
SESUG 2013

1

Paper CC-09

The Power of Combining Data with the PROC SQL

Stacey Slone, University of Kentucky Markey Cancer Center

ABSTRACT

Combining two data sets which contain a common identifier with a MERGE statement in a data step is one of the
basic fundamentals of data manipulation in SAS

®
. However, one quickly realizes that there are many situations in

which a simple merge grows significantly more complicated. Real world data is usually not straightforward and often
analyses require combining radically different databases. These situations require a more sophisticated type of
merging. Using the SQL procedure, instead of the more traditional data step, is a powerful solution to merging data
in complicated situations.

This paper will demonstrate how to combine data using PROC SQL for more complex situations.

INTRODUCTION

Merging more than one data set within a DATA step is usually a fundamental step in creating analysis data sets
within SAS. However, PROC SQL can also be a powerful tool for building data sets. It can perform many of the
same functions as a data step. For complex situations where merges are not straightforward or summary data is
desired, PROC SQL can simplify coding into one step. This paper will focus on four situations in which using PROC
SQL to merge and create data sets can greatly improve efficiency and streamline coding, including:

1. Adding summary statistics to data sets,

2. Transposing a portion of the data,

3. Range merges,

4. Combining summary statistics within a range merge.

First, the data to be used in the examples will be introduced. Secondly, a basic example of PROC SQL code to
merge data will be demonstrated and compared to the analogous DATA step code.

LUNG CANCER SAMPLE DATA

To illustrate the merging of data with PROC SQL, three samples data sets from a completed randomized Phase II
study in lung cancer are utilized. The study consisted of 4 cycles of chemotherapy and assessed platelet levels with
at least 4 blood draws per cycle.

The first data set is the baseline data set which includes the patient identifier (PT_ID), age, gender and treatment arm
(ARM). There are 33 observations in the baseline data set, BASELINE, limited to patients in the active arm. The first
5 observations are shown in Output 1. The second data set, CHEMO, contains the dates of each patient’s four
chemotherapy cycles along with the cycle of chemotherapy. The CHEMO data set contains the patient identifier
(PT_ID), the cycle number (CYCLE) and the date of the chemotherapy treatment (D_DOSE). The third data set,
PLATELETS, will be introduced in a later section.

pt_id arm gender age

0145 ARM 2 FEMALE 60

0510 ARM 2 MALE 62

0591 ARM 2 MALE 64

1162 ARM 2 MALE 67

2807 ARM 2 FEMALE 65

Output 1: Sample of Baseline Data Set

pt_id Cycle d_dose

0145 CYCLE 1 11/07/2008

0145 CYCLE 2 11/28/2008

0145 CYCLE 3 01/09/2009

0145 CYCLE 4 02/06/2009

0479 CYCLE 1 04/02/2007

Output 2: Sample of Chemo Data Set

BASIC DATA MERGE WITH PROC SQL

The simplest code for merging two data with PROC SQL is shown below. The SELECT * tells PROC SQL to include
all variables from the BASELINE and CHEMO data sets. The FROM statement specifies the data sets to be merged
by the limitations given in the corresponding WHERE statement. Finally, the ORDER BY statement provides the
order in which the created data set, BASIC, should be sorted.

SESUG 2013

2

proc sql;

create table basic as

select *

from baseline, chemo

where baseline.pt_id=chemo.pt_id

order by cycle, d_dose, pt_id;

 Merged Baseline and Chemotherapy Data

 pt_id age gender arm cycle d_dose

 4798 45 FEMALE ARM 2 CYCLE 1 02/10/06

 4287 59 FEMALE ARM 2 CYCLE 1 05/12/06

 3762 57 FEMALE ARM 2 CYCLE 1 05/30/06

 8960 62 MALE ARM 2 CYCLE 1 06/28/06

 3978 55 FEMALE ARM 2 CYCLE 1 07/21/06

Output 3: Basic Example Output

The analogous code using a DATA step is shown below. Note that both data sets in the following code would need
to be sorted by pt_id prior to the DATA step being executed. Also, to change the sort order of the created data set, a
PROC SORT must follow the DATA step.

data basic;

merge baseline(in=in1) chemo(in=in2);

by pt_id;

run;

proc sort data=basic;

by cycle;

run;

PROC SQL has a few advantages that are apparent even with the simplest of examples.

 The data does not have to be presorted by the variables listed in the WHERE statement.

 The variables in the WHERE statement may have different names.

 The output dataset can be created with whatever sort order is specified in the ORDER BY statement.

