Paper JMP-02

From Raw Data to Beautiful Graph Using JSL
Michael Hecht, SAS Institute Inc., Cary, NC

Abstract

JSL is a powerful tool for manipulating raw data into the form needed for easy visualization in
JMP. This paper presents a case study of a working script that transforms raw iOS sales data
into an easy-to-interpret graph. Along the way, we learn how to summarize data, add formulas,
add complex column properties, and add table scripts, all with JSL.

Introduction

We have an iPad® app! It’s called Graph Buildert, and it has been in the Apple App Store since
March 5, 2012. Since then we have released several updates, and the app has been
downloaded over 10,000 times. As they do for all iOS app developers, Apple provides us with
data on app sales and downloads. Because our app is free, the sales amounts are always zero;
but it is interesting to track the number of downloads. We want to take the raw download
numbers that Apple provides, load them into JMP, and present them in a useful and pleasing
way.

Starting Point

Apple’s iTunes Connect website allows us to interactively download sales data for our app. They
also provide a Java program called Autoingestion? which can be used to automate the data
download.

Each download is a tab-delimited text file containing one day’s worth of data. In this text data
file format, each line represents a row of data; column values on the line are separated by a tab
character. The first line usually contains column names. It is a common text data file format on
Macintosh, and is sometimes referred to as a tab-separated values (or TSV) file.

The file names we download from Apple all have names like this:

S_D_XXXXXXXX_20120315. txt. They always start with the prefix “S_”, followed by “D_" for the
daily data file. (There is also a weekly data file available which has a “W_" in this part of the file
name.) Next comes an 8-digit number which is your Apple developer ID number (shown as eight
X’s in the example), followed by another underscore. Then the file names end with the date, in
YYYYMMDD representation. The example is the name of the file with the download data for
March 15, 2012.

We have a year’s worth of this data: 365 text files, one for each day. We want to somehow
combine them all in a way that helps us to easily visualize our download rates.

Final Result
Here is the final graph that our script produces.

5000 Graph Builder Downloads Category
Max(Version 10.2 Downloads): 7805 B Version 10.2 Downloads
7500~ Max(Version 10.1.0 Downloads): 4818 i
Max(Version 10.0.1 Downloads): 3618 I Version 10.1.0 Downloads

7000-| Max(Version 10.0.0 Downloads): 1525 B Version 10.0.1 Downloads

Max(Version 10.0.1 Updates): 1268 I Version 10.0.0 Downloads
6500 Max(Version 10.1.0 Updates): 2469

Max(Version 10.2 Updates): 3294 Version 10.0.1 Updates
Version 10.1.0 Updates
Version 10.2 Updates

6000

5500

5000

4500

4000

3500

Units (cumulative)

3000
2500
2000
1500
1000

500

05/01/2012 07/01/2012 09/01/2012 11/01/2012 01/01/2013 03/01/2013
End Date

The solid multi-color triangular area that takes up the “southeast” half of the graph shows the
progression of downloads over time. The bold-colored bands represent different versions that
we have released through the App Store. The lighter-colored “cliffs” in the foreground
represent update downloads from users which have already downloaded a previous version.
Their colors correspond to the bolder colors of first-time downloads of the same version.

We can judge the success of a release by noticing how close, for example, the light blue cliff
approaches its corresponding bold blue band. The gap between these two represent users that
downloaded the first version but, for whatever reason, never upgraded it. We can easily see
how this gap widens with each version.

In the top left corner, we see the actual counts for both new downloads and updates.

A JSL script automatically creates this for us each day. Let’s break this script down to see how it
works.

Step 1: Importing
The first step is of course to import the raw text data files into JMP. JMP can easily import a
single data file. Just open the file as Data (Best Guess), and JMP does all the heavy lifting.

(== H
Data Filter Tabulate Sort Distributi

S_D_XXXXXXXX_20120315

[+]S_D_XXXXXXXX_2012... » | <
[~|Source 4]

[~|Columns (20/0)

il Provider

il Provider Country

il SKU

ills Developer

ik Title

ik Version

il Product Type Identifier
A Units

A Developer Proceeds
A Begin Date

A End Date

ils Customer Currency
il Country Code

il Currency of Proceeds

[~|Rows
All rows
Selected
Excluded
Hidden
Labelled

%)

cococod&

y it >
I—"' N lﬂJ /
Fit Y by X ivaris Graph Builder Bubble Plot Scatterplot 3D
[~ Product Type
Provider Provider Country SKU Developer Title Version Identifier Units
1 APPLE US com.sas.GraphBuilder SAS Institute Inc. JMP Graph Builder 1.0 1T 24
2 APPLE US com.sas.SMABriefingBook SAS Institute Inc. Briefing Book 1.0.1 1T 2
3 APPLE US com.sas.marketing. SASNews ~ SAS Institute Inc. SAS News 1.4 1T 1
4 APPLE US com.sas.education.FlashCards SAS Institute Inc. SAS Flash Cards ~ 2.3.1 7F 1
5 APPLE US com.sas.education.FlashCards SAS Institute Inc. SAS Flash Cards 2.3.1 1F 1
6 APPLE US com.sas.education.FlashCards SAS Institute Inc. SAS Flash Cards 2.3.1 1F 33
7 APPLE US com.sas.marketing.SASNews SAS Institute Inc. SAS News 1.4 1T 1
8 APPLE US com.sas.SMARealTimeTweets SAS Institute Inc. Real Time Tweets 1.0 1T 1
9 APPLE US com.sas.GraphBuilder SAS Institute Inc. JMP Graph Builder 1.0 1T 1
10 APPLE US com.sas.SMARealTimeTweets SAS Institute Inc. Real Time Tweets 1.0 1T 1
11 APPLE US com.sas.SMARealTimeTweets SAS Institute Inc. Real Time Tweets 1.0 1T 2
12 APPLE US com.sas.SMABriefingBook SAS Institute Inc. Briefing Book 1.0.1 1T 1
13 APPLE US com.sas.education.FlashCards SAS Institute Inc. SAS Flash Cards 2.3.1 7F 1
14 APPLE US com.sas.GraphBuilder SAS Institute Inc. JMP Graph Builder 1.0 1T 2
15 APPLE US com.sas.education.FlashCards SAS Institute Inc. SAS Flash Cards 2.3.1 1F 2
16 APPLE US com.sas.education.FlashCards SAS Institute Inc. SAS Flash Cards 2.3.1 1F 1
17 APPLE US com.sas.GraphBuilder SAS Institute Inc. JMP Graph Builder 1.0 1T 1
18 APPLE US com.sas.SMABriefingBook SAS Institute Inc. Briefing Book 1.01 1T 1
19 APPLE US com.sas.SMABriefingBook SAS Institute Inc. Briefing Book 1.0.1 7T 1
20 APPLE US com.sas.SMABriefingBook SAS Institute Inc. Briefing Book 1.0.1 T 1
21 APPLE US com.sas.education.FlashCards SAS Institute Inc. SAS Flash Cards 2.3.1 1F 1
22 APPLE US com.sas.GraphBuilder SAS Institute Inc. JMP Graph Builder 1.0 1T 1

JMP already understands the tab-delimited text file format, and it automatically names the
columns for us appropriately. Notice that the data file contains download information for all of

SAS Institute’s iOS apps

— not just for Graph Builder, which we’re interested in. Also notice the

Product Type Identifier column. This coded column distinguishes between new downloads and
update downloads from a previous version.

