
SESUG 2013

1

Paper BtB-03

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There
Sarah Woodruff, Westat, Rockville, MD

Abstract

Typically the request for a table, graph or other report concerns data that currently exists and needs to be explored.
However, there is often a need to examine data that is expected to be present but currently is not. Yet how can we
report on something that is not there? This paper describes and explores ways to create simulations of what is
expected and then match those with data that is actually present.

Making comparisons between what has been anticipated and what actually exists then opens up the ability to report
on what is not there. This paper also explores how to test the differences between the groups based on a variety of
conditions and how to determine what is legitimately absent. Reporting on the absent data is then described,
including how to check that everything which is expected is actually present and be able to report that as well. DATA
step techniques are combined with PROC SQL and PROC REPORT to create a step-wise process which can be
easily modified to fit most any set of specifications. Let’s dive into the sweet task of reporting from inside the
doughnut hole!

Keywords: shell data, PROC SQL, missing records, PROC REPORT

Introduction

One of the best reasons to use SAS is its ability to efficiently parse data and create almost infinitely customizable
reports. As programmers, we are routinely asked to explore and track existing data, no matter what line of work we
are in or our particular industry focus. However, across various applications or areas of research, we may be asked
to examine what is NOT present in our data, whether that might be shipments that were not received or clinical visits
that did not take place or vehicle options that were not selected. Such information creates a “doughnut hole” in
research or reporting; we are surrounded by data that does exist, yet the data that is missing is still of interest to our
project.

Since a large portion of my project work focuses on clinical trials, I will be using some clinical research scenarios as
the basis for the examples in this paper. Despite this, the ideas behind the examples could be generalized or
customized for nearly any scenario in which missing data is relevant to a project. Though I predominantly focus on
DATA step coding, I am have been endeavoring to incorporate PROC SQL as both approaches have their strengths.
To make this paper useful to as many programmers as possible, I will demonstrate the use of each throughout.

The Ingredients

For the purposes of this paper, I am using a hypothetical project called StudyMedicine. Three existing study data
tables are relevant here:

1. Planned Events: the planned schedule of study events and forms

SubjectID VisitName FormName EarlyDate ExpectedDate LateDate ETC.
10002 WEEK01 Form01 10/12/2012 10/15/2012 10/18/2012 <…>
10002 WEEK01 Form01b 10/12/2012 10/15/2012 10/18/2012 <…>
10002 WEEK01 Form05 10/12/2012 10/15/2012 10/18/2012 <…>
10002 WEEK01 Form12 10/12/2012 10/15/2012 10/18/2012 <…>
10002 WEEK02 Form02 10/19/2012 10/22/2013 10/25/2012 <…>
10002 WEEK02 Form04 10/19/2012 10/22/2013 10/25/2012 <…>
10002 WEEK02 Form05 10/19/2012 10/22/2013 10/25/2012 <…>
.
.
And so on for each subject with the individual’s respective visits and forms.

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

2

2. Study Visits: the study events and their forms that have actually occurred and been recorded

SubjectID VisitName FormName VisitDate ETC.
10002 WEEK01 Form01 10/16/2012 <…>
10002 WEEK01 Form01b 10/16/2012 <…>
10002 WEEK01 Form12 10/16/2012 <…>
10002 WEEK02 Form02 10/21/2012 <…>
10002 WEEK02 Form04 10/21/2012 <…>
.
.
And so on for each subject with the individual’s respective entered visits and forms.

3. Demographics: information about the subjects in the study

SubjectID Gender Age Ethnicity ETC.
10002 Female 32 Hispanic <…>
10003 Male 45 Non-Hispanic <…>
10004 Female 26 Non-Hispanic <…>
.
.
And so on for each subject.

The Easiest Hole to Find

Many types of clinical studies will include a planned events table in their relational database. At its simplest, this table
would list all the visits or “events” that are expected to happen for each subject involved in the study. When an
expected schedule accompanies these planned events, then those dates would be included as well. However,
research, much like other aspects of life, often does not go as planned. Study visits may be missed or may happen
out of order or may not happen within the planned timeframes.

If a planned events table or its equivalent for something non-clinical exists, then the isolation of data which does not
exist becomes relatively straightforward. Whether utilizing DATA step code or PROC SQL, the first step is to
determine what makes a record unique. For the purposes of this example, the variables SubjectID, VisitName and
FormName will create a unique record in the StudyVisits table because the hypothetical project, StudyMedicine, has
a set of unique study visits with forms for each participant.

