when 
necessary.  When dealing with linear outcomes, PROC MIXED can be used to account for numerous levels of 
nesting within hierarchically organized data.  Whereas the MIXED procedure makes estimating these types of models 
appear simple, as with most procedures in SAS, there are several options that researchers must consider when 
specifying his/her model. At the 2013 SAS Global Forum in San Francisco, Bell, Ene, Smiley, and Schoeneberger 
presented the logic behind multilevel models as well as some basic demonstrations on how to use PROC MIXED to 
estimate two- and three-level organizational models as well as two-level growth models. The live-streamed 
presentation can be found here: http://www.livestream.com/sasglobalforumpapers/video?clipId=pla_4e1c2a5f-9217-
4e2f-af58-63caf9ac29c9&utm_source=lslibrary&utm_medium=ui-thumb 
 
Although their paper was quite informative for the beginning PROC MIXED user, their examples did not include 
details about option selections specified on their PROC MIXED, MODEL, and RANDOM statements.  For example, 
although they show users how to request models be estimated using maximum likelihood through the METHOD = ML 
option on the PROC MIXED statement, they did not include a detailed discussion of the differences between 
METHOD = ML and METHOD = REML. Hence, the need for the current paper; by building from the examples in Bell 
et al. (2013), the current paper presents users detailed discussions and illustrations about (a) PROC MIXED 
statement options for estimating statistical significance of variance estimates (COVTEST, including problems with 
using this option) and estimation methods (METHOD =), (b) MODEL statement option for degrees of freedom 
estimation (DDFM =), and (c) RANDOM statement option for specifying the variance/covariance structure to be used 
(TYPE =). In addition, given the importance of examining model fit we also present methods for estimating changes in 
model fit through an illustration of the SAS macro MIXED_FIT (Ene, Smiley, & Bell, 2012). Likewise, the SAS macro 
MIXED_DX (Bell et al., 2010) is used to show users how to examine distributional assumptions associated with two-
level linear models, including normality and homogeneity of level-1 and level-2 residuals.   
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PROC MIXED STATEMENT OPTIONS  

COVTEST OPTION  

In the original primer article by Bell, Ene, Smiley, and Schoeneberger (2013) provide examples for estimating a 2-
level organization model as well as a 2-level growth model. The syntax for both of these models contained the 
COVTEST as a statement option such as the one below, which is an option used to generate hypothesis testing 
output for the variance and covariance components (aka random effects).  This is a necessary statement in PROC 
MIXED if significance testing is to be conducted on the model’s random effects (i.e., if a researcher wants to see p-
values associated with the random effect parameter estimates, this option must be included on the PROC MIXED 
statement).   
 
As an example, syntax and output from a data set presented in Bell at al. (2013) is provided here. In this example 
there is a 2-level organization model with students nested within schools.  In this example, standardized mathematics 
achievement (ma_z) is being modeled as a function of students’ limited English proficiency (LEP) status and 
exceptional child (EC) status at level-1 and schools’ treatment status (treatment) and the proportion of students 
receiving free and reduced lunch (schl_frl_c) at level-2.  Additionally LEP and EC are provided on the random 
statement to allow these two student characteristics to randomly vary across schools.  Notice COVTEST is included 
as a statement option. 
 

PROC MIXED data=lib.SESUG13 COVTEST noclprint method= ML; 
class schoolid; 
model ma_z = LEP EC treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept LEP EC/ sub=schoolid type=vc; 

 
The code above would generate the output in Figure 1. Notice that in addition to the parameter estimate and standard 
error, using the COVTEST option provides a Z value column as well as a p-value associated with that Z value.  If this 
option is not included on the PROC MIXED command, then the Z and p-values would not be included in the output.  
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate
Standard 

Error Z Value Pr > Z 

Intercept schoolid 0.2831 0.07387 3.83 <.0001 

LEP schoolid 0.05115 0.01611 3.18 0.0007 

EC schoolid 0.08612 0.02588 3.33 0.0004 

Residual  0.6738 0.006681 100.85 <.0001 

Figure 1. Random effect output using the COVTEST option  
 
Whereas the p-values for the variance components are appealing and would suggest that the Intercept, LEP, and EC 
all significantly vary across schools, interpretation of the results from the COVTEST option can be misleading. 
Because variance components are known to be skewed and bounded, a sampling distribution that relies on a normal 
approximation such as the Z value used in the COVTEST option is not acceptable (Singer, 1998). In fact, starting with 
SAS version 6.12 and higher the COVTEST output was dropped as automatic output. The only exception in which 
sole use of the COVTEST option is encouraged is in cases in which very large sample sizes are used. However, 
when used in conjunction with other methods for examining the statistical significance of variance and covariances, 
the results from the COVTEST option can serve as the starting point for determining the significance of model 
variance components.   
 
