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ABSTRACT  
Statistical process control charts have been shown to be useful tools in monitoring and improving the 
quality of a variety of processes over the past century. For a control charting scheme to be successful, it 
should be chosen to match the specifications of the process to be monitored. For example, there may be 
instances when several processes which are assumed to be identical and desired to be monitored 
simultaneously rather than independently. Such a process is commonly referred to as a “multiple stream 
process (MSP).” Control charts designed for MSP monitoring have typically assumed that the 
observations being monitored follow a Normal distribution. This assumption may not always be met, in 
which case, the existing charts begin to become inefficient at detecting anomalies in the process being 
monitored. Recently, a new control chart was developed for monitoring MSPs, which is nonparametric in 
nature, which means that its performance will remain consistent regardless of the underlying distribution. 
This chart is called the “Nonparametric Extended Median Test Cumulative Summation Chart (NEMT-
CUSUM).” However, one issue with this control chart is that there is no current procedure for utilizing the 
technique in SAS software. Thus, the purpose of this paper is to develop a SAS macro function to use the 
NEMT-CUSUM control chart in SAS. Examples and discussion will be provided. 

INTRODUCTION  
Statistical process control is a set of procedures used to systematically monitor some sort of process or 
processes. The main goal of these procedures is to improve quality by quickly identifying and 
ameliorating causes of poor quality. A specific tool developed to help in this goal is the control chart. 
Originally developed by Walter Shewhart in the 1920s, control charts provide the user with a graphical 
tool to compare some summary statistic (e.g., sample mean, sample variance, etc.) or function of a 
summary statistic (commonly referred to as a “plotting statistic”) obtained from the process itself to control 
limits derived from the sampling distribution of the summary statistic (Shewhart, 1924). If the summary 
statistic exceeds a control limit, then the process is said to be “out of control” and an investigation into the 
cause for this out-of-control (OOC) point begins. Obviously, if the process is OOC, the chart operator will 
want to know that as quickly as possible, which operationally means in as few samples as possible. Over 
time, the variety of processes practitioners desired to monitor grew in diversity and complexity, which 
required the development of new charting schemes. Woodall and Montgomery (2014) give a good 
overview of many recent advances. The particular control chart one uses should be one best suited for 
the specific attributes of the process to be monitored. For example, one may be interested in monitoring 
several presumably identical and independent processes, like call center wait times per customer service 
representative or number of transactions per bank teller. In process control literature, such a process is 
typically referred to as a “multiple stream process (MSP)” (Montgomery, 2013). 

There have been several control charting schemes developed specifically for the monitoring of MSPs 
(e.g., Boyd, 1950; Mortell & Runger, 1995; Meneces et al, 2008; Vicentin et al, 2018). However, all of 
these control charts rely on the assumption that the data being collected from the process follows a 
Normal or Gaussian distribution. As is the case with statistical methods also relying on the assumption of 
normality, when this assumption is not reasonably met, the ability of the control chart to quickly detect 
OOC points is deteriorated (Chakraborti & Graham, 2019a). When this is the case, it is typically 
recommended to use a “nonparametric” control chart, which is one that does not have any distributional 
assumption. Since non-normality is a reality for lots of processes, there have been many proposed 
nonparametric control charting schemes in recent years. Chakraborti and Graham (2019b) give a 
thorough overview of many advances in the arena of nonparametric control charting, specifically. 
Considering that practitioners may be in need of a nonparametric MSP control chart, Brown and Schaffer 
(2020) proposed one which utilizes a function of a classical nonparametric test statistic as its plotting 
statistic. This chart is referred to as the “Nonparametric Extended Median Test Cumulative Summation 



2 

Chart (NEMT-CUSUM).” Through simulation, this chart was shown to have more consistent and, in 
several instances, improved performance regardless of distribution compared to its parametric 
counterparts (Brown & Schaffer, 2020). However, to date, there has been no formal way of implementing 
this chart in any statistical software package, SAS or otherwise. Thus, the purpose of this paper is to 
demonstrate how and why this chart works through the explanation of the components of a SAS macro 
developed for this chart. This macro is called “%countr.” 

FICTICIOUS MONITORING SITUATION 

For the purpose of this paper, let’s assume that we are interested in monitoring wait times (in minutes) for 
10 customer service representatives at a call center. Suppose during a given work week, we randomly 
sample 10 customer wait times per representative. In total, for a given week, we would have n = 400 
observations per representative. Let’s also assume that we target a median wait time of 2 minutes. 