In a DATA step approach, both the table containing the planned events and the table containing the study visit data
would need to be sorted by the relevant variables.

 PROC SORT data = StudyMedicine.PlannedEvents out = PE_UniqueSort NODUPKEY ;
 BY SubjectID VisitName FormName ;

RUN ;

PROC SORT data = StudyMedicine.StudyVisits out = SV_UniqueSort NODUPKEY ;

 BY SubjectID VisitName FormName ;
RUN ;

Once both tables are sorted, a DATA step with merge logic can be used to isolate the records that are in the
PlannedEvents table but not the StudyVisits table.

DATA AbsentStudyVisits ;
 MERGE PE_UniqueSort (in = PE) SV_UniqueSort (in = SV) ;
 BY SubjectID VisitName FormName ;
 IF PE and not SV ;

RUN ;

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

3

The equivalent process in PROC SQL can be accomplished in one step as the two tables do not need to be sorted
prior to isolating the absent records of interest. In this approach, the two tables are compared on the basis of the
SubjectID, VisitName and FormName to specify a unique record; when the combination of those three variables is
not present in the StudyVisit table, then the records are output.

PROC SQL ;
 CREATE TABLE AbsentStudyVisits as SELECT DISTINCT
 PE.* FROM StudyMedicine.PlannedEvents as PE
 LEFT JOIN
 StudyMedicine.StudyVisits as SV ON
 PE.SubjectID = SV.SubjectID AND
 PE.VisitName = SV.VisitName AND
 PE.FormName = SV.FormName
 WHERE SV.SubjectID is null OR
 SV.VisitName is null OR
 SV.FormName is null;

QUIT ;

Note that a LEFT JOIN was used in the above code because the PlannedEvents table was referenced first and the
goal was to isolate records present there, but not in the StudyVisits table. Had the StudyVisits table been referenced
first, then a RIGHT JOIN would need to be used to isolate the same set of records.

Verifying Data Expectations

In this scenario, it would be reasonable to assume that, since the StudyMedicine project calls for a unique collection
of visits with forms for each participant, there will never be more than one record in the StudyVisits table with identical
values for SubjectID, VisitName and FormName. However, merging often goes awry when based on untested
assumptions and it would be a good idea to verify that this is indeed how the data was entered. With a bit of
planning, human error can be easily detected and then investigated.

PROC SORT DATA = StudyMedicine.StudyVisits
/* SV_NotUnique will contain any duplicates based on the combination of
BY variables. */

 DUPOUT = SV_NotUnique
/* The use of NODUPKEY will focus on the two variables that create the
unique record. */

 NODUPKEY
 OUT = SV_Unique ;
 BY SubjectID VisitName FormName ;

RUN ;

Building your own Hole

Often, we do not have the advantage of a planned events table or its equivalent in various project work. In such
cases, it becomes necessary to build the relevant table, and SAS provides an easy way to do this through the
creation of shell tables. Since these shells are being constructed de novo, there is a great deal of flexibility to specify
what will create a unique record of interest.

For this example, let us say that are SubjectID values are generated as the StudyMedicine project proceeds and that
there are specific forms to be completed at each study visit. However, the forms required at each visit vary. A shell
for each visit can easily be created.

DATA Shell_WEEK01 ;
/* LENGTH and FORMAT values should match those used in the actual data */

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

4

LENGTH VisitName $ 20 FormName $ 8 ;
FORMAT VisitName $20. FormName $8. ;
/* Created values should also match those used in the actual data */
VisitName = 'WEEK01' ;
DO FormName = 'Form01' , 'Form01b' , 'Form05' , 'Form12' ;

 OUTPUT ;
END ;

RUN ;

DATA Shell_WEEK02 ;

/* LENGTH and FORMAT values should match those used in the actual data */
LENGTH VisitName $ 20 FormName $ 8 ;
FORMAT VisitName $20. FormName $8. ;
/* Created values should also match those used in the actual data */
VisitName = 'WEEK02' ;
DO FormName = 'Form02' , 'Form04' , 'Form05' ;

 OUTPUT ;
END ;

RUN ;
.
.
.

Continue creating tables to cover each instance of a visit that is part of the study. If certain forms are expected for
certain subjects, but not for others at a given visit, that conditional logic will be handled later in the process. For now,
be sure to include any form that is of interest for a given visit.