In addition to requesting the COVTEST option with the PROC MIXED statement and examining the resulting p-values 
as a first step for determining the statistical significance of a model’s variance components, researchers are 
encouraged to examine changes in model fit between a model without random slopes and a model with random 
slopes.  Specifically, when models are nested (i.e., model 2 is an extension of model 1) then the likelihood ratio test 
(LRT) can be used to assess model fit (Snijders & Bosker, 2012). The likelihood ratio test calculates the change in 
deviance (-2LL) between the smaller model and the larger model and statistically tests the change using a 

2 distribution, with degrees of freedom equal to the change in number of parameters from the smaller model to the 

larger model.  If the two models are not nested then changes in model fit between the two models needs to be 
examined using AIC and BIC.  Moreover, when examining changes in model fit in which the models differ in their 
random effects, such as is the case when using changes in model fit to determine the statistical significance of model 
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variance components, models need to be estimate using restricted maximum likelihood (REML). This is different than 
the presentation of examining changes in model fit presented in Bell et al. (2013) – in those examples, the models 
differed in their fixed effects, thus, they had to be estimated using maximum likelihood (ML).  More about these 
estimation methods is presented in the section below.   

Thus, the proper way to assess significance of variance components is a two-step process – first, you can examine 
the hypothesis test results from the COVTEST option in PROC MIXED; if any of the variance or covariance estimates 
have p-values less than alpha, you proceed with examining changes in model fit using via the LRT (if models are 
nested) or AIC and BIC (if models are not nested).   

Using the same data we used in the example above with the COVTEST option, below is an explanation of how you 
can examine the significance of the two random slopes through a model building process.  Let’s assume that we have 
already gone through the model building process to determine the best fitting model for the fixed effects (see Bell et 
al., 2013 for details on this approach) and the best fitting fixed effect model is one that predicts the standardized math 
achievement scores from two student-level variables (LEP and EC) and two school-level variables (treatment and  
schl_frl_c).  Now, we want to determine if LEP and EC significantly vary across schools – i.e., we want to estimate a 
model that contains random slopes for the two student-level variables.  Then, we will compare the model fit of the full 
model (i.e., the model with random slopes) to the model fit of the reduced model (i.e., the model without random 
slopes).  And, remember, because we are comparing nested models that differ in their variance components, we 
have to estimate our models using REML and not ML. For this example, I could estimate the reduced and full model 
and then compare the changes in model fit by hand,  but, instead, I use the MIXED_FIT macro (Ene, Smiley, & Bell, 
2012) to demonstrate how models can be compared to determine if variance and covariance parameters are 
statistically significant or not.  

MIXED_FIT uses information from ODS tables generated from PROC MIXED to produce numeric output consisting of 
a table that includes the likelihood ratio test (LRT), change in Akaike Information Criterion (AIC), change in Bayesian 
Information Criterion (BIC), and change in Pseudo-R2 (See  Ene et al, 2013  for more information on the MIXED_FIT 
macro, including macro code as well as an overview of nested vs. non-nested model comparison). Since we are 
using nested models to assess if the two variance components are significant, we will want to look at the LRT and p-
value associated with the LRT. Remember, that the results from the COVTEST option alone suggests that both LEP 
and EC significantly vary across schools, but, given the inherent bias in the Z distribution used to generate those p-
values,  we now need to verify that inclusion of the random slopes significantly improves model fit.  

The SAS syntax and call to the MIXED_FIT macro are below:  

Title 'Model 1: Level-1 Model Random Intercept Only'; 
PROC MIXED data=lib.SESUG13 COVTEST noclprint method= REML; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept/ sub=schoolid type=vc; 
ods output Fitstatistics=FS_Model_2 SolutionF=SF_Model_2; 
run; 

 
 
Title 'Model 2: Level-1 and Level-2 Model Random Intercept and Slopes'; 
PROC MIXED data=lib.SESUG13 COVTEST noclprint method= REML; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept lep ec/ sub=schoolid type=vc; 
ods output Fitstatistics=FS_Model_3 SolutionF=SF_Model_3; 
run; 

 

%Mixed_Fit(fullmodel=FS_Model_3,redmodel=FS_Model_2,DFfull=SF_Model_3,DFred=SF_Model_)
; run; 
 
Once the above syntax is executed and the models are estimated, we used the MIXED_FIT macro to obtain the 
model fit statistics between the model with random slopes and the model without random slopes. More details on 
using MIXED_FIT are provided in (Ene, Smiley, & Bell, 2012).  
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Figure 2 contains the output from MIXED_FIT; we can see the p-value for the LRT is greater than .05. Thus, the full 
model with LEP and EC on the RANDOM statement fits significantly better than the reduced model with a random 
intercept but no random slopes. These results suggest that the LEP and EC slopes significantly vary across schools.  
Had the p-value been less than .05, we would conclude that there was not enough evidence to suggest these random 
slopes significantly varied across schools.   The raw output values that were used in MIXED_FIT to calculate the LRT 
were -2LL = 50181.3 for the full model and -2LL = 50474.2 for the reduced model.  
 