JMP also adds a Source
this data table. It’s very

Open(

"$DESKTOP/10S

columns (
Column(
Column(
Column(
Column(
Column(
Column(
Column(
Column(

table property. This is a JSL description of the operation that produced
handy for us because we can use it as a starting point for our script.

Sales/Data/S_D_XXXXXXXX_20120315. txt",

"Provider", Character, Nominal),

"Provider Country", Character, Nominal),

"SKU", Character, Nominal),

"Developer", Character, Nominal),

"Title", Character, Nominal),

"Version", Character, Nominal),

"Product Type Identifier", Character, Nominal),
"Units", Numeric, Continuous, Format("Best", 10)),

Import Settings(

End Of
End Of

Line(CRLF, CR, LF),
Field(Tab, Comma, CSV(1)),

Strip Quotes(1),

Use Apostrophe as Quotation Mark(0),
Scan Whole File(1),

Treat empty columns as numeric(0),
CompressNumericColumns(0),
CompressCharacterColumns(0),
CompressAllowListCheck(0),

When run, we get the exact same result as when we performed the operation interactively.
Actually, this script is a bit verbose. I've already trimmed out parts of it, but we can reduce it
down to just this, and let JIMP use its own defaults for the rest.

// Import one file
Open(
"Data/S_D_XXXXXXXX_20120315.txt",
Columns(
Column("Provider", Character, Nominal),
Column("Provider Country", Character, Nominal),
Column("SKU", Character, Nominal),
Column("Developer", Character, Nominal),
Column("Title", Character, Nominal),
Column("Version", Character, Nominal),

),
Import Settings(End Of Field(Tab))

);

There are a few things to note here. First, we save this script in the same directory as our
“Data” directory. That allows us to refer to our data files by a relative path. Second, we provide
explicit descriptions for the first six columns, because in some input files, JMP has trouble
determining on its own that they should be character columns.

So far, our script works fine for a single data file, but we want to import all the data files. So we
need to put a loop around our script. But how will we loop through all the files in our “Data”
directory? Simple: we use JSL’s Files In Directory() function!

// Import all files

files = Files In Directory("Data");

For(i =1, 1 <= N Items(files), i++,
f = files[i 1;

// Skip if not a data file
If(!'Ends With(f, ".txt"), Continue());
If(!Starts With(f, "S_D_"), Continue());

Write(Eval Insert("\!N~i”: Importing ~f~"));
Open(Eval Insert("Data/~f"™"),

);
);

On the first line, Files In Directory() returns a list of all the file names within the “Data”
directory. We can easily iterate through this list with a For() loop on line 2.

Inside the For(), we want to skip past files that may be in that directory, but aren’t data files
that we want to import. The first If() looks for files whose names don’t end with “.txt”. When a
file name like this is encountered, we use the Continue() function, which starts us back at the
top of the For(), for the next value of i. The second If() filters out files whose names don’t start
with “S_D_", in the same fashion.

Next, we write a message to the log, just to help us see what’s going on; then we import the it
file, as before. Both of these operations use the handy Eval Insert() function. This function
returns its input string, after it evaluates each expression delimited by the caret symbols (*) and
replaces that text with the result. So #i* becomes the value of i for each loop iteration, and Af*
becomes the file name. We follow the JMP convention of writing each line to the log starting
with a newline sequence (“\IN”).

This does the job — sort of. When we run it, we get 365 data table windows, one for each data
file in the year’s worth of data we’re importing. We really need to concatenate all these data
files into a single data table; and we don’t need to see all the intermediate data tables in the
process!

The first data file we import should become the beginning of our final data table. All others
imported after that should be concatenated to it. So we need a way to distinguish the first table
from the rest. We could just use If(i==1, ...), but that won’t work if the first file in the
directory is one we want to skip over. Here’s a better solution.

// Import all files and concatenate them together
dt = Empty();

files = Files In Directory("Data");

For(i =1, i <= N Items(files), i++,
f = files[i 1;
If(!'Ends With(f, ".txt"), Continue());
If(!Starts With(f, "S_D_"), Continue());

Write(Eval Insert("\!N"~i”: Importing ~f~"));
adt = Open(Eval Insert("Data/"~f™"),
Columns(

)y
Import Settings(End Of Field(Tab)),

Invisible

);

If(Is Empty(dt),
// First import
dt = adt;

// All subsequent imports
dt << Concatenate(adt, Append to first table);
Close(adt, No Save);
);
);

// Save the combined data file
dt << Delete Table Property("Source");
dt << Set Name("iOS Sales");
dt << Save("i0S Sales.jmp");

dt << New Data View; // For debugging only

How does this work? We start by creating a variable dt, which will hold the reference to our
final data table. We need to initialize it to a value that lets us distinguish the first import from
the ones to follow; so we use the Empty() function.

Each import places the reference to the imported data table in the variable adt. Note the
addition of the Invisible option on the Open(). That option tells JMP to not go to the effort to
create a window for this data table. It imports the data and creates all the usual data table
structures in memory, it just doesn’t actually show us the table in a window. This actually
speeds up the script’s execution quite a bit!

The next If() determines whether this is the first import or a subsequent import. It doesn’t work
to use If(dt == Empty(), ...). Instead, we must use the Is Empty() function to test for that. If
true, this is the first import so we just move adt to dt.

The second half of the If() is used for all imports after the first one, because now dt is no longer
empty. For these imports, we use the << Concatenate message to append a copy of the data
rows to the first import. After that, we don’t need the data table we just imported, so we close
it.

Outside the loop, dt holds a reference to the data table that has all of our combined data in it.
We do some final fix-up on the table: we delete its Source property, which will be the Open()
command that imported the initial data file. We also set the data table’s name; we don’t want
it to have some crazy name like “S_D_blah_blah_blah”! Then we save the table to disk for
future reference.

But it’s still invisible. So we send it the << New Data View message to tell JMP that it’s time to
make a window. This is just a temporary step for debugging, so we can see our progress along
the way.

Step 2: Making a Subset

We now have all of our raw data stored in one combined JMP data table. But this data table
contains download information for all SAS Institute apps. We would like to restrict it to just the
data that pertains to our Graph Builder app. Interactively, we could do this with the Distribution
platform; but from JSL, our best choice is to use the << Subset message.

// Make a subset of just the Graph Builder sales

dt << Select Where(:SKU == "com.sas.GraphBuilder");

dt subset = dt << Subset(Selected Rows(1), Invisible);
dt << Clear Row States;

// Done with combined data table
Close(dt, No Save);

dt subset << Delete Table Property('"Source");
dt subset << Set Name("iOS Sales (Graph Builder)");
dt subset << Save("i0S Sales (Graph Builder).jmp");

dt subset << New Data View; // For debugging only

In JSL, making a subset is a two-step process. First, we select all the rows that we want to
include in the subset; then, we construct a subset of the selected rows. The << Select Where

message accomplishes the first part. We send it to our combined data table, and it selects only
the rows where the SKU column has the value “com.sas.GraphBuilder”, which is the unique
identifier for our application on the App Store. We use the SKU instead of the app name,
because our app’s SKU will stay the same even if we decide to rename our app.