Once all the visits within the study are accounted for in their own shells, the shells need to be combined in order to
create a full listing of the visits with their respective forms that are expected during the study.

DATA Shell_AllWEEKS;
 SET Shell_WEEK01 Shell_WEEK02 <...> ;

RUN ;

With the full set of visits and forms created, the next step is to combine this information with the SubjectIDs so that a
comprehensive list of forms can be created for each study participant. Since this is fundamentally a Cartesian
product, PROC SQL is the best way to create this data set.

PROC SQL;
 CREATE TABLE FormsSubjects AS
 SELECT Shell_AllWEEKS.VisitName, Shell_AllWEEKS.FormName,
 StudyVisits.SubjectID
 FROM StudyMedicine.StudyVisits, Shell_AllWEEKS ;

QUIT ;

Now that the study participants have been aligned with all their visits and requisite expected forms, this created data
can be conditionally edited if needed. For example, Form04 may only be required at the WEEK02 visit if the
participant is female or over a certain age or on a particular treatment. The relevant variables specifying these
conditions need to be isolated from the study data and combined with the FormsSubject data set. Then combinations
of SubjectID with VisitName and FormName which are not relevant can be deleted.

In a DATA step, the data sets to be merged would need to be sorted by the variables they had in common; for this
example, that will only be SubjectID as we are going to look at bringing in demographic information. The process
would be as follows:

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

5

DATA Shell_EditedWEEKS (DROP = Gender) ;

 MERGE Shell_AllWEEKS (in = ALL)
 StudyMedicine.Demographics (in = DEMO KEEP = SubjectID Gender) ;
 BY SubjectID ;
 IF ALL ;
 /* Include other conditions as needed */
 IF Gender not in ('Female') and VisitName in ('WEEK02')

 and FormName in ('Form04') THEN DELETE ;
RUN ;

As always, PROC SQL is an alternative. Here the addition of the necessary demographic variables to remove the
unneeded records is separate from the deletion of those records. For me, this aids in the readability of the code, but
if the data sets were large enough, it could be preferable due to performance concerns to combine these two steps.

PROC SQL ;
 CREATE TABLE Shell_EditedWEEKS as SELECT
 ALL.* FROM Shell_AllWEEKS as ALL
 LEFT JOIN
 DEMO.* FROM StudyMedicine.Demographics as DEMO ON
 ALL.SubjectID = DEMO.SubjectID ;
 DELETE FROM Shell_EditedWEEKS
 WHERE Gender not in ('Female') and VisitName in ('WEEK02')

 and FormName in ('Form04') ;
QUIT ;

Setting Conditions for Being in the Hole

Once we have an established list of what is expected and can compare that to records that are actually present, we
may want to impose additional conditions on what qualifies as not being there. For example, in the project
StudyMedicine, there could be an established date for each visit, but following that, there could be a window of time
in which the forms for the visit could be entered. Therefore, data should not be considered to be in that hole until that
window has closed. We need to establish those parameters so they can be applied to the combination of expected
and existing data that has already been established.

For the purposes of this example, the dates of the study visits are being established based on the WEEK01 visit as
that is the entry point into the study. Once a study visit happens, a three-day window exists to get the forms entered.
If the form is not present after that time, it has fallen into the doughnut hole and becomes of interest to track.

Note in this step, baseline data for WEEK01 is being taken from the StudyVisits table. Since dates for those visits
already exist, the VisitDate and LateDate values are generated directly. Values for the remaining visits need to be
created so this step combines data that is currently present with what is expected to accomplish that goal. Since date
values are such a relevant part of this data selection, it is beneficial to format them so they are easily understandable.
My preference is for a very full format, like MMDDYY10., but that can be customized to project needs. The final
version of ScheduleOfDates should only contain the variables that will be needed going forward. This helps to
minimize the size of data sets while also making it easier to track what is being used by the program.