 

Change in AIC             Change in BIC           Change in -2LL 
Reduced-Full              Reduced-Full            Reduced-Full      mixture method p-value 
Useful with non-nested    Useful with non-nested  for nested models      for nested models 
models                    models                   only                   only 
 
288.918                   286.050                 292.918                  0.0000 
 

Figure 2. MIXED_FIT output for testing significance of LEP and EC random slopes 
 
METHOD OPTION 

Researchers also need to consider another statement option related to how the model should be estimated. On the 
statement line, there is also a METHOD = option. In Bell et al.’s (2013) primer paper, we only included the option for 
maximum likelihood estimation (ML). However, analysts have the option of estimating models in PROC MIXED using 
restricted maximum likelihood (REML).  Which estimation method to use (ML vs. REML) primarily depends on the 
focus of the research questions being examined. More specifically, the difference between ML and REML estimation 
occurs in how the variance components are estimated. With ML, the fixed effects and variance components are 
estimated simultaneously, which has been shown to yield biased variance component estimates.  REML, on the other 
hand, estimates the variance components and fixed effects separately; by first estimating the variance components 
and then estimating the fixed effects, REML allows the maximization of a likelihood function based just on the 
variance components, which eliminates the bias problem (Raudenbush & Bryk, 2002; Snijders & Boskers, 2012). 
When the level-2 sample size is large, the difference in the variance component estimates will be trivial, however, 
smaller level-2 sample sizes will yield more bias in estimates generated using ML.  
 
Whereas REML sounds like it should be the dominant option, especially since it is the default estimation method in 
PROC MIXED, ML continues to be used quite frequently given two important advantages that it offers analysts: it is 
computationally easier and it allows researchers to compare nested models that differ in fixed effects using the LRT.  
When REML is used to estimate models, the LRT can only be used to compare nested models that differ in variance 
components. Whereas REML is useful for examining the significance of variance components as illustrated above, it 
is not useful for the overall model building process that is typically used in multilevel research applications.  Thus, 
which method should be used depends on the substantive interest of the researcher.  
 
If a researcher is only interested in the fixed effects and does not include any random slopes in the model (i.e., the 
only random effect is the intercept), he/she can proceed with the model building process [see Bell et al. (2013) for 
more details on this approach], using ML since the nested models would only differ in fixed effects.  Or, if a 
researcher is primarily interested in variance components and does not plan to utilize a model building process to 
help identify the best fitting model in terms of fixed effects (i.e., a researcher simply estimates a single model 
containing all fixed effects) then REML would be the preferred estimation method, as it would allow the researcher to 
examine changes in model fit as variance components are added to the model.  When researchers are interested in 
both fixed and random effects, a two-step process is typically used in which first the best fitting fixed effect model is 
determined through a model building process and use of the LRT to test for improved model fit – these models would 
be estimated using ML.  Then, once the best fitting and most parsimonious fixed effect model is identified, 
researchers can re-estimate the model using REML – this newly estimated model will serve as the variance 
component base or reduced model (i.e., this first REML model would only contain a random intercept).  Then, the 
variance component model building process can be used, with each subsequent model estimated using REML.   
 
Below are two examples of SAS syntax for estimating our two-level model with students nested in schools; once with 
METHOD = ML and the other with METHOD = REML. Note that if no METHOD = option is specified, the default 
estimation is REML.  Given the size of our sample, differences in the variance components from these two models 
would be trivial, therefore, no output is provided. Instead, the main focus of this section of the paper has been to not 
only illustrate how to request the two estimation methods in PROC MIXED, but, also, to provide a summary of the 
nuances between these methods and how important it is for researchers to select the most appropriate estimation 
method, given the focus of his/her research study.   
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PROC MIXED data=lib.SESUG13 noclprint method= ML; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept lep ec/ sub=schoolid type=vc; 

 
PROC MIXED data=lib.SESUG13 noclprint method= REML; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept lep ec/ sub=schoolid type=vc; 

 
MODEL STATEMENT OPTIONS  

The MODEL statement is used to specify the fixed effects to be included in the model.  The DDFM= option allows the 
user to specify which degrees of freedom (DF) to use when estimating the model.  Degrees of freedom provide an 
approximate sample size based on the number of individuals and predictors at level one and the number of groups 
and predictors at level 2.  This value is necessary for determining the significance of the parameter estimates at each 
level, which are based on t- distributions.   In addition, during the process of model building, degrees of freedom are 
necessary to use the chi-square distribution which is used to determine the significance of changes to the -2LL values 
between nested models.  Thus, it is important for researchers to carefully consider the different degrees of freedom 
methods available in PROC MIXED and to select the best method for a given research scenario.   
SAS® provides five degrees of freedom methods to use within the PROC MIXED statement: residual (RESIDUAL), 
between-within (BETWITHIN), containment (CONTAIN), Satterthwaite (SATTERTHWAITE), and Kenward-Roger 
(KENWARDROGER). Both the Satterthwaite and Kenward-Roger DF methods are well-suited for most multilevel 
models as they both are intended to be used in models with unbalanced designs and both can handle complex 
covariance structures.  Moreover, the Kenward-Roger DF method also adjusts for small sample bias, so it is ideal to 
use when estimating models with relatively small samples.  Below is a brief summary of each of the five DF methods 
available in PROC MIXED, followed by examples on how to us the DDFM= option within PROC MIXED for two-level 
organizational models and two-level growth models.   
 