Next, we send our combined data table the << Subset message. This message returns a
reference to a new data table containing the subset. The Selected Rows(1) argument does not
mean to only use one selected row. The 1 means “yes, use selected rows”. Note the continued
use of the Invisible option, to prevent JMP from making windows for these data tables before
we’re ready for them.

Finally, we send our combined data table the << Clear Row States message. This deselects the
rows we just selected. It’s not strictly necessary in this case, but if you need to do it, this is how
it's done. At this point, we're finished with the combined data table so we close it.

We can now do a little fix-up on the subset data table that we still hold a reference to. As
before, we delete its Source property (this one will be the << Subset message), name it, and
save it to disk.

Step 3: Summarizing

We have now extracted the portion of the data we want to graph. But we need to reshape it
into a format that allows us to create the graph we want. We want a Graph Builder area graph
with the “new download” categories stacked. But at the same time, we want the “update
download” categories overlaid. If we could look at it in 3D, we can see how we trick Graph
Builder into doing this.

End Date

01/01/2012 05/01/2012 o831 20121231/
8000 ——

7000 —t —

Units

e 5 - 5 . . =12/31/2012
ve/C T~ - —=08/31/2012
090r, 3 < 0501/2012 2\@

VR : ?)‘60

1 ~01/01/2012

This view informs us how to reshape the data:

e We need an overlay variable with a separate value for each overlaid version and download
method.

e The Y variable is the cumulative units.

e When a new version is introduced, the units for the current version stay constant at their
maximum value.

e Unit values before a version is introduced just have the same value as their prior version. But
you can’t see them because the prior version is overlaid precisely on top. So they appear to
be stacked.

Our overlay categories need to be a combination of the Version column and the Product
Identifier Type column. Apple’s documentation for their sales data format describes all the
values that Product Identifier Type can have. But for our purposes, we need only be concerned
with “1T”, which means “new download” and “7F”, which means “update download”. For
example, Version 10.0.1 has both new and update downloads, so we will need categories for
“10.0.1, 1T7” and “10.0.1, 7F”.

Our subset data also has multiple rows for each day, corresponding to the sales in separate
countries. We want to combine these rows together; so we have a single row for each day, with
separate values for each Version/Product Identifier Type combination. We can use JMP’s
Summary command to do all of this. Here’s how we set up the command interactively.

® O O Summary

E}}E Request Summary Statistics by Grouping Columns.

Select Columns Action

'~/ 20 Columns | Statisticsv | Sum(Units) oK |
ills Provider optiona
il Provider Country . . Cancel |
il SKU | Group | 2 BeginDate ——
ill: Developer £ End Date
il Title opliona Remove |
il Version R
il Product Type Identifier U U Recall |
AUnits | Subgroup | Version
ADeveloper Proceeds Product Type Identifier)
_ABeain Date

|| Include marginal statistics

For quantile statistics, enter value (%)
25

statistics column name format
stat(column) v

Output table name:

[| Link to original data table

| | Keep dialog open

We will compute the sum of all the Units downloaded on a given day. So we must group by
Begin/End Date. (They are always the same date.) Using the Subgroup feature, we can specify
that separate Unit counts should be computed for each unique combination of Version and
Product Type Identifier. The resulting table looks like this.

® 006 iOS Sales (Graph Builder) By (Begin Date, End Date).jmp

T = A

Data Filter Tabulate Sort Distribution FitY by X Multivariate Graph Builder Bubble Plot Scatterplot 3D

[+]iOS Sales (Graph Builde... » | < [~ Sum(Units, 10.0, Sum(Units, 10.0.1, Sum(Units, 10.0.1,
[+]Source [+l Begin Date End Date N Rows 1T) 1T) 7M)

40 04/13/2012 04/13/2012 9 32 . .
‘ 41 04/14/2012 04/14/2012 8 18 . .
[~|Columns (10/0) 42 04/15/2012 04/15/2012 8 14 . .
A Begin Date 43 04/16/2012 04/16/2012 7 26 . .
A End Date 44 04/17/2012 04/17/2012 1 26 . .
A N Rows 45 04/18/2012 04/18/2012 9 23 . .
A Sum(Units, 10.0, 1T) 46 04/19/2012 04/19/2012 10 28 . .
A Sum(Units, 10.0.1, 1) 47 04/20/2012 04/20/2012 7 17 . .
jg“m(g"!zs'}g-?-1;T7T) 48 04/21/2012 04/21/2012 7 11 . .
Asﬁﬂfuﬂ!ti’m'{nﬁ 49 04/22/2012 04/22/2012 37 12 23 296
4 Sum(Units, 102, 1T) 50 04/23/2012 04/23/2012 41 . 30 252
A Sum(Units, 10.2, 7T) 51 04/24/2012 04/24/2012 28 . 23 122

52 04/25/2012 04/25/2012 21 . 21 70
‘ 53 04/26/2012 04/26/2012 19 . 24 65
~]Rows 54 04/27/2012 04/27/2012 17 . 23 29
All rows 366 55 04/28/2012 04/28/2012 14 . 12 50
Selected 0 56 04/29/2012 04/29/2012 10 . 15 33
Excluded 0 57 04/30/2012 04/30/2012 14 . 24 21
Hidden 0 58 05/01/2012 05/01/2012 14 . 1 23
Labelled 0 59 05/02/2012 05/02/2012 20 . 30 14

We now have a single row for each date. We also have a separate column for each Version/
Product Type Identifier combination. The data values in those columns are the number of
downloads of that category. For example, we can see that on April 22, Version 10.0.1 was
released. On that day, in the hours before its release, there were 12 new downloads of Version
10.0. After Version 10.0.1 became available, there were 23 downloads of the new version and
296 updates from users who already had Version 10.0.

As before, the Source table property describes what we just did in script form.

Data Table("i0OS Sales (Graph Builder)") << Summary(
Group(:Begin Date, :End Date),
Sum(:Units),
Subgroup(:Version, :Product Type Identifier),
Link to original data table(0)

We can add this to the script we are constructing, changing the source table to the reference
we already have, and adding the usual Invisible option. The << Summary message returns a
reference to the summary data table it creates, so we want to capture that.