DATA STRUCTURE 
One important consideration for any statistical analysis is the determination of how the data need to be 
organized or structured in order for a function, PROC, or macro to work correctly. The way countr is 
designed, each stream (customer service representatives, in this case) should be an individual column. 
An additional column is required to indicate the sample number or sampling interval (in our case, hour of 
the work week) and must be appended to the left of the data table. Further, each column needs to be 
sequentially named (e.g., rep1, rep2, rep3, etc). For us, the data used in this example are structured as 
shown in Figure 1.  

 
Figure 1: Example of Data Structure Necessary for Macro to Function Properly 

NEMT-CUSUM CHART CONSTRUCTION 

COUNTING OBSERVATIONS GREATER THAN THE MEDIAN 
Nonparametric methods commonly rely on the monitoring of a location parameter, typically the median, 
instead of the mean. This is done because if some specific value is really the median of some process, 
then we would expect, on average, that about 50% of the observations would be greater than this value 
and about 50% of the observations would be less than this value. With the NEMT-CUSUM chart, we 
assume that we have some known quantity for the process median (denoted 𝜇" and in our example in 2 
minutes). At each time point, we take a sample of at least n = 10 for each stream being monitored 
(suppose in general there are 𝐶-many streams) and count up how many meet or exceed the known 
median (assuming our data are continuous). At each time point, 𝑡, we can conceptualize and generalize 
this counting process as given in Table 1.  
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Stream Number 1 2 … C 

Number of 
Observations ≥ 𝜇" 

𝑂!" 𝑂#" … 𝑂$" 

Sample Size 𝑛!" 𝑛#" … 𝑛$" 

Table 1: Counting Observations Meeting or Exceeding the Median 
Since we are assuming the streams are mutually independent, we can consider each 𝑂%" a binomial 
random variable with mean and variance of: 
 

 𝐸[𝑂%"] = 𝑛%"(0.50)	
𝑉𝑎𝑟[𝑂%"] = 𝑛%"(0.50)#. 

 

(1) 

Note, while theoretically the sample sizes for each stream do not have to be equal, for the countr 
macro, they do need to be equal. Now the question becomes, “How do we implement this counting 
process in SAS?” This was done with the help of PROC SQL. The code below gives an example of how 
this process works: 

proc sql; 
create table ex as 
select hour, rep1 from waiting; 
create table ex1 as  
select * from ex 
where rep1 > &mu0; 
create table ex2 as 
select hour,count(*) as frequency 
from ex1 
group by hour; 

quit; 
 

Note, the macro variable &mu0 = 2. The first table created by PROC SQL separates each individual 
stream and the sample number (see Figure 2).  

 
Figure 2: Table "ex" from PROC SQL Code 
The second table created by PROC SQL filters the first table such that only observations which are 
greater than the target median, &mu0, are retained. The third and final table created by PROC SQL 
counts up those unique rows for a given stream and a given sample number which are greater than the 
target median. This final table is given in Figure 3.  
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Figure 3: Table "ex2" from PROC SQL Code 
Now, this process had to be generalized and automated for up to 𝐶-many streams. To do this, there first 
had to be a way to get the column names from the data table into a macro variable. A macro named 
get_cols was implemented to do this very thing: 

%macro get_cols(lib,mem,mvar,type); 

   %global &mvar; 

   proc sql noprint; 

      select 

         name 

      into 

         :&mvar separated by ' ' 

      from 

         dictionary.columns 

      where 

             libname eq upcase("&lib") 

         and memname eq upcase("&mem") 

 

         %if %upcase(&type) ne ALL %then 

         and upcase(type) eq upcase("&type"); 

      ; 

   quit; 

   %put &mvar = &&&mvar; 

%mend get_cols; 

In this macro, “lib” is the library where the data table in stored, “mem” is the name of the data table itself, 
“mvar” is what you decide to name the macro variable containing the column names, and “type” refers to 
the type of variable you want the name of (e.g., numeric, character, or all). For the given data table, we 
can see that this macro executes properly by executing the following code:  
%get_cols(WORK,waiting,vars,all); 
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and obtaining the following SAS log message: 
vars = hour rep1 rep2 rep3 rep4 rep5 rep6 rep7 rep8 rep9 rep10 
 

To loop through this process, the following code was used: 
%do i=2 %to %sysfunc(countw(&vars)); 

   %let col_num = %scan(&vars, &i); 

   %let name2 = %sysfunc(catx(_,&col_num,1)); 

   %let name3 = %sysfunc(catx(_,&col_num,2)); 

   proc sql; 

   create table &col_num as 

   select &time_var, &col_num from &df; 

   create table &name2 as  

   select * from &col_num 

   where &col_num > &mu0; 

   create table &name3 as 

   select &time_var,count(*) as frequency 

   from &name2 

   group by &time_var; 

   quit; 

   data &name3; 

   set &name3; 

   ID = "&col_num"; 

   run; 