The RESIDUAL degrees of freedom estimation method was the default option in previous versions of PROC MIXED.  
This method for specifying DF only gives the correct DFs when the level-1 errors are independent and identically 
distributed and when there are no level-2 errors (i.e., a situation in which multilevel modeling is not needed.  There is 
no reason to ever use this DF method when using PROC MIXED. 
 
The BETWITHIN degrees of freedom estimation method is more applicable to repeated measures (longitudinal) 
models than to organizational models.  This method works by partitioning the residual degrees of freedom into 
between-participants and within-participants.  Therefore, effects that change within an individual are assigned within-
participants DF and effects that do not change within an individual are assigned the between-participants DF. 
 
The CONTAIN degrees of freedom estimation method is the default method in PROC MIXED when a random 
statement is used.  This option can lead to exact degrees of freedom when the design is balanced and when the 
level-1 errors are independent and identically distributed.  This choice becomes more questionable, however, as the 
design becomes less balanced or when a complex error structure is needed at level-1. 
 
The SATTERTHWAITE method approximates the degrees of freedom, and is designed for use with unbalanced 
designs and more complex covariance structures.  Given the reality of most models being unbalanced, this method is 
most applicable for researchers working with hierarchical data.  
 
The KENWARDROGER method also approximates the degrees of freedom, and again is designed for use with 
unbalanced designs and complex covariance structures.  By adjusting the covariance  matrix, this method also 
adjusts for small-sample bias.  Based on previous research that shows that using the Kenward-Roger DF with small 
sample sizes yields unbiased parameter and standard error estimates, we recommend this method be used for 
models containing less than 30 level-1 units and 30 level-2 units (Bell, Morgan, Schoeneberger, Kromrey, & Ferron, 
2012). 
 
INVESTIGATING DDFM OPTIONS FOR TWO-LEVEL ORGANIZATIONAL MODELS 
 
We will use the same two-level organizational data and syntax as we used in the previous organizational model 
example – students nested in schools, predicting math achievement from two student-level variables and two school-
level variables.  We will not present an organizational model using  the BETWEEN DDFM as it is not an appropriate 
method for organizational models.  
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The PROC MIXED syntax for using the RESIDUAL degrees of freedom method is below followed by the Fixed 
Effects output in Figure 3. 
 

PROC MIXED data=lib.SESUG13 COVTEST noclprint; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = RESIDUAL; 
random intercept lep ec/ sub=schoolid type=vc; 
run; 
 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 0.02681 0.07254 2E4 0.37 0.7117 

lep -0.09375 0.04513 2E4 -2.08 0.0378 

ec -0.4432 0.05842 2E4 -7.59 <.0001 

treatment 0.09139 0.1864 2E4 0.49 0.6239 

schl_frl_c -1.8327 0.3359 2E4 -5.46 <.0001 

Figure 3. Fixed effect output using DDFM = RESIDUAL  
 
The syntax for using the CONTAIN degrees of freedom method is below followed by the Fixed Effects output in 
Figure 4.  
 
 

PROC MIXED data=lib.SESUG13 COVTEST noclprint; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = CONTAIN; 
random intercept lep ec/ sub=schoolid type=vc; 
run; 

 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 0.02681 0.07254 29 0.37 0.7144 

lep -0.09375 0.04513 30 -2.08 0.0464 

ec -0.4432 0.05842 30 -7.59 <.0001 

treatment 0.09139 0.1864 2E4 0.49 0.6239 

schl_frl_c -1.8327 0.3359 2E4 -5.46 <.0001 

Figure 4. Fixed effect output using DDFM = CONTAIN  
 
The syntax for using the SATTERTHWAITE degrees of freedom method is below followed by the Fixed Effects output 
in Figure 5.  
 

PROC MIXED data=lib.SESUG13 COVTEST noclprint; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept lep ec/ sub=schoolid type=vc; 
run;.  
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Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 0.02681 0.07254 26 0.37 0.7147

lep -0.09375 0.04513 28.7 -2.08 0.0468

ec -0.4432 0.05842 29.9 -7.59 <.0001

treatment 0.09139 0.1864 25.9 0.49 0.6280

schl_frl_c -1.8327 0.3359 25.7 -5.46 <.0001

Figure 5. Fixed effect output using DDFM = SATTERTHWAITE  
 
The syntax for using the KENWARDROGER degrees of freedom method is below followed by the Fixed Effects 
output in Figure 6.  
 