// Summarize the Graph Builder sales data

dt temp = dt subset << Summary (
Group(:Begin Date,
Sum(:Units),

Subgroup(:Version,

);

// Done with Graph Builder subset
Close(dt subset, No Save);

dt temp << New Data View;

:End Date),

Link to original data table(0),

Invisible

Step 4: Stacking

:Product Type Identifier),

// For debugging only

So far, we’ve managed to split up our data into the categories we need. But to produce the
graph we want, we really need all of the units to be in a single column. And we need another
column of just the categories. So we need to Stack all our Sum(Units, ... columns together, like

SO.

e 00

Stack

Select Columns

[~] 10 Columns
ABegin Date
AEnd Date
AN Rows

_ASum(Units, 10.0, 1T)
ASum(Units, 10.0.1, 1T)
_ASum(Units, 10.0.1, 7T)
_ASum(Units, 10.1, 1T)
_ASum(Units, 10.1, 7T)
ASum(Units, 10.2, 1T)
_ASum(Units, 10.2, 7T)

(¥ stack By Row

Non-stacked columns
(o) Keep all selected

() Drop all selected

™ Select

| Multiple series stack

| Eliminate missing rows

Begin Date

End Date

N Rows

Sum(Units, 10.0, 1T,

| Keep dialog open

E%‘E Stack values from multiple columns into a single column.

| Stack Columns | Sum(Units, 10.0, 1T) | OK |

| Remove

Output table name:

Stacked Data Column
Source Label Column
(¥ Copy formula

[2] Suppress formula evaluation

Action

Sum(Units, 10.0.1, 1T)
| Sum(Units, 10.0.1, 7T) | Cancel |
Sum(Units, 10.1, 1T)

Sum(Units, 10.1, 7T)

Sum(Units, 10.2, 1T) | Recall |
Sum(Units, 10.2, 7T))
optional)

Graph Builder Download Summary

New Column Names

Units

Category

10

This gives us a new data table with our data reshaped.

[CHGNG] # Graph Builder Download Summary
= (T [TH] . E
= & o) B
Data Filter Tabulate Sort Distribution FitY by X Multivariate Graph Builder Bubble Plot Scatterplot 3D
[+|Graph Builder D... » | < [~
[+]Source [+] Begin Date End Date Category Units
1 03/05/2012 03/05/2012 Sum(Units, 10.0, 1T) 2
2 03/05/2012 03/05/2012 Sum(Units, 10.0.1, 1T) .
3 03/05/2012 03/05/2012 Sum(Units, 10.0.1, 7T) .
4 03/05/2012 03/05/2012 Sum(Units, 10.1, 1T) .
[~]Columns (4/0) 5 03/05/2012 03/05/2012 Sum(Units, 10.1, 7T) .
A Begin Date 6 03/05/2012 03/05/2012 Sum(Units, 10.2, 1T) .
A End Date 7 03/05/2012 03/05/2012 Sum(Units, 10.2, 7T) .
il Category 8 03/06/2012 03/06/2012 Sum(Units, 10.0, 1T) 123
A Units 9 03/06/2012 03/06/2012 Sum(Units, 10.0.1, 1T) .
10 03/06/2012 03/06/2012 Sum(Units, 10.0.1, 7T) .
11 03/06/2012 03/06/2012 Sum(Units, 10.1, 1T) .
12 03/06/2012 03/06/2012 Sum(Units, 10.1, 7T) .
13 03/06/2012 03/06/2012 Sum(Units, 10.2, 1T) .
14 03/06/2012 03/06/2012 Sum(Units, 10.2, 7T) .
[~|Rows 15 03/07/2012 03/07/2012 Sum(Units, 10.0, 1T) 66
All rows 2,562 16 03/07/2012 03/07/2012 Sum(Units, 10.0.1, 1T) .
Selected 0 17 03/07/2012 03/07/2012 Sum(Units, 10.0.1, 7T) .
E’i‘;‘j‘;‘:‘e" g 18 03/07/2012 03/07/2012 Sum(Units, 10.1, 1T) .
Labelled 0 19 03/07/2012 03/07/2012 Sum(Units, 10.1, 7T) .
20 03/07/2012 03/07/2012 Sum(Units, 10.2, 1T) .

And we can once again use the handy Source property to see how our interactive work is
expressed in JSL.

Data Table("iOS Sales (Graph Builder) By (Begin Date, End Date).jmp") <<
Stack(
columns (

:Name("Sum(Units, 10.0, 1T)"),
:Name("Sum(Units, 10.0.1, 1T)"),
:Name("Sum(Units, 10.0.1, 7T)"),
:Name("Sum(Units, 10.1, 1T)")
:Name("Sum(Units, 10.1, 7T)")
:Name("Sum(Units, 10.2, 1T)")
:Name("Sum(Units, 10.2, 7T)")

-~ - 0~

),

Source Label Column("Category"),

Stacked Data Column("Units"),

Name("Non-stacked columns")(Keep(:Begin Date, :End Date)),
Output Table("Graph Builder Download Summary")

But now we have a problem! We don’t know a priori how many Version/Product Type Identifier
categories to expect, so how are we supposed to we build the Columns() argument? And when
we release the next version of our app, we would like our graph to simply adjust without us
having to edit the script. Can we code our script in such a way that it automatically determines
how many columns to stack?

11

Yes we can! Here is a JSL snippet that loops through all the columns in dt temp, and determines
which ones are Units columns.

// Locate all Unit columns
For(¢ =1, ¢ <= N Cols(dt temp), c++,

);

col = Column(dt temp, c);

col name = col << Get Name;

col words = Words(col name, ",");

If(col words[1 1 !'= "Sum(Units", Continue());

Write(Eval Insert("\!N*~c”: ~col words™"));

For each column, this script gets its name, then uses the Words() function to break up the
column name into “words” separated by commas. The rest of the loop only considers columns
whose name starts with the “word” “Sum(Units”. This gives us just the columns we want, as we
can see on the JMP Log.

4: {"Sum(Units", " 10.0", " 1T)"}
5: {"Sum(Units", " 10.0.1", " 1T)"}
6: {"Sum(Units", " 10.0.1", " 7T)"}
7: {"Sum(Units", " 10.1", " 1T)"}
8: {"Sum(Units", " 10.1", " 7T)"}
9: {"Sum(Units", " 10.2", " 1T)"}
10: {"Sum(Units", " 10.2", " 7T)"}

So instead of writing them to the log, let’s collect their column references into a list. We can
then pass that list to the << Stack message, and it will automatically stack all the unit columns

for us.

stack cols = {};

// Collect all Unit columns
For(¢ = 1, ¢ <= N Cols(dt temp), c++,

);

col = Column(dt temp, c);

col name = col << Get Name;

col words = Words(col name, ",");

If(col words[1 1 !'= "Sum(Units", Continue());

Insert Into(stack cols, Column(dt temp, col name));

// Stack the Units; create the categories
summary = dt temp << Stack(

dt

);

Columns(stack cols),

Output Table Name("Graph Builder Download Summary"),

Source Label Column("Category"),

Stacked Data Column("Units"),

Name("Non-stacked columns")(Keep(:Begin Date, :End Date))

12

Running this script gives us the same stacked data table we were able to create interactively.
But we didn’t need to explicitly name all the Units columns — the script found them for us
automatically!

Step 5: Computing Cumulative Units

So far, we’ve managed to import our data, combine it together, subset only the part we want,
and reshape it into a form ready for graphing. Unfortunately, it’s not really the data that we
want to graph. We have the day-to-day download numbers, but we want to see cumulative
download numbers.

