
SESUG 2013

1

Paper PO-7

Not Just Another Macro
Y. Christina Song, Rho, Inc.

ABSTRACT
In most cases, macros facilitate repetitive SAS programming iterations. Even when using macros, programmers still must
read specifications carefully and create macro calls accordingly. To improve overall programming efficiency substantially, here
a procedure is introduced to let the specifications do the all SAS programing. Whenever possible: SAS will dynamically read
specifications, tweak the data, generate all macro calls, code the text in the macros, and output data into desired reports. The
methodology takes advantage of the data driven and dynamic features of SAS macros. This paper illustrates the key steps
and outlines sample codes used in the programming method.

INTRODUCTION: MOST OTHER MACROS
Often SAS programmers encounter tasks directed by specifications. For such tasks, we normally have macros handle
repetitive SAS programming iterations. For example, in clinical data management programming for edit-checks, macros are
often used for reading in data, formatting data, and creating desired output. However, programmers still must read
specifications carefully to modify data and to make macro calls accordingly. Edit-check programming in clinical data
management can be time-consuming and labor intensive.

ADVANTAGES
This paper illustrates a method to let the powerful SAS all tasks. The SAS program will dynamically read specifications, tweak
the data, generate all macro calls, code the text in between macros, and output data into desired reports according to the
specifications. This method takes advantages of data driven and dynamic features of SAS macro. It uses common SAS
procedures and requires only a few straightforward key steps. It improves overall programming efficiency significantly with
following advantages:
1. It saves a substantial amount of time in programming by reading specifications with just one %include;
2. Human error can be minimized through automation.;
3. It may be possible to update specifications, program, and output instantly without even involving a programmer, to speed up
the review process;
4. This programming methodology also helps to create macros which enable automation and operations planning.

KEY STEPS
Although the SAS codes for this procedure is not too complicated, the planning for overall programing strategy needs to be
well thought. Here are the key steps:

1. MAKE THE SPECIFICATIONS SAS FRIENDLY. In most cases, the specifications are written by a non-SAS programmer.
We can add another title rows using SAS code-like text. For example, original title row can be “Print records from
only variable1, variable2, or variable3?” The new additional row can be “row_limit”; it will be used in the program as a
variable name.

2. TRANSLATE SPECIFICATIONS TO SAS. Some modifications may be needed after reading the external files of

specifications. For example, “scrndt should = vistdt” on the specification, will be translated with tranwrd function
(varname, "should =", "NE"). So we can output any records that scrndt NOT = vistdt.

3. RENAME ALL VARIABLES IN SEQUENTIAL GENERIC MANNER FOR CORRECT DATA LOGIC OPERATION. In some

cases, the specifications could call to compare two variables with the same variable name but from different data
sets. The new generic variable names can handle something like this without any confusion by renaming datasets as
str1, str2, str3…and variables as v1, v2, v3 etc.

4. USE MACRO VARIABLES TO CREATE SAS MACRO CALLS. This is the most important section in this program: SAS to
create all macro calls according to the specifications. Here is an example creating one of macro calls.

SESUG 2013

2

First to define a variable, eg. getmydata1, in data step to store the macro call text:
 Getmydata1 =compbl("%nrstr(%getmydata)(l_num="||l_num||", v_num= 1 , str="||str1 ||", v="||v1

||")") ;
 Then to create the macro variable using above variable value and proc sql:
 select getmydata1 into : call_getmydata1 separated by ' ; ' from &prog._x;

Lastly, to call the macro, simply code as:
&call_getmydata1;

So when the program is submitted, the macro-calls will be resolved according to the specification, as shown
in the log:

%getmydata (l_num=001 , num= 1 , str=ELIG, v=SCRDT) ;

In a similar manner, all macro calls in the program can be generated.

5. MAKE THE IN-BETWEEN-MACROS CODE AND FINALIZE THE PROGRAM
First, program all macros that are not covered in the autocall or %include. Then put the macro-calls and any in-
between code in the correct sequence. So they can all work together properly.

APPLICATION

The same %include statement is needed for each query. The program could pick the correct query lists for each report
from their program name. Then it will choose the correct datasets and variable names, make the correct logic operation,
subset data, and output all query lists into each output report.

This program in theory should be able to handle most edit check query requests. However, some types of queries will be
more straightforward than others. You can always make you own decision to cover all specifications automatically, or
program the more complex queries manually.

The same idea can be used for other similar tasks. It should be able to handle all the programs directed by a table-like
specification. For example, the methodology may be applicable to generating simple analysis datasets, or part of it. The
purpose of this method is to let the specifications do the SAS programing whenever possible.

Contact information:
Y. Christina Song
Rho, Inc.
csong@rhoworld.com