PROC MIXED data=lib.SESUG13 COVTEST noclprint; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = KENWARDROGER; 
random intercept lep ec/ sub=schoolid type=vc; 
run; 

 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 0.02681 0.07255 26 0.37 0.7148 

lep -0.09375 0.04518 28.7 -2.07 0.0471 

ec -0.4432 0.05848 29.9 -7.58 <.0001 

treatment 0.09139 0.1864 25.9 0.49 0.6280 

schl_frl_c -1.8327 0.3359 25.7 -5.46 <.0001 

Figure 6. Fixed effect output using DDFM = KENWARDROGER  
 
Table 1 compares the degrees of freedom and t-statistic results, respectively, from the four models presented above 
using the different DDFM= options within the MODEL statement of the PROC MIXED command.  The parameter 
estimates and standard errors were identical for each of the methods used, thus, the t-values were also identical 
across models.  However, the degrees of freedom changed between options, resulting in varying p-values.  Although 
the differences across DF methods in our example are not very large and the results of the hypothesis test for each 
fixed effect are the same for each DF method, as sample sizes become smaller and more unbalanced, the variation 
in these values will be more pronounced.  Again, given the mathematical advantages and empirical evidence of its 
good performance with small sample sizes (Bell et al., 2012), we recommend users consider using the Kenward-
Roger DF estimation method as their default when estimating linear models in PROC MIXED.  

 
Table 1.  Comparison of Resulting Statistics from Two-level Organizational Model with four DDFM= options 
 

RESIDUAL CONTAIN SATTERTHWAITE KENWARDROGER 
Intercept .37(2E4), 

p=.7177 
.37(29), 
p=.7144 

.37(26), 
p=.7147 

.37(26), 
p=.7148 

lep -2.08(2E4), 
p=.0378 

-2.08(30), 
p=.0464 

-2.08(28.7), 
p=.0468 

-2.07(28.7), 
p=.0471 

ec -7.59(2E4), 
p<.0001 

-7.59(30), 
p<.0001 

-7.59(29.9), 
p<.0001 

-7.58(29.9), 
p<.0001 

treatment .49(2E4), 
p=.6239 

.49(2E4), 
p=.6239 

.49(25.9), 
p=.6280 

.49(25.9), 
p=.6280 

schl_frl_c -5.46(2E4), 
p<.0001 

-5.46(2E4), 
p<.0001 

-5.46(25.7), 
p<.0001 

-5.46(25.7), p<.0001 
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INVESTIGATING DDFM OPTIONS FOR TWO-LEVEL GROWTH MODELS 

The example two-level growth model  that will be used to examine the degrees of freedom methods comes from Bell 
et al.’s (2013) SAS Global Forum presentation “A Multilevel Model Primer Using SAS® PROC MIXED.”  This model 
investigates how children’s’ reading achievement changes throughout the first years of school and if a child’s sex is 
related to reading achievement in kindergarten.  Using a sample of 120 children pulled from the Early Childhood 
Longitudinal Study-Kindergarten (ECLS-K; Early Childhood Longitudinal Study – Kindergarten, n.d.), this model has 
time (level-1) nested within students (level-2) and specifies a child’s sex as a binary level-2 predictor variable.  Given 
that the BETWITHIN degrees of freedom method are designed for repeated measures modeling, for this section, we 
do not present examples of all five DF options. Instead, we have included examples of using the BETWITHIN option 
and the KENWARDROGER option, given that it tends to yield reliable estimates across a variety of sample 
conditions.   
 
The syntax for using the BETWITHIN degrees of freedom method is below followed by the Fixed Effects output in 
Figure 7.  
 

proc mixed COVTEST noclprint data = lib.eclsDDFM1 method=ml; 
class childid; 
model reading = sex timemos/solution ddfm = BETWITHIN; 
random intercept timemos/sub=childid type=VC; 
RUN; 

 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 18.6770 1.1976 118 15.59 <.0001 

sex 2.1814 1.6650 118 1.31 0.1927 

TIMEMOS 1.5837 0.04337 355 36.52 <.0001 

Figure 7. Fixed effect output using DDFM = BETWITHIN  
 
 
The syntax for using the KENWARDROGER degrees of freedom method is below followed by the Fixed Effects 
output in Figure 8.  
 

proc mixed COVTEST noclprint data = lib.eclsDDFM1 method=ml; 
class childid; 
model reading = sex timemos/solution ddfm = KENWARDROGER; 
random intercept timemos/sub=childid type=VC; 
RUN; 
 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 18.6770 1.1985 123 15.58 <.0001 

sex 2.1814 1.6675 117 1.31 0.1934 

TIMEMOS 1.5837 0.04337 127 36.51 <.0001 

Figure 8. Fixed effect output using DDFM = KENWARDROGER 
 
Table 2 compares the results generated for the t-statistic, degrees of freedom, and p-value using the five DDFM= 
options within the MODEL statement of the PROC MIXED command.  The parameter estimates and standard errors 
were identical for the two methods used, thus, the t-values were also identical across models.  However, the degrees 
of freedom changed between options.  As shown in Table 2,  the main difference between the BETWITHIN and 
KENWARDROGER degrees of freedom methods occurs in how the DF are estimated at level-1.  This example 
clearly shows how the each time point in the growth model is accounted for when using the BETWITHIN DF method 
(i.e., instead of “seeing” the sample as 120 observations the BETWITHIN method considers each time point for each 
student as an observation).   Obviously, with a large t-value of 36.52, both DF estimates will still yield p-values less 



         SESUG 2013 

 

9 

than .05, however, if the sample was smaller and a smaller difference existed between time points, it is plausible that 
the results of the hypothesis test could differ between these two methods.   
 