We can compute a cumulative unit number with a column formula. This formula will be much
easier to build on the unstacked data, so let’s back up a step to before our data was stacked.
We can add formula columns to compute cumulative units to the unstacked data table, then
stack the formula columns instead of the day-to-day columns.

Preparation

What these formulas look like? We have a column for Sum(Units, 10.0, 1T) with the day-to-day
numbers for new downloads of Version 10.0. We will create a new column named Version 10.0
Downloads with this column formula.

Sum(Sum(Units, 10.0, 1T), Lag(Version 10.0 Downloads, 1))

This is your basic cumulative column formula. It sums together the current row’s day-to-day
download number with the previous row’s cumulative download number. The result looks like
this.

iOS Sales (Graph Builder) By (Begin Date, End Date).jmp

O = =R O

Data Filter Tabulate Sort Distribution FitY by X Multivariate Graph Builder Bubble Plot Scatterplot 3D

5313,

[+]iOS Sales (Graph Builde... » | < [Sum(Units, 10.0, Version 10.0
[~]Source [+] Begin Date End Date N Rows 1) Downloads
‘ 43 04/16/2012 04/16/2012 7 26 1408
[~|Columns (17/2) 44 04/17/2012 04/17/2012 1 26 1434
A Begin Date 45 04/18/2012 04/18/2012 9 23 1457
A End Date 46 04/19/2012 04/19/2012 10 28 1485
A N Rows 47 04/20/2012 04/20/2012 7 17 1502
A Sum(Units, 10.0, 1T) 48 04/21/2012 04/21/2012 7 11 1513
A Version 10.0 Downloads + 49 04/22/2012 04/22/2012 37 12 1525
[~|Rows 50 04/23/2012 04/23/2012 41 . 1525
All rows 366 51 04/24/2012 04/24/2012 28 . 1525
Selected 0 52 04/25/2012 04/25/2012 21 . 1525
Excluded 0 53 04/26/2012 04/26/2012 19 . 1525
Hidden 0 54 04/27/2012 04/27/2012 17 . 1525
Labelled 0 55 04/28/2012 04/28/2012 14 . 1525
56 04/29/2012 04/29/2012 10 . 1525 |

13

Because we use the Sum() function, the cumulative download number stays at its maximum
value after we run out of day-to-day numbers (i.e. when a new version is released).

What about Version 10.0.1 — what should its column formula look like? It’s similar to the one
we just created, but it should include the downloads from the prior version as well.

Sum(

Sum(Units, 10.0, 1T),

Sum(Units, 10.0.1, 1T),

Lag(Version 10.0.1 Downloads, 1)
)

We do this so that in our graph, these categories will appear to be stacked on top of each other,
even though we are using an overlay. In general, each cumulative formula for downloads
follows this pattern:

Sum(
<day-to-day downloads for all versions, up to and including this one>,
Lag(this column, 1)

)

We need to construct cumulative columns for the update units as well. But since they won’t
appear stacked in our graph, they can use the basic formula.

Sum(
<day-to-day update downloads for this version only>,
Lag(this column, 1)

)

Once we’ve created all these new cumulative columns, we can stack them instead of the day-
to-day columns. Their column names will become our categories.

Coding
So how do we construct these new columns and their formulas in JSL?

We can start by creating names for them. Let’s go back to our column collection loop and add
some code to construct a column name for each formula column. We'll call it form col name.

14

// Add cumulative columns
For(¢ =1, ¢ <= N Cols(dt temp), c++,
col = Column(dt temp, c);
col name = col << Get Name;
col words = Words(col name, ",");
If(col words[1] != "Sum(Units", Continue());

ver = Trim(col words[2 1);
act code = col words[3 1;
Match(act code,
" 1T7)", action
" 7T)", action
Throw()

"Downloads",
"Updates",

);
form col name = Eval Insert("Version “ver”™ “action™");

Write(Eval Insert("\!N*~c”*: ~form col name™"));
);

Note the use of Throw(), in case Apple gives us a Product Type Identifier we don’t expect.
Running this script puts the following on the JMP Log. So far, so good.

4: Version 10.0 Downloads
5: Version 10.0.1 Downloads
6: Version 10.0.1 Updates
7: Version 10.1 Downloads
8: Version 10.1 Updates

9: Version 10.2 Downloads
10: Version 10.2 Updates

Now we need to make a new column each time through the loop, and give it a formula. We’'d
like to use the same technique we learned to make the list of stacking columns here. But
because of the complexity of building and adding formulas, we need a different method. We
will do this by building a string that has the JSL to add the column. Then we can parse and
evaluate the string to make it actually happen.

Each formula is just a Sum() function, but they have different arguments. If we can build the
arguments in a string, then we can add the column and its formula with this code. Note that in
our script, the JSL string is all on a single line.

// Add cumulative columns
For(¢ =1, ¢ <= N Cols(dt temp), c++,

set formula str = Eval Insert('"dt temp << New Column(\!"~form col name™\!",
Numeric, Continuous, Formula(Sum(~sum arg str™)))");

Eval(Parse(set formula str));
);

There are a few things to be aware of here: first, our string of JSL must necessarily have other
strings inside it. To make this work, we need to write the embedded string’s quotes in escaped
form: \!". Second, once we have built set formula str — our string containing the JSL we want to

15

perform — we use Eval(Parse()) to make it happen. Parse() converts our string into a JSL
expression. Eval() evaluates that expression, performing the action it describes.

Now we just need to build sum arg str. Let’s start by making a list of the columns we want to
sum. For downloads, that will be a list of all the columns we’ve processed so far. For updates,
it’s just the one column we’re currently processing. We can express that in JSL this way:

download cols = {};

// Add cumulative columns
For(¢ =1, ¢ <= N Cols(dt temp), c++,

sum cols = {};

Match(action,

"Downloads",
Insert Into(download cols, col);
sum cols = download cols;

’
"Updates",

Insert Into(sum cols, col);
);

Write(Eval Insert("\!N~c”: ~form col name”: “~sum cols™"));

);

This logic is a bit complicated to follow. But basically, we are creating a list of all the download
columns, named download cols. Each column we process with the “Downloads” action, we
insert into this list. That’s the list we will pass to Sum(), so we move it to sum cols. For update
columns, we simply sum the column itself, so there we set sum cols to a list of only one item.

Here’s the JMP Log output from the above script.

4: Version 10.0 Downloads: {Column("Sum(Units, 10.0, 1T)")}

5: Version 10.0.1 Downloads: {Column("Sum(Units, 10.0, 1T)"), Column("Sum(Units,
10.0.1, 1T)")}

6: Version 10.0.1 Updates: {Column("Sum(Units, 10.0.1, 7T)")}

7: Version 10.1 Downloads: {Column("Sum(Units, 10.0, 1T)"), Column("Sum(Units,
10.0.1, 1T)"), Column("Sum(Units, 10.1, 1T)")}

8: Version 10.1 Updates: {Column("Sum(Units, 10.1, 7T)")}

9: Version 10.2 Downloads: {Column("Sum(Units, 10.0, 1T)"), Column("Sum(Units,
10.0.1, 1T)"), Column("Sum(Units, 10.1, 1T)"), Column("Sum(Units, 10.2, 1T)")}
10: Version 10.2 Updates: {Column("Sum(Units, 10.2, 7T)")}

Notice that each “Downloads” column gets a progressively longer list, but the “Updates”
columns have lists with only one item.