DATA ScheduleOfDates (KEEP = SubjectID VisitName VisitDate LateDate) ;
 SET StudyMedicine.StudyVisits (KEEP = SubjectID VisitName EntryDate) ;
 WHERE VisitName in ('WEEK01') ;
 IF VisitName in ('WEEK01') then VisitDate = EntryDate ;
 IF VisitName in ('WEEK01') then LateDate = VisitDate + 3 ;
 VisitName = 'WEEK02' ; VisitDate = EntryDate + 7 ; LateDate =

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

6

VisitDate + 3 ; OUTPUT ;
 VisitName = 'WEEK04' ; VisitDate = EntryDate + 21 ; LateDate =

VisitDate + 3; OUTPUT ;
 /* Continue to add values for all relevant visits */
 FORMAT VisitDate LateDate mmddyy10. ;
 PROC SORT ; BY SubjectID VisitName ;

RUN ;

Note that ScheduleOfDates is ultimately sorted by SubjectID and VisitName; this step is important because this data
needs to be added to Shell_EditedWeeks so that the relevant dates can be added to the records for each type of
visit.

DATA Shell_Weeks_Dates ;
 MERGE Shell_EditedWEEKS ScheduleofDates ;
 BY SubjectID VisitName ;

RUN ;

However, remember that this sort is only truly required if Shell_Weeks_Dates is created with a DATA step merge.
Using PROC SQL to create this table means that sorting is not necessary, although to make the process smooth,
specific identification of variables is needed. Since SubjectID and VisitName are on both data sets, if all the variables
from ScheduleOfDates were selected, a message would go to the log specifying that those two variables were
already in the data set being created. In order to avoid this message, only the two additional variables from
ScheduleOfDates are selected for inclusion, though the linkage between ScheduleOfDates and Shell_EditedWEEKS
proceeds on both SubjectID and VisitName.

PROC SQL;
 CREATE TABLE Shell_Weeks_Dates AS
 SELECT Shell_EditedWEEKS.*, ScheduleofDates.VisitDate ,
 ScheduleofDates.LateDate
 FROM Shell_EditedWEEKS, ScheduleofDates
 WHERE Shell_EditedWEEKS.SubjectID = ScheduleofDates.SubjectID
 AND Shell_EditedWEEKS.VisitName = ScheduleofDates.VisitName ;

QUIT ;

This extended shell now needs to be compared to the data available in StudyVisits. Since this comparison is now
specific not only to SubjectID and VisitName, but also to FormName, all three variables need to be part of the next
linkage step. If proceeding with an additional PROC SQL, the code will look similar to that which created
AbsentStudyVisits above, but we are now interested in cases where any one of the three variables remains blank.

The use of the left join to create AbsentStudyVisitsForms below works as it did for the creation of AbsentStudyVisits;
since Shell_Weeks_Dates contains all the records and StudyVisits contains those which have actually occurred and
been entered, we want to keep records from Shell_Weeks_Dates based on the further conditions provided in the
code. Thus, we are working to isolate only the records that exist within the doughnut hole specific to the conditions of
the project.

PROC SQL ;
 CREATE TABLE AbsentStudyVisitsForms as SELECT
 PE.* FROM Shell_Weeks_Dates as PE
 LEFT JOIN
 StudyMedicine.StudyVisits as SV ON
 PE.SubjectID = SV.SubjectID AND
 PE.VisitName = SV.VisitName AND
 PE.FormName = SV.FormName

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

7

WHERE SV.SubjectID is null OR

 SV.VisitName is null OR
 SV.FormName is null ;

QUIT ;

DATA step code to bring these tables together would require sorting and given the source, it would be prudent to
create a separate sorted table with the records from the StudyVisits table.

PROC SORT DATA = StudyMedicine.StudyVisits OUT = StudyVisits_Sort ;
 BY SubjectID VisitName FormName ;

RUN ;

Particularly if only a limited number of variables are needed from the StudyVisit data, it would be good to include a
KEEP statement with the creation of the sorted data set. Alternatively, if there are only a few variables which are not
needed, then a DROP statement would be useful to get rid of any data that will not be used going forward.

If Shell_Weeks_Dates has been created using PROC SQL then it will need a similar sort performed. If it has been
created using a DATA step, then the sort can be incorporated into that piece of code to make the process more
efficient.

With both sorted data sets available, an additional DATA step can be used to merge the two, isolating only the
records of interest in our hole.

DATA AbsentStudyVisitsForms ;
 MERGE Shell_Weeks_Dates (in = PE) StudyVisits_Sort (in = SV) ;
 BY SubjectID VisitName FormName ;
 IF PE and not SV ;

RUN ;

No matter which method is preferable, a data set complete with the date parameters for each visit is now available so
it becomes possible to further identify which records genuinely belong in the hole and which do not yet qualify. It is
useful to create an indicator for being in this hole; in addition, it may be useful to calculate certain metrics about that
status for a record like how many days have passed since a form was expected. In the code below, InTheHole
indicates whether a record is there or not and DaysInHole calculates how long that has been the case. SAS makes
this work particularly easy for us through the use of the TODAY() function which allows us to make calculations
utilizing today’s data automatically rather than having to hard code a value.