Table 2.  Comparison of Resulting Statistics from Two-level Growth Model with two DDFM= options 
 

BETWITHIN KENWARDROGER 
Intercept 15.59(118), 

p<.0001 
15.59(123), 

p<.0001 

sex 1.31(118), 
p=.1927 

1.31(117), 
p=.1927 

TIMEMOS 36.52(355), 
p<.0001 

36.52(127), 
p<.0001 

 
 
RANDOM STATEMENT OPTIONS  

The RANDOM statement in PROC MIXED is used to specify what parameters are allowed to vary across level-2 
units. As explained in Bell et al. (2013), this statement is the key element of what differentiates multilevel linear 
models from single-level OLS models.  Specifically, this is the part of the PROC MIXED code where users specify for 
the intercept to be modeled as varying across level-2 units. Likewise, this is also the statement in PROC MIXED 
where users specify, which, if any, level-1 variables have random slopes that vary across level-2 units.  An important 
element of the RANDOM statement is specifying what covariance structure SAS should use when estimating the G 
(i.e., the covariance matrix of level-2 errors) and R (i.e., the covariance matrix of level-1 errors) matrices. This is 
accomplished through the TYPE =  option.  Although there are oodles of variance/covariance matrices that can be 
specified through the TYPE = option, in this section we present three commonly used options: VC, UN, and AR(1).   
 
TYPE=VC (variance components) is the default structure for both G and R covariance structures in PROC MIXED.  
This structure is relatively simple in terms of estimation; covariance matrix of level-2 errors (G-matrix) is estimated to 
have separate variances but no covariance and the covariance matrix of level-1 errors (R-matrix) are modeled to 
have a common variance with no covariance.  When the VC structure is used, the number of variance components 
that are estimated equals the number of variables included on the RANDOM statement plus the variance component 
of level-1 errors (i.e., the residual variance component).    
 
Below is the SAS syntax and covariance parameter output for our two-level organizational model example using 
TYPE = VC to estimate the covariance structures.  

 
PROC MIXED data=lib.SESUG13 COVTEST noclprint method= REML; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept lep ec/ sub=schoolid type=vc; 
run; 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error Z Value Pr > Z 

Intercept schoolid 0.08277 0.02351 3.52 0.0002 

lep schoolid 0.05120 0.01608 3.18 0.0007 

ec schoolid 0.08698 0.02611 3.33 0.0004 

Residual   0.6738 0.006681 100.85 <.0001 

Figure 9. Covariance output using TYPE = VC  
 
TYPE = UN (unstructured) specifies a general covariance matrix. With the unstructured estimation, the G-matrix is 
estimated to contain different variances for the intercept and slope(s), as well as covariances between these 
parameters. In generating a more complex G-matrix than TYPE = VC, the unstructured covariance matrix also 
estimates many more parameters than the variance component option. Specifically, TYPE = UN will generate [ t 
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(t+1)/2] variance and covariance parameter estimates where t = the number of variables listed on the RANDOM 
statement. In addition, the covariance output will also contain the variance of the level-1 errors (i.e., the residual 
variance estimate) that is automatically generated.  Thus, as shown in the example below, simply estimating a 
random intercept and two random slopes will yield seven variance estimates in our two-level organizational model.   
 
The SAS syntax and corresponding covariance parameter output for our two-level organizational model example 
using TYPE = UN to estimate the covariance structures is below.  
 

PROC MIXED data=lib.SESUG13 COVTEST noclprint method= REML; 
class schoolid; 
model ma_z = lep ec treatment schl_frl_c/solution ddfm = SATTERTHWAITE; 
random intercept lep ec/ sub=schoolid type=un; 
run; 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error Z Value Pr Z 

UN(1,1) schoolid 0.09781 0.03907 2.50 0.0062 

UN(2,1) schoolid -0.02182 0.02294 -0.95 0.3414 

UN(2,2) schoolid 0.05011 0.01571 3.19 0.0007 

UN(3,1) schoolid -0.04213 0.04437 -0.95 0.3423 

UN(3,2) schoolid 0.03205 0.01549 2.07 0.0386 

UN(3,3) schoolid 0.08886 0.02782 3.19 0.0007 

Residual   0.6738 0.006681 100.85 <.0001 

Figure 10. Covariance output using TYPE = UN  
 
At first, the interpretation of the TYPE = UN output can seem a little confusing, but, it follows a very logical pattern 
when you think of the covariance parameters as they appear in the actual G matrix. Below is an example of a generic 
unstructured covariance matrix.  