We now have the list of column references we want to sum in the variable sum cols. (We also
want to sum the Lag(current column), but we’ll add that in a minute.) We just need to get this
list into string form so we can insert it into our formula. We'll do that by making an
intermediate list that has each column’s name as a string. That is, we want to convert this:

16

{ Column(a), Column(b), Column(c)}

to this:
{ ||:a||, ":b", ||:C|| }

Here is some code to do it.

sum col strs = {};
For(1 =1, i <= N Items(sum cols), i++,

Insert Into(sum col strs, Eval Insert(":Name(\!"~sum cols[i] << Get
Name”~\!")"));

This code loops through all the items of sum cols, and inserts a corresponding string into sum
col strs. The string is built using our old friend Eval Insert(). It has this form: “:Name("*name of
this col")",

Again we use of the special escape sequence \!" to embed double quote characters in our
string. Second, we must use the Name() operator to build the column name. That’s because our
column names have parentheses and commas, which would otherwise confuse JIMP when we
ask it to parse the string we’re building. Finally, we’re using a more complex expression within
the carets of our Eval Insert() this time. We actually send the << Get Name message to the
column reference within the sum cols list directly. Pretty powerful stuff!

After that, we can add a final element to sum col strs for the Lag() of the current column. Then
we build sum arg str by using the Concat Items() function to concatenate all our sum col strs
columns together, separated by commas.

download cols = {};

// Add cumulative columns
For(¢ =1, ¢ <= N Cols(dt temp), c++,

sum col strs = {};
For(i =1, i <= N Items(sum cols), i++,
Insert Into(sum col strs, Eval Insert(":Name(\!"~sum cols[i] <<
Get Name~\!")"));
);
Insert Into(sum col strs, Eval Insert("Lag(:~form col name®, 1)"));
sum arg str = Concat Items(sum col strs, ", ");

Write(Eval Insert("\!N*~c”: ~form col name”: “~sum arg str™"));
);

17

Once again, we check the JMP Log to make sure our JSL is doing what we want.

4: Version 10.0
Downloads, 1)

5: Version 10.0.

l10.0.1, 1T)"),

6: Version 10.0.

Updates, 1)

7: Version 10.1
10.0.1, 1T)"),
8: Version 10.1
Updates, 1)

9: Version 10.2
10.0.1, 1T)"),
Lag(

Updates, 1)

:Version 10.2 Downloads,
10: Version 10.2 Updates:

Downloads: :Name("Sum(Units, 10.0, 1T)"), Lag(:Version 10.0
1 Downloads: :Name("Sum(Units, 10.0, 1T)"),
Lag(:Version 10.0.1 Downloads, 1)

1 Updates: :Name("Sum(Units, 10.0.1, 7T)"), Lag(

Downloads: :Name("Sum(Units, 10.0, 1T)"), :Name("Sum(Units,
:Name("Sum(Units, 10.1, 1T)"), Lag(:Version 10.1 Downloads,
Updates: :Name("Sum(Units, 10.1, 7T)"), Lag(:Version 10.1

Downloads: :Name("Sum(Units, 10.0, 1T)"),
:Name("Sum(Units, 10.1, 1T)"), :Name("Sum(Units,
1)

:Name("Sum(Units, 10.2, 7T)"), Lag(

:Name("Sum(Units,
10.2, 1T)"

:Version 10.2

:Name("Sum(Units,

:Version 10.0.1

1)

),

This looks good, so we replace our Write() with the Eval(Parse()) from the previous script, then
add back the Stack() from Step 4. Now our output data table looks like this.

Data Filter Tabulate

+ Graph Builder Download Summary

LU =g e

Sort Distribution FitY by X Multlvanate Graph Builder Bubble Plot Scatterplot 3D

[+~|Graph Builder D... » | < 3]
[+]Source [+] Begin Date End Date Category Units
1 03/05/2012 03/05/2012 Version 10.0 Downloads 2
2 03/05/2012 03/05/2012 Version 10.0.1 Downloads 2
3 03/05/2012 03/05/2012 Version 10.0.1 Updates .
4 03/05/2012 03/05/2012 Version 10.1 Downloads 2
[~|Columns (4/0) 5 03/05/2012 03/05/2012 Version 10.1 Updates .
A Begin Date 6 03/05/2012 03/05/2012 Version 10.2 Downloads 2
A End Date 7 03/05/2012 03/05/2012 Version 10.2 Updates .
il Category 8 03/06/2012 03/06/2012 Version 10.0 Downloads 125
A Units 9 03/06/2012 03/06/2012 Version 10.0.1 Downloads 125
10 03/06/2012 03/06/2012 Version 10.0.1 Updates .
11 03/06/2012 03/06/2012 Version 10.1 Downloads 125
12 03/06/2012 03/06/2012 Version 10.1 Updates .
13 03/06/2012 03/06/2012 Version 10.2 Downloads 125
14 03/06/2012 03/06/2012 Version 10.2 Updates .
[~|Rows 15 03/07/2012 03/07/2012 Version 10.0 Downloads 191
All rows 2,562 16 03/07/2012 03/07/2012 Version 10.0.1 Downloads 191
Selected 0 17 03/07/2012 03/07/2012 Version 10.0.1 Updates .
E’i‘;c'j‘;‘:]ed 8 18 03/07/2012 03/07/2012 Version 10.1 Downloads 191
Labelled 0 19 03/07/2012 03/07/2012 Version 10.1 Updates .
20 03/07/2012 03/07/2012 Version 10.2 Downloads 191

18

We can actually feed this table directly into Graph Builder, like so.

e 00 Graph Builder Download Summary: Graph Builder |
¥ [~IGraph Builder

oo | (sonomr) (oom | ol b/ e WO 0 (20

Units vs. End Date

Variables

[~ 4 Columns
ABegin Date
AEnd Date
il Category
AUnits

Overlay: Category

v Area
Area Style Overlaid 4
Summary (Y EE—
Statistic (Mo —:)
Varibes (.

Category

[Version 10.0 Downloads
[Version 10.0.1 Downloads
[Version 10.0.1 Updates
[Version 10.1 Downloads
[Version 10.1 Updates

[Version 10.2 Downloads
I Version 10.2 Updates

Units

05/01/2012 07/01/2012 09/01/2012 11/01/2012 01/01/2013 03/01/2013
End Date

We created an Area graph of Units by End Date, using Category as an overlay variable. We set
Area Style to Overlaid, and Summary Statistic to Max. But there’s a rather glaring visual
problem: most of the data is obscured by Version 10.2 Downloads.

19

Step 6: Value Ordering
If we look again at our 3-D view of the desired graph, we see that the categories need to be in a
specific front-to-back order.