%end; 

Walking through this code, we first must automate a way for SAS to know how many streams our process 
has. To do this, the countw function was used. It counts the number of words contained in a macro 
variable. In this case, that number is 11, one for each of our streams plus the sample number variable. 
Because we also have the sample number variable, the DO loop must start iterating at i=2 (rep1) rather 
than i=1 (hour). The first LET statement sets the macro variable col_num equal to the name of a 
particular stream. So when i=2, col_num = rep1. The next two LET statements concatenate “_1” and “_2” 
respectively to the end of the col_num macro variable. The DATA step at the end of the DO loop 
appends a stream ID variable to the data table created as in Figure 3. These “_2” data tables are then 
vertically joined by first identifying them in the WORK library and then by using the SET statement in the 
DATA step: 
proc sql noprint; 

select distinct memname 

into :dfnames separated by " " 

from dictionary.columns 

where libname eq "WORK" and memname contains "_2"; 

quit;  



6 

data nemt_cusum_file; 

set &dfnames; 

run; 

CALCULATING THE PLOTTING STATISTIC AND CONTROL LIMITS 
After determining the number of observations greater than the median for each stream at each time point, 
Brown and Schaffer (2020) suggest standardizing the frequencies. For a sufficiently large sample size 
(𝑛%" ≥ 10), each of these standardized frequencies will approximately follow a standard normal 
distribution: 

 
𝑍%" =

𝑂%" − 𝑛%"(0.50)
9𝑛%"(0.50)#

∼̇ 𝑁(0,1). 

 

(2) 

Summing these frequencies yields a quantity defined as: 

 
𝐸𝑀𝑇" =@𝑍%"

"

%&!

∼̇ 𝑁(0, 𝐶). 

 

(3) 

Thus, at each time point, t, we will obtain an EMT statistic. If the process is in-control, which is to say that 
the value of 𝜇" really is the process median, we would expect the EMT statistics to be around 0. If the 
process is OOC, the values of EMT will begin to substantially deviate from 0. The plotting statistic for the 
NEMT-CUSUM chart is the cumulative sum of all previously observed EMT statistics: 

 
𝑆" =@𝐸𝑀𝑇'

"

'&!

= 𝑆"(! + 𝐸𝑀𝑇" , 

 

(4) 

where 𝑆) = 0. Since it is clear that 𝑆" depends on 𝑆"(!, Brown and Schaffer (2020) justified the use of the 
conditional distribution of 𝑆"|𝑆"(! which they showed to be approximately: 

 𝑆"|𝑆"(! ∼̇ 𝑁(𝑠"(!, 𝐶). 

 

(5) 

The recommended control limits are: 

 𝑈𝐶𝐿" = 𝑠"(! + 𝛿√𝐶	
𝐿𝐶𝐿" = 𝑠"(! − 𝛿√𝐶, 

 

(6) 

where 𝛿 is the “half-width” (typically taken to be 3 such that the probability of a “false alarm,” observing an 
OOC point when the process is really in-control, is the traditional value of 0.00027). Now here, if the 
process is in-control 𝑆" should be around 0. If the process is OOC, 𝑆" will drift away from 0 in either the 
positive or negative direction. The control limits provide us with a “cut point” to determine when a drift 
away from 0 is substantial enough to warrant investigation and perhaps corrective action. To obtain all of 
this information in countr, the following code was implemented: 

data nemt_cusum_file; 

set nemt_cusum_file; 

Zt = (frequency - %sysevalf(&n*0.50))/(%sysevalf(&n*0.25)**0.50); 

run; 
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proc sql noprint; 

create table np_plot as 

select &time_var, sum(Zt) as EMT 

from nemt_cusum_file 

group by &time_var; 

quit; 

 

data np_plot; 

set np_plot; 

retain St; 

St+EMT; 

St1 = lag(St); 

if St1 = . then UL = %sysevalf(&delta*(&&C)**0.50); 

else UL = St1 + %sysevalf(&delta*(&&C)**0.50); 

if St1 = . then LL =  %sysevalf(-1*&delta*(&&C)**0.50); 

else LL = 2*St1 - UL; 

/* Any OOC points to identify? */ 

if St > UL or St < LL then OOC = hour; 

run; 

In the first DATA step, the 𝑍%" statistics are calculated for each stream and each time point. In the PROC 
SQL code, the 𝐸𝑀𝑇" statistics are calculated for each time point. Then in the final DATA step, the 𝑆" 
statistics and the control limits are calculated. Additionally, another column named “OOC” is created 
which shows if a particular time point plotted OOC. This last data table, np_plot, is similarly structured to 
data tables outputted by procedures such as PROC SHEWHART, PROC EWMA, and PROC CUSUM. 
Figure 4 gives an example of what this data table looks like: 