 
 
As you can see, there are four estimated variances (i.e., the four elements on the diagonal of the matrix) and six 
covariances (i.e., the elements on the off-diagonal). Thinking of the SAS output above in Figure 10 from matrix 
perspective, one can better understand that the parameter labeled “UN (1,1)” is the variance for the element in the 
unstructured matrix that is located in the first row and first column; in our example, this is the variance of the intercept 
as it is the first variable listed on the RANDOM statement. Likewise, the parameters labeled “UN(2,2)” and “UN(3,3)” 
are the variances for the elements in the second row, second column of the matrix and the third row and third column 
of the matrix, respectively.  In our example, these represent the random slopes for the variables LEP and EC, 
respectively.  Following this logic, the parameter labeled “UN(2,1)” is the element in the second row, first column of 
the matrix – otherwise interpreted as the covariance between the first and second elements in the diagonal.  In our 
example, UN(2,1) represents the covariance between the intercept and the LEP random slope.  In addition, UN (3,1) 
is the covariance between the intercept and EC random slope, and UN(3,2) is the covariance between the LEP and 
EC random slopes.   
 
Another important aspect of the unstructured covariance matrix is that during the estimation process the variance 
components are constrained to be nonnegative but the covariances are not. This is important to understand because 
when this more complex variance structure is used, it is common that one or more of the variance or covariance 
parameters will be zero or for the covariances a negative value.  When this happens, SAS provides users a note in 
the log stating that the estimated g-matrix is not positive definite.  When this happens, users should look at the 
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covariance output to determine which element of the matrix could not be estimated and then remove that parameter 
and re-estimate the model.   
 
TYPE = AR(1) is a third variance structure option that is commonly used with repeated measures models (i.e., time 
nested within subjects).  This option specifies a first-order autoregressive structure with homogenous variances. 
Within this structure, correlations in the matrix decline exponentially with distance.  Specifically, within this structure 
option, the variability in the outcome being measured is the same, regardless of what time it is measured, yet, 
measurements that are adjacent to each other in time are going to have a strong correlation but as measurements 
get farther apart, they are less correlated (i.e., the correlation between time 1 and time 2 will be stronger than the 
correlation between time 1 and time 4).   
 
The SAS syntax and corresponding covariance parameter output for our two-level growth model example using 
TYPE = AR(1) to estimate the covariance structures is below.  
 

proc mixed COVTEST noclprint data = lib.eclsDDFM1 method=ml; 
class childid; 
model reading = sex timemos/solution ddfm = BETWITHIN; 
random intercept timemos/sub=childid type=AR(1);; 
RUN; 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error Z Value Pr Z 

Variance CHILDID 0.4150 0.06265 6.62 <.0001 

AR(1) CHILDID 1.0000 0 . . 

Residual   47.4119 3.5542 13.34 <.0001 

Figure 11. Covariance output using TYPE = AR(1)  
 
Based on the results from this example, the reading data used in our growth curve example does not appear to fit an 
autoregressive covariance structure. As shown in Figure 11, autoregressive variance component could not be 
estimated.  This is an example of the obtaining a non-positive definite G matrix. If this were to occur in a real research 
scenario, we recommend users specify their growth model using a simpler covariance structure, such as TYPE = VC.    
  
REMEMBERING TO EXAMINE DISTRIBUTIONAL ASSUMPTIONS  

As with any other statistical procedures, it is important for researchers to examine and report the appropriate 
assumptions when using multilevel modeling techniques. Under multilevel analyses, like with most parametric 
statistical procedures, there are certain distributional assumptions underlying the validity of the Type I error control. 
Therefore, the validity of inferences based on models estimated through these techniques depends on the degree to 
which assumptions are upheld about the structural and random parts of the model (Raudenbush & Bryk , 2002).  
 
The assumptions associated with two-level linear models are similar to OLS model assumptions and include residual 
normality, independence, and homoscedasticity.  With two-level linear models, these assumptions need to be 
examined for both level-1 and level-2 variables.  In particular, the assumption of normally distributed errors must be 
made for both level-1 and level-2 variables, with violations adversely affecting level-2 estimated standard errors and 
inferential statistics (Raudenbush & Bryk, 2002). Also, the effects of the violation at level-1 may include distorted 
random effect coefficients and variance-covariance components. To examine the distribution of the errors, data 
analysts should consider the following options. First, one might plot the standardized residuals against their normal 
scores to observe how closely the plot follows a diagonal line (Hox, 2010). Second, to assess the distribution of the 
overall residuals at levels one and two, one might also use histograms or box-and-whisker plots. Similarly, box-and-
whisker plots of the level-1 residuals for each level-2 unit and of the level-2 residuals for each level-2 effect will help 
assess deviations from a normal distribution and identify extreme values. Third, to assess assumptions of normality, 
linearity, and homogeneity of variance simultaneously, analysts should examine the plot of predicted values against 
the residuals. This should be done for level-1 residuals, as well as the residuals for each level-2 effect. Scatterplots 
that contain roughly equivalent frequencies of points above and below their mean value, with no particular structure, 
provide evidence that the assumptions have not been violated (Hox, 2010).  
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To supplement the visual level-1 assumption diagnostics, summary statistics (i.e., skewness, kurtosis, variance and 
standard deviation, and a statistical test for normality such as the Shapiro-Wilk or Kolmogorov-Smirnov test) for level-
1 residuals within each level-2 unit should also be reviewed for information regarding level-1 normality and variance 
homogeneity. In addition, Levene’s test can be used to assess homogeneity of variance of the level-1 residuals 
across each level-2 unit. Next, when evaluating the tenability of assumptions for the level-2 residuals, multivariate 
summary statistics such as skewness, kurtosis, and Mahalanobis distances should be generated and reviewed. 
Multivariate normality can also be evaluated visually through a histogram of Mahalanobis distances. Also, as with the 
level-1 residuals, Levene’s test for assessing homogeneity of variance of the level-2 residuals can be conducted for 
each level-2 effect.  
 