End Date

Level
01/01/2012 05/01/2012 0a31/20121231/2012 7 : el Category Reversed
8000 f " 2 5 ' 3

7000

Units

el/- ol - 1213112012
e/Ca, T~ _08I31/2012
®90n, 3 T 0510112012 2\
Y Reyg 2 T a0

"ersed 10110172012 2

Version 10.0 Downloads (#4 above) needs to be sort-of in the “center”. Other download
categories go behind it in decreasing order to give them a stacked appearance. But update
categories go in front of it, in increasing order. Altogether, we would like to give the Category
column a Value Ordering property that looks like this.

// Set Value Ordering column property
Column(dt summary, "Category")
<< Set Property("Value Ordering", {

"Version 10.2 Downloads",

"Version 10.1 Downloads",

"Version 10.0.1 Downloads",

"Version 10.0 Downloads", // The middle value
"Version 10.0.1 Updates",

"Version 10.1 Updates",

"Version 10.2 Updates"

b

At this point, we should have a good feel for how we can build this dynamically. We need a list
of string values, and we can collect them at the same time that we build column formulas.
Download columns get prepended to (added to the front of) the list, and update columns get
appended to (added to the end of) the list. If we fold this logic into our existing script, here’s
how it looks:

20

download cols = {};
stack cols = {};
value order = {};

// Add cumulative columns
For(¢ =1, ¢ <= N Cols(dt temp), c++,

Match(action,
"Downloads",

Insert Into(value order, form col name, 1); // prepend
’
"Updates",

Insert Into(value order, form col name); // append

);

);
Write(Eval Insert("\!NValue Order: ~value order™"));

// Stack the cumulative Units; create the Categories

// Add Value Ordering to Category
Column(dt summary, "Category") << Set Property("Value Ordering", value order);

We're building another list named value order. It starts out empty; then in our column loop, we
insert the form col name of the column we’re currently processing. For Download columns, we
prepend it to the list by using the optional third argument to Insert Into(). This adds it before
position 1, meaning at the beginning of the list. Update columns also use Insert Into(), but this
time without the third argument. Since the position is not specified, the new item is appended
to the end of the list. We check the JMP Log to verify our logic.

Value Order: {"Version 10.2 Downloads", "Version 10.1 Downloads", "Version 10.0.1
Downloads", "Version 10.0 Downloads", "Version 10.0.1 Updates", "Version 10.1
Updates", "Version 10.2 Updates"}

21

That’s exactly the list we want! So after we create the dt summary table, we can set the Value
Ordering property to value order as shown. Now our graph looks almost correct! We just need
better colors.

® 00 Graph Builder Download Summary: Graph Builder
¥ [~IGraph Builder

Undo | [Start Over | | Done _EZ@ Mmﬂuhlgﬂj7 m Wl "\/ b
Variables Units vs. End Date

[~] 4 Columns

_ABegin Date 8000
AEnd Date 1
il Category ZE00y)
_AUnits 7000

Overlay: Category

6500 |
Category

[Version 10.2 Downloads
[Version 10.1 Downloads
[Version 10.0.1 Downloads
[Version 10.0 Downloads
[Version 10.0.1 Updates
[Version 10.1 Updates

[Version 10.2 Updates

V Area
Area Style Overlaid 4

Summary
Statistic

Variables

6000 -
5500
Max sl 4
5000
4500 |

4000 -

Units

3500 |
3000
2500
2000
1500
1000

1 1
05/01/2012 07/01/2012 09/01/2012 11/01/2012 01/01/2013 03/01/2013
End Date

Step 7: Value Colors

JMP’s default color theme doesn’t help us match up the downloads for a particular version with
their corresponding updates. What we need is a color scheme that works in pairs. And in
keeping with our goal of having the script automatically continue to work when new versions
are introduced, we don’t want to hard-code the colors.

Fortunately, JMP already provides a color theme e~
that will work well for this purpose. It is the Current Theme EIENENEHIN Pelred
categorical color theme aptly named “Paired”. This
color theme provides pairs of highly contrasting
colors, each with a light and a bold variant. Perfect!

117
4 HE

"éih

What we want to do is assign colors from this
theme to specific categories using the Value Colors
column property. For each version, we'll give the
lighter color of the pair to the “Updates” category
and the bolder color to the “Downloads” category. ® (Cancel | [0k

The very first version is unpaired because it only ~ —

has downloads, so we must treat it as a special case.

i
.
i
i

” Custom Color Theme

22

The Value Colors property we want to construct needs to look like this:

// Set Value Colors column property
Column(dt summary, "Category")

<< Set Property("Value Colors", {

"Version 10.0 Downloads" = -8421504,
"Version 10.0.1 Downloads" = -2062516,
"Version 10.0.1 Updates" = -10931939,
"Version 10.1 Downloads" = -3383340,
"Version 10.1 Updates" = -11722634,
"Wersion 10.2 Downloads" = -14883356,
"Version 10.2 Updates" = -16489113

b

This is obviously a list, but a list of what? It appears to be a list of assignment expressions of the
form “category = color”, where category is the category as a literal string, and color is specified
as some sort of numeric value. Obviously, JMP is not assigning a number to a literal string; it’s
using this list to define the mapping of column values to colors. We need to devise a way to
programmatically build this list of expressions!

First, let’s tackle the colors. We can use the Level Color() function to extract a single color from
a color theme. For example, Level Color(1, "Paired") returns -10931939, the first color from
the Paired color theme, using the numeric representation we see above. For the special case of
the very first version, we can use the RGB Color() function to construct a neutral gray like this:
RGB Color(0.5, 0.5, 0.5). This returns -8421504, the numeric representation for 50% gray.

We can express this in JSL as follows:

first = 1;
pair = 1;

// Add cumulative columns
For(¢ = 1, ¢ <= N Cols(dt temp), c++,

);

Match(action,
""Downloads",
// Choose color for this category

If(first,
color = RGB Color(0.5, 0.5, 0.5);
first = 0;
' color = Level Color(pair + 1, "Paired");
);
nUpdates“,

// Choose color for this category
color = Level Color(pair, "Paired");
pair += 2;

);

Write(Eval Insert("\!N*~c”*: ~form col name™ = ~color™"));

23

For each column, we set the variable color to an appropriate color. We use the variable pair to
walk through the color theme levels two at a time. For download versions, we use the bolder
second color of the pair (pair + 1); for update versions we use the first color of the pair and then
bump the variable to the next pair. To detect the special case of the first color, we use the
variable first. When run, we see this output on the JMP Log.

4: Version 10.0 Downloads = -8421504
5: Version 10.0.1 Downloads = -2062516
6: Version 10.0.1 Updates = -10931939
7: Version 10.1 Downloads = -3383340
8: Version 10.1 Updates = -11722634

9: Version 10.2 Downloads = -14883356
1

0: Version 10.2 Updates = 16489113

Part one accomplished!

The second part is more challenging: how do we build that list of assignment expressions? We
can’t simply insert an expression into a list: Insert Into(value colors, form col name = color).
This just gives us a list of numeric color values, since it evaluates the second argument and
assigns color to form col name. We could try using the Expr() function to suppress evaluation of
the second argument: Insert Into(value colors, Expr(form col name = color)). But that doesn’t
work either; we just get a list of identical expressions of form col name = color. We need a way
to evaluate part of the expression, but not the whole thing.