DATA Absent ;
 SET AbsentStudyVisitsForms ;

 IF TODAY() gt LateDate THEN InTheHole = 1 ;
 ELSE InTheHole = 0 ;

 IF InTheHole = 1 THEN DaysInHole = TODAY() - LateDate ;
 ELSE DaysInHole = 0 ;

RUN ;

The creation of an indicator variable at this stage of programming would also allow you to explore records which are
on the precipice of falling into the doughnut hole, those which are not currently present but which also do not meet
the conditions of being truly delinquent or absent. In some cases, these may merit a frequency listing or report of
their own, but for now the focus remains on those which are truly in our data hole.

By the very nature of this process, once data shows up, it is no longer in the doughnut hole. Typically when I have

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

8

done this type of reporting, there have been others who needed to look at what forms or visits were absent in a given
period of time so I have saved a permanent data set to create an archive of the occurrences. If comparison between
reporting periods is necessary – for example, if you want to examine how long it is typically taking for records to make
it out of the hole – then you will need to put more thought into how you want to maintain your archive. An
appropriately structured running data set where records are appended might be appropriate or it may be easier to
save data sets based on the given reporting period and compare them as separate entities.

Reporting from the Hole

With all conditions having been applied to both the expected and existing data, now it is time to actually create a
report out of the records. Given that the point of this process is to find records which do not exist, the hope is that
there will never be anything to report and thus that all expected records are actually in place. Therefore we need a
PROC REPORT step which provides options; one option will create a listing of the records that are absent and
another option that provides the message that no records were found to be absent. A straightforward way to do this
is to create a simple macro to wrap around the reporting code in order to test whether there are records to list or not.

To make the report as informative as possible, it is beneficial to start with both a title and a footnote. In this case, the
title provides a description of the report while the footnote provides the name and location of the program generating
the report along with the date is was run. The use of DATE() combined with %SYSFUNC allows us to automatically
populate with today’s date and I choose to match my date format with the date format used in the program.

TITLE1 h=3 "StudyMedicine Absent Forms";
FOOTNOTE1 h=0.7 j=l "PROGRAM: \\Drive\Programs\StudyMedicine_Absent_Forms.sas

 rundate: %sysfunc(DATE(), mmddyy10.)";

With the descriptive portions in place, then build the macro that will create the body of the report. Start by opening
the macro call and establishing where the report will be saved, the file name under which it will be saved, and the
format of the document. For this example, I will show the use of RTF output, but this could easily be modified to
accommodate PDF output or further customized to generate Excel output.

%MACRO AbsentForms ;

ODS RTF FILE = "\\Drive\Reports\StudyMedicine_Absent_Forms.rtf" ;

The file name could also have additional date information appended to it to describe the reporting period, when it was
run or something else relevant to the project’s use of this data.

The first PROC REPORT stage should cover all variables of interest to describe the records that are absent. For the
current example, this includes organizing the records by Site, SubjectID, VisitName and FormName along with
calculated dates and the length of time the record has been absent. The use of options helps to customize the
PROC REPORT performance, but can be changed based on specific project needs. By the same token, this
example includes size specifications on the columns which may not create the desired appearance and can also be
altered or further customized. By setting a COMPUTE block to create a break after each Site, a line of white space is
added to aid in readability of the final output. On the first two DEFINE statements, ORDER is used to keep repeats of
the values of Site and SubjectID from being printed on each line of the report. This also aids in readability and its use
could be extended to other variables. For example, if multiple visits had the same name and were then distinguished
from each other by an additional variable, then it would be advantageous to apply ORDER to VisitName as well. The
remaining variables are set to DISPLAY because all of their information would be unique and should be seen as part
of the report. If variables are properly labeled during an earlier DATA or PROC SQL step, then labels do not need to
be added here, but PROC REPORT does make the process of specifying custom labels very easy without having to
change them on the data set itself.