 
Figure 4: Final NEMT-CUSUM Macro Data Table 
This table shows the end user every piece of information calculated at each step as previously described. 
The values in the OOC column are coded as missing unless an observation plots OOC. Finally, because 
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this information is typically plotted in a graph, the countr macro also provides the user with a nice graph 
generated by PROC SGPLOT and is given by Figure 5: 
proc sgplot data=np_plot; 

series x=&time_var y=St/markers; 

series x=&time_var y=UL/markers; 

series x=&time_var y=LL/markers; 

xaxis integer ; 

run; 

 
Figure 5: NEMT-CUSUM Chart Example 
Since all of the values of 𝑆" plot within the control limits, this would indicate that the process is in-control. 
In other words, we do not have significant evidence to suggest the median wait time differs from 2 
minutes.  

PUTTING IT ALL TOGETHER: USING THE COUNTR MACRO 
The countr macro, after being read into SAS memory, can be executed as: 
%countr(df,n,c,delta,mu0,time_var,lib,mvar,type); 

In this macro, the position arguments are: 

• df – the name of your data table, structured as Figure 1 
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• n – the size of the samples taken at each stream and each time point 

• c – the number of monitored streams 

• delta – the “half-width” of the control limits, typically taken to be 3 

• mu0 – the in-control value of the process median 

• time_var – the name of the sample number variable in your data table (“hour” in the working 
example) 

• lib – the library where your data table is saved 

• mvar – the name you choose for the macro variable which contains the column names of the data 
table 

• type – the “type” of variable (e.g., numeric, character or all) you want the column names for 
stored in the macro variable mvar – generally “all” is the preferred choice 

For the whole prior example, the following code was used: 
%countr(waiting,10,10,3,2,hour,WORK,vars,all); 

ADDRESSING AN OUT-OF-CONTROL POINT 
When the process is in-control, meaning that 𝑆" plots inside of the control limits, the user has assumes 
that all of the streams are in-control, meaning that the target value of the process median has likely not 
changed. When there is an OOC point, this means that at least one stream may have shifted away from 
target. In this case, the specific value of 𝑆" is less meaningful in determining which stream or streams may 
be OOC. Brown and Schaffer (2020) propose two solutions to this problem.  

First, the authors recommend identifying if a clear inflection point exists, one which immediately precedes 
a clear upward or downward pattern ultimately leading to the OOC point. All of the 𝑍%" and individual 
frequency values for each stream at each time point from the inflection point to the OOC point should be 
examined to see which stream(s) are observed to have substantially large or small 𝑍%" values. This can 
help the chart operator with their investigation into the identification of assignable causes.  

Second, if there are no obviously large or small 𝑍%" values for the stream(s), the authors recommend 
summing all of the frequencies for each stream from the inflection point up to and including the OOC 
point. Since it is assumed that a future sample taken from a given stream is independent from past 
samples taken from a given stream (i.e., no correlation between samples within or between observed 
streams), the sum of those frequencies, assuming the process is in-control, will also follow a binomial 
distribution with mean and variance: 

 
𝐸 I @ 𝑂%*

"!!"

*&"#$%&'

J = (0.50) @ 𝑛%*

"!!"

*&"#$%&'

	

𝑉𝑎𝑟 I @ 𝑂%*

"!!"

*&"#$%&'

J = (0.50)# @ 𝑛%*

"!!"

*&"#$%&'

, 

 

(7) 

where 𝑂%* is the ith stream, 𝑡+,%-" is the time point where the inflection point was noticed, and 𝑡../ is the 
time point where the OOC point was observed. These summed frequencies can be standardized and 
squared such that they asymptotically follow a 𝜒#(1) distribution, and p-values can be obtained for each 
𝜒# statistic. This strategy has not been studied in depth to determine if it is effective at correctly identifying 
OOC streams and thus should be taken as just one possible method for solving this problem, not 
necessarily the only method. 
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CONCLUSION 
Statistical process control charts are effective tools to use in process monitoring applications. Because of 
the variety of processes, one should be sure to choose a chart best suited for the specific process being 
monitored. If one is monitoring a process which could be considered a MSP, it is advisable to use a chart 
designed for monitoring MSPs. When the assumption of normality cannot be reasonably assumed for a 
MSP, Brown and Schaffer (2020) recommend using their NEMT-CUSUM control chart, which does not 
have a distributional assumption at all. In this paper, a macro was developed and described for 
implementation in SAS. This macro provides the end user with an outputted dataset similar to those 
output by PROC SHEWHART, PROC CUSUM, and PROC EWMA as well as a graphical depiction of the 
chart.  
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