ADDING SUMMARY STATISTICS TO DATA SETS

One expedient aspect of using PROC SQL for data merges is being able to add summary statistics into to a data set
in one procedure call. For example, assume we are interested in looking at the number of chemotherapy cycles each
patient received over the course of the clinical trial. The goal is to create a data set that contains one observation per
patient that includes demographic information and the total number of cycles per patient. Using the BASIC data set
created in our simple example above, this data set can be created within one PROC SQL call as illustrated in the
following code.

proc sql;

create table example1 as

select distinct *

from (select pt_id, age, gender, n (distinct cycle) as num_cycle

 from basic

 group by pt_id)

order by pt_id;

The first DISTINCT function causes the output data set to eliminate duplicate rows. The nested SELECT/FROM
statement counts the number of distinct cycles and the corresponding GROUP BY statement causes the count to be
on a per patient basis. This summarized data serves as the basis for the new data set EXAMPLE1. Please note that
without the nested GROUP BY statement, NUM_CYCLE would equal 4, the total number of distinct cycles, for each
patient.

SESUG 2013

3

A printout of the first 5 observations of the EXAMPLE1 data set is below:

 Summary Statistics: Total Cycles of Chemotherapy

 pt_id age gender num_cycle

 0145 60 FEMALE 4

 0510 62 MALE 3

 0591 64 MALE 2

 1162 67 MALE 2

 2807 65 FEMALE 4

Output 4: Adding Summary Statistics

TRANSPOSING A PORTION OF DATA

Assume next that we are interested in analyzing the median number of days between the initiation of cycles for the
subset of patients who received all four courses of chemotherapy. To analyze the data, we must first transpose the
data in order for the number of days between respective cycles to be computed. Using PROC SQL, the calculations
can be completed and the data summarized within one procedure call.

proc sql;

create table example2 as

select a.pt_id, a.age, a.gender, b.d_dose-a.d_dose as dif1, c.d_dose-b.d_dose as

 dif2, d.d_dose-c.d_dose as dif3,

 median(calculated dif1, calculated dif2, calculated dif3) as mcl

label="Median Cycle Length"

from (select pt_id, age, gender, d_dose from basic where cycle='CYCLE 1') a,

 (select pt_id, d_dose from basic where cycle='CYCLE 2') b,

 (select pt_id, d_dose from basic where cycle='CYCLE 3') c,

 (select pt_id, d_dose from basic where cycle='CYCLE 4') d

where (a.pt_id=b.pt_id) & (b.pt_id=c.pt_id) & (c.pt_id=d.pt_id)

order by a.pt_id;

Creating four subsets of the data in the FROM statement allows us to transpose the data such that each cycle date
becomes a variable instead of an observation. The letter notations (a,b,c,d) after each nested SELECT/FROM
statement provides aliases for each of the data subsets that can then be referenced. The variables age and gender
were only kept in the first subset since only they are unique to each patient and not to each cycle. The new variables
DIF1-DIF3 are the number of days between subsequent cycles. The calculation is performed in the SELECT
statement and a new variable name attached. In addition, the median of these three new variables is also added to
the data set in a variable called MCL. In order for PROC SQL to compute summary statistics on any new variables
created within the particular procedure call, the term CALCULATED must be added in front of the newly created
variable. This is demonstrated in with the MEDIAN function in the above code. Also, a label can be added to any
variable with the SELECT statement as shown above with the MCL variable. Formats may be added similarly. The
first five observations from the resulting data set are printed below.

 Summary Statistics: Median Days Between Cycles

 Median

 Cycle

 pt_id age Sex dif1 dif2 dif3 Length

 0145 60 FEMALE 21 42 28 28

 2807 65 FEMALE 20 21 21 21

 3119 63 FEMALE 21 24 18 21

 3720 67 FEMALE 21 35 28 28

 3978 55 FEMALE 21 21 28 21

Output 5: Transposing Data Example

SESUG 2013

4

RANGE MERGES

For the next two examples, an additional data set from the lung cancer trial will be introduced. The PLATELETS data
set consists of all platelet values collected for each patient during the clinical trial. The variables include the patient
identifier (PT_ID), the visit code (VISIT), the date of the blood draw (D_LAB) and the observed platelet value (PLT). If
a patient’s platelets were not in the appropriate range to receive the upcoming course of chemotherapy, then the
patient’s blood was redrawn a few days later and the visit labeled as “Unscheduled”. These visits occurred until the
patient was eligible to receive chemotherapy; hence, sometimes delaying a course by a week or more.

Five observations are printed in the output below:

Platelets Data Set (5 Obs)

pt_id visit d_lab plt

0145 UNSCHEDULED 01/05/09 270

0145 DAY 1 CYCLE 4 01/26/09 94

0145 UNSCHEDULED 01/27/09 128

0145 UNSCHEDULED 01/28/09 183

0145 UNSCHEDULED 02/02/09 460

Output 6: Sample of PLATELETS Data Set

For this next example, we are interested in all platelet values measured within 1 week prior to each chemotherapy
cycle. First, we need to merge the chemotherapy data, CHEMO, with the platelet data, PLATELET, to be able to
compare the date of the chemotherapy (D_DOSE) with the date of each blood draw (D_LAB). Creating this data set
would require difficult and tricky programming with a regular DATA step since we need to perform a “many to many”
merge with no common variable on which to perform the merge. The dates of the chemotherapy and the blood draw
are not the same and may not even be associated with the same cycle. Recall that if a patient’s platelets were not in
the proper range to receive chemotherapy, another blood draw was completed a few days later and the visit was
labeled as “Unscheduled” with no associated cycle.