In addition to examining these assumptions, detection of influential observations is also important when conducting 
multilevel analyses. Littell, Milliken, Stroup, and Wolfinger (2006) recommend a “drill-down” approach to mixed model 
influence diagnostics, beginning with a global assessment of the influence on the overall model, followed by a more 
detailed exploration of the case-sets should they be warranted. The likelihood distance (Cook & Weisberg, 1982) 
provides an assessment of a unit’s influence on the overall model. A group or unit’s influence on parameter estimates 
can be determined using Cook’s D or the multivariate DFFITS statistics. The larger the value for these statistics, the 
greater the influence a unit has on parameter estimates (i.e., the change in the parameter estimate is large relative to 
the variability of the estimate; Schabenberger, 2004). Researchers can also examine a unit’s effect of the precision of 
an estimate through the covariance trace (COVTRACE) and covariance ratio (COVRATIO) statistics. For these 
statistics, benchmark values used to determine a unit’s level of influence are zero and one, respectively 
(Schabenberger, 2004). Each of these influence diagnostics can be generated for both fixed effects and covariance 
parameters, however calculation for the latter requires an iterative process due to the potential impact of observations 
on covariance matrices. The INFLUENCE option within PROC MIXED allows the researcher to utilize non-iterative or 
iterative diagnostics, and provides the option to control the number of iterations when re-calculating estimates and 
covariance matrices (Littell et. al., 2006). 
 
In addition to examining a unit’s influence on the change in parameter estimates and the change in the precision of 
estimates, influence on fitted and predicted values can also be examined through the Predicted Residual Sum of 
Squares (PRESS) statistic. The PRESS provides a comparison of the predicted marginal mean and the observed 
mean when the predicted value is calculated without the deleted observation in question (Schabenberger, 2004). 
Again, larger values suggest more influential units. Other measures of overall influence provided through the 
INFLUENCE option in PROC MIXED include RMSE and Restricted Likelihood Distance (RLD). RMSE values 
represent the model RMSE with a specific level-2 unit deleted. On the other hand, RLD functions more as an 
‘indicator’ statistic in that it does not convey what part of the model is likely to change given the removal of a specific 
level-2 unit. Instead, it suggests that the overall influence of a particular level-2 unit stands out comparatively to other 
level-2 units (Littell et al., 2006). To determine what model components are influenced by a given level-2 unit, 
analysts need to examine the individual influence statistics such as MDFFITS or COVRATIO.  
 
In an effort to make the process of checking the assumptions for multilevel models easier for the applied researcher, 
the MIXED_DX macro (Bell et al., 2010) provides analysts with a comprehensive approach for conducting two-level 
linear model diagnostics, including examinations of residual normality, linearity, homogeneity of variance, and 
influential outliers. By utilizing data from PROC MIXED ODS tables, the macro produces both visual output (e.g., box-
and-whisker plots, histograms, scatter plots) and summary tables of statistical output for both level-1 and level-2 
residuals. A unique feature of this macro is the calculation of level-2 predicted values for each level-2 effect which 
allows analysts to create and examine residual by predicted scatterplots for level-2 effects (something that cannot be 
done using the default SAS output alone). Furthermore, the MIXED_DX macro generates output for all level-2 units, 
with an option for a user-defined minimum of cases per level-2 unit to be included in these analyses. In addition, 
MIXED_DX facilitates detection of influential observations in a two-level linear model by creating a ranked summary 
table of the influence statistics automatically created in the SAS ODS influence table (Influence).  We encourage 
users to read more about assumptions and how to test them in our MIXED_DX paper, Bell et al. (2010).   A copy of 
the macro as well as a link to the macro itself is also provided in Bell et al. (2010).  
 
CONCLUSIONS 

This paper provides researchers with an extensive introduction to many of the most commonly used options and 
statements when estimating a variety of multilevel linear models via PROC MIXED. In addition, we introduced users 
to two macros that were developed to help researchers navigate the more complicated aspects of estimating 
multilevel models in PROC MIXED, including testing the distributional assumptions, which unfortunately is often 
overlooked in the published research. In writing this paper, our goal was to educate users that simply relying on the 
default options when using PROC MIXED is not always the best decision, especially when it comes to model 
estimation methods (ML vs. REML) as well as when estimating the model degrees of freedom.  It is our hope that 
after reading this paper, users will realize the importance of becoming familiar with options available in PROC 
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MIXED; doing so will help ensure that the models being estimated are aligned with the research questions being 
examined and are correctly specified given characteristics of the data being examined.  
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