My favorite solution to this conundrum is to use Eval Expr(Expr()). You can think of it this way:
Eval Expr() does the same thing as Expr() — it suppresses the evaluation of its argument,
returning that argument as an unevaluated expression. But first, it examines its argument
looking for Expr() functions within it. It does evaluate each of those expressions, then replaces
the Expr() function with the result. You can think of it as doing the same job as Eval Insert(),
except that Eval Insert() operates on strings and uses the » symbol to delimit expressions; Eval
Expr() operates on expressions and uses the Expr() function to delimit expressions.

Note: In this particular instance, we want to use the expression returned from Eval
Expr() directly. But more often, we instead want to evaluate that expression and use
its result. In that more typical case, we use Eval(Eval Expr(Expr())), which | find
particularly mnemonic!

We can put Eval Expr(Expr()) to work for us like so:
Insert Into(value colors, Eval Expr(Expr(form col name) = Expr(color)))

If we add this to our code above, then write the result to the JIMP Log after the loop, we see
this:

24

value colors = {"Version 10.0 Downloads" = -8421504, "Version 10.0.1 Downloads" =

-2062516, "Version 10.0.1 Updates" = -10931939, "Version 10.1 Downloads" = -3383340,
"Version 10.1 Updates" = -11722634, "Version 10.2 Downloads" = -14883356, "Version
10.2 Updates"” = -16489113}

A list of assignment expressions — perfect! Now we just use << Set Property to assign our value
colors to the Category column. In fact, we can combine it with the other << Set Property for
Value Ordering this way:

// Add properties to Category

Column(dt summary, "Category")
<< Set Property("Value Ordering", value order)
<< Set Property("Value Colors", value colors);

Final Cleanup

We are 99% there — we just need to tweak a few more items in our script. As before, we
delete the Source property from dt summary, name it, save it, and make a new data view for it.

But before saving it, we will add a table script that creates our Graph Builder graph. That is,
after all, what this is all about! Our Graph Builder script looks like this:

dt summary << New Table Script(
"Graph Builder",
Graph Builder(
Size(830, 468),
Show Control Panel(0),
Variables(X(:End Date), Y(:Units), Overlay(:Category)),
Elements(
Area(
X,

Y,

Legend(3),

Area Style("Overlaid"),

Summary Statistic("Max")
),
Caption Box(

Y,
Legend(4),
X Position("Left"),
Summary Statistic("Max"),
Y Position("Top")

)
),
SendToReport (
Dispatch({}, "400", LegendBox, {Position({1, 0, 2})}),
Dispatch(
{},
"graph title",
TextEditBox,
{Set Text("Graph Builder Downloads")}

);

25

Then we can tell IMP to run it for us with this command:

dt summary << Run Script("Graph Builder");

And we are rewarded with our beautiful graph, constructed automatically from raw data files,
all with JSL.

8000 Graph Builder Downloads Category
Max(Version 10.2 Downloads): 7805 Il Version 10.2 Downloads
7500 - Max(Version 10.1.0 Downloads): 4818 i
Max(Version 10.0.1 Downloads): 3618 I Version 10.1.0 Downloads

7000 [Version 10.0.1 Downloads

Max(Version 10.0.1 Updates): 1268 I Version 10.0.0 Downloads
6500 Max(Version 10.1.0 Updates): 2469

Max(Version 10.2 Updates): 3294 Version 10.0.1 Updates
Version 10.1.0 Updates
Version 10.2 Updates

Max(Version 10.0.0 Downloads): 1525

6000
5500
5000
4500

4000

Units (cumulative)

3500
3000
2500
2000
1500
1000

500

0

05/01/2012 07/01/2012 09/01/2012 11/01/2012 01/01/2013 03/01/2013
End Date

Conclusion

Our script uses several techniques to conquer a particular challenge of JSL: substituting a
variable for a function parameter. Many times we can just use our variable directly, like we did
for the Columns() argument to << Stack. This is simple, direct, and efficient. If it’s possible to
do, this should always be our first choice.

But it’s not always possible to do that in JSL. In constructing the Value Colors property, we
employed Eval Expr(Expr()). This is useful when the argument is an expression that we can’t
write directly. This technique is not quite as simple and a bit indirect. But it is still very efficient.
This should be our second choice, when we can’t specify our variable directly.

But when we can’t even use Eval Expr(Expr()), we can always build a JSL snippet as a string,
then use Eval(Parse()) to parse and run it. We did this to construct our column formulas. This
method is cumbersome because we have to deal with issues like embedded double quotes. And
it is inefficient because we must Parse() the string each time we want to run it. It's much slower
to parse a string into an expression each time; it’s much better to have the expression already
built before your script even runs. But sometimes Eval(Parse()) is our only option. We should
only pull out the “big guns” when our first two options are not feasible.

A useful tool when building that JSL snippet is Eval Insert(). This handy string construction

function has lots of uses. Using IMP interactively, then scavenging the Source property gives us
a great starting point for coding many operations. And the useful Invisible option makes our JSL

26

run much faster by not showing intermediate windows. These are all worthy addition to our
tool chest.

And finally, to close the loop on this topic, we can transfer our resulting data table back to the
iPad, where we can display it in the very app whose download data we have been analyzing!

Carrier & 12:09 PM 100% (=

Gallery Edit Filter Graph Builder Download Summary

Graph Builder Downloads

Graph Builder Downloads

8000
7805
4818

| Max(Version 10.2 Downloads)
Max(Version 10.1.0 Downloads;
7500 | Max(Version 10.0.1 Downloads): 3618

): Category
):
):
< Max(Version 10.0.0 Downloads): 1525
):
):
):

Il Version 10.2 Downloads
Il Version 10.1.0 Downloads
Il Version 10.0.1 Downloads
I Version 10.0.0 Downloads
Version 10.0.1 Updates
Version 10.1.0 Updates
Version 10.2 Updates

7000 Max(Version 10.0.1 Updates): 1268
Max(Version 10.1.0 Updates): 2469
Max(Version 10.2 Updates): 3294

6500 |

6000 |
5500 *
5000 |
4500 *

4000 |

Units (cumulative)

3500
3000 |
2500 |
2000 |
1500
1000

500

0 T T T
05/01/2012 07/01/2012 09/01/2012 11/01/2012 01/01/2013 03/01/2013
End Date

Contact information

Your comments and questions are valued and encouraged. Contact the author at:
Michael Hecht
michael.hecht@jmp.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

References

1 JMP Graph Builder for iPad. http://www.jmp.com/software/jmp10/jmp-graph-builder-for-ipad.shtml

2 Apple Autoingestion tool. http://www.apple.com/itunesnews/docs/Autoingestion.class.zip

27

mailto:michael.hecht@jmp.com
mailto:michael.hecht@jmp.com
http://www.jmp.com/software/jmp10/jmp-graph-builder-for-ipad.shtml
http://www.jmp.com/software/jmp10/jmp-graph-builder-for-ipad.shtml
http://www.apple.com/itunesnews/docs/Autoingestion.class.zip
http://www.apple.com/itunesnews/docs/Autoingestion.class.zip