However by using PROC SQL and adding a condition to compare the date of chemotherapy with the date of the
blood draw within the WHERE statement, the data set will be limited to the visits we want to match. The code
followed by a PROC PRINT of the first 10 observations is below.

proc sql;

create table example3 as

select chemo.pt_id, chemo.d_dose, chemo.visit as chemo, platelets.visit,

platelets.d_lab, platelets.plt

from chemo, platelets

where (chemo.pt_id=platelets.pt_id) & (0 le chemo.d_dose-platelets.d_lab le 7)

order by pt_id, d_lab;

All Blood Draws within 7 Days Prior to Chemotherapy

 pt_id d_dose chemo_cycle lab_draw d_lab plt

 0145 11/07/08 CYCLE 1 SCREENING 11/03/08 287

 0145 11/28/08 CYCLE 2 WEEK 3 CYCLE 1 11/21/08 58

 0145 11/28/08 CYCLE 2 DAY 1 CYCLE 2 11/24/08 113

 0145 11/28/08 CYCLE 2 DAY 5 CYCLE 2 11/28/08 301

 0145 01/09/09 CYCLE 3 UNSCHEDULED 01/05/09 270

 0145 01/09/09 CYCLE 3 DAY 5 CYCLE 3 01/09/09 270

 0145 02/06/09 CYCLE 4 UNSCHEDULED 02/02/09 460

 0145 02/06/09 CYCLE 4 DAY 5 CYCLE 4 02/06/09 461

 0479 04/02/07 CYCLE 1 SCREENING 04/02/07 250

 0479 04/02/07 CYCLE 1 DAY 5 CYCLE 1 04/02/07 250

Output 7: Range Merge Example

SESUG 2013

5

RANGE MERGE WITH SUMMARY STATISTICS

For the final example, we want to focus on the nadir platelet value measured within the week prior to chemotherapy.
We can use PROC SQL to summarize the data set we created in the previous example to give us the nadir value.
The code to calculate the minimum platelet value is

proc sql;

create table example4 as

select distinct *

from (select pt_id, chemo_cycle, min(plt) as nadir_plt

 from example3

 group by pt_id, chemo_cycle)

order by pt_id;

quit;

 Nadir Platelet Value within Blood Draws within 7 Days of Chemotherapy

 chemo_ nadir_

 pt_id cycle plt

 0145 CYCLE 1 287

 0145 CYCLE 2 58

 0145 CYCLE 3 270

 0145 CYCLE 4 460

 0479 CYCLE 1 250

 0479 CYCLE 2 175

 0479 CYCLE 3 156

 0479 CYCLE 4 143

Output 8: Range Merge & Summary Statistics Example

Note that the previous data set can be created directly from the raw chemotherapy and blood draw data sets by
nesting subqueries to create the data. The following code results in the same data set as the previous example
except it uses the raw data sets, CHEMO and PLATELETS.

proc sql;

select distinct pt_id, chemo_cycle, nadir_plt

from (select chemo.pt_id, chemo.d_dose, chemo.cycle as chemo_cycle, plt.visit as

 lab_draw, plt.d_lab, plt.plt, min(plt.plt) as nadir_plt

 from chemo, platelets plt

 where (chemo.pt_id=plt.pt_id) & (0 le chemo.d_dose-plt.d_lab le 7)

 group by chemo.pt_id, chemo_cycle)

order by pt_id;

CONCLUSION

PROC SQL is a valuable tool for the statistical SAS
®
 programmer. There are several advantages to using PROC

SQL in place of a DATA step even in the simple instances of merging data. However, the true strength in merging
data with PROC SQL lies in the situations when tricky data merging is required. In particular, when summary
statistics or range merges are required. The power of PROC SQL comes from being able to nest queries and
perform multiple tasks within one call of the procedure.

The primary weakness to PROC SQL is that it can be trickier to merge multiple data sets at one time. However,
since one can include multiple CREATE TABLE AS statements within one call of PROC SQL, it is not unmanageable.
This paper only touches on the possibilities of using PROC SQL in respect to the DATA step. PROC SQL is a
versatile, powerful tool to have at your disposal.

REFERENCES

SAS Institute Inc., 2004. SAS
®
 9.1 SQL Procedure User’s Guide. Cary, NC: SAS Institute Inc.

SESUG 2013

6

ACKNOWLEDGMENTS

The author would like to thank Dr. Susanne Arnold for sharing a portion of data from her randomized Phase II lung
cancer study. Also, the suggestions and critiques from L. Todd Weiss and Dr. Emily Van Meter were greatly
appreciated and strengthened the impact of the paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Stacey Slone
Enterprise: University of Kentucky Markey Cancer Center
Address: 800 Rose Street, CC440
City, State ZIP: Lexington, KY 40536
Work Phone: 859-323-1723
Fax: 859-257-7715
E-mail: Stacey.Slone@uky.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