PROC REPORT DATA = Absent missing headline headskip nowindows split='*'
 (header)=[just=center font_size=1.6 background=white]
 style(column)=[just=center font_size=1.1] ;

 WHERE InTheHole = 1 ;

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

9

COLUMN Site SubjectID VisitName FormName VisitDate LateDate DaysInHole

<other relevant variables> ;

 DEFINE Site / order 'Site' style(column)=[just=left cellwidth=6.2cm] ;
 DEFINE SubjectID / order 'Subject*ID' style=[cellwidth=1.5cm] ;
 DEFINE VisitName / display 'Visit' style=[cellwidth=2cm] ;
 DEFINE FormName / display 'Form Name' style=[cellwidth=2cm] ;
 DEFINE VisitDate / display 'Visit*Date' style=[cellwidth=2cm] ;
 DEFINE LateDate / display 'Late*Date' style=[cellwidth=2cm] ;
 DEFINE DaysInHole / display "# of Days*Absent" style=[cellwidth=2cm] ;

 < DEINFE statements for other variables >

 COMPUTE AFTER Site ;
 LINE ' ' ;
 ENDCOMP ;

RUN ;

The next portion of the macro will check to see how many records actually exist in the Absent data set. This will
create the trigger to print an alternate message if there are no records to display. The CALL symputx allows us to
automatically take the count of records and put it in the OBS macro variable for later use.

 DATA _null_ ;

CALL symputx ("obs" , RecCnt) ;
IF 0 THEN SET Absent NOBS = RecCnt ;

STOP ;
RUN;

Once the record count is being held in the OBS macro variable, then its value can be checked and used as a
reporting trigger. If there are no records on which to report, then a specific note text is created. This is a generic
example, but this text could be as detailed as was deemed appropriate for the report. Once the text is created in a
simple DATA step, then that is the basis for an alternate PROC REPORT step. Once again, options have been used
to customized the layout and sizes are specified, but any of those could be modified.

%IF &obs = 0 %THEN %DO ;
 DATA Absent_Note ; NOTE = " ----- No Absent Forms ----- " ;
 RUN ;
 PROC REPORT DATA = Absent_Note headline headskip nowindows
 style(header) = [cellwidth = 700 cellheight = 90]
 style(column) = [font_size = 7] ;
 COLUMNS NOTE ;
 DEFINE NOTE / display style = [just = center cellheight = 60] ;
 RUN ;

%END ;

With the completion of the various PROC REPORT options, there macro code needs to be wrapped up. The ODS
destination needs to be closed, then the macro itself needs to be closed and then finally the macro must be called in
order to generate the report. The initial ODS statement should be modified based on the type of document output
desired.

Data in the Doughnut Hole: Using SAS® to Report on What is NOT There, continued SESUG 2013

10

ODS RTF CLOSE ;
%MEND ;

%AbsentForms;

Conclusion

The process laid out here allows us to report on data which does not currently exist for us. Sometimes that data is
easy to isolate if data structures already exist to specify what is expected. Sometimes that data can be harder to
isolate if we need to build the shells that synthesize the expected records and then compare existing records to
those. However, once the infrastructure is in place, the possibilities are almost infinite as to how the data can then be
conditioned, customized or modified to indicate whether a record is temporarily mislaid or whether it truly has fallen
into a data doughnut hole.

References

Harrington, Timothy J. 2002. “An Introduction to SAS® PROC SQL”. Proceedings of the SAS User Group
International 2002 Conference. Orlando, FL: SAS

Hermansen, Sigurd W. 2012. “Database Programming in SAS SQL: A One-Day Introduction for Westat Systems
Staff”. Rockville, MD: Westat

Lafler, Kirk Paul. 2009. “Exploring PROC SQL® Joins and Join Algorithms”. Proceedings of the SAS Global 2009
Conference. Washington, DC: SAS

Markovitz, Heidi. 2006. “Dup, Dedup, DUPOUT - New in PROC SORT”. Proceedings of the SouthEast SAS Users
Group 2006 Conference. Atlanta, GA: SESUG

Acknowledgments

I would like to thank Rick Mitchell for encouraging me to continue to write and being a SAS conference inspiration. I
would like to thank Michael Raithel and Mike Rhoads at Westat for their administrative and editorial support. I would
like to thank Westat for their institutional support of my participation in both local and regional SAS users’ groups.

Contact Information

Your comments and questions are valued and encouraged. Contact the author at:

Sarah Woodruff
Westat
1600 Research Boulevard, WB 401
Rockville, MD 20850
240-314-7562
SarahWoodruff@Westat.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The content of this paper is the work of the author and does not necessarily represent the opinions,
recommendations or practices of Westat.

