
1

SESUG Paper 69-2021

Utilizing SAS® MACROS to Deduplicate Your Data

William Zachary Smith, RTI International

ABSTRACT

Data deduplication is an imperative step for researchers when producing high-quality data
products. If survey respondents do not have a unique identifier, data are particularly prone to data
duplication since participants could have completed a survey multiple times. To produce quality data,

researchers must identify and remove duplicate records. This paper explains the use of a SAS® macro
that creates matching scores between every possible combinational pair of respondents in a dataset.
This macro allows users to input specific datasets, variables, and score criteria that will be used to
identify potential duplicates. The output of this macro will provide you with a list of potential matches
based on their specifications, sorted by match probability to provide researchers with a quick and
efficient way to deduplicate their datasets.

INTRODUCTION

RTI International is responsible for many large-scale surveys across the country, and identifying
duplicate respondents in our data is always an important step in ensuring the delivery of high-quality
data products and client satisfaction. One such survey that utilizes this paper’s deduplication macro is
titled the Survey of Earned Doctorates (SED). Contracted by the National Science Foundation (NSF), the
SED survey is an annual census of all individuals receiving a research doctorate from an accredited U.S.
institution in a given academic year, and collects information such as educational history, demographic
characteristics and postgraduation plans.

When processing the survey data, duplicate data must be identified to ensure that respondents
in a given cycle have one record per degree, and respondents who completed the survey for a prior year
degree can be identified. Often respondents will take the survey a few months before they graduate,
and due to unforeseen circumstances may have to pause their education and finish their degree later.
When resuming their degree and finishing their doctorate, institutions will require the respondent to
take the survey again, and this creates duplicate records in the survey data.

Since all survey responses are assigned a unique identification number, this macro – titled
“%duplicate_identify” – is used to identify these duplicates by comparing respondents’ provided
information, and calculating match scores between every possible pair of respondents. This macro is
relatively easy to use, and only requires a few assumptions before being able to plug in this macro’s
parameters and begin identifying deduplicates in your dataset(s).

DATA ASSUMPTIONS

Before using this macro, you must be sure that specific variables exist in your data that give you
the ability to make adequate comparisons. At the minimum, this macro requires a dataset that contains
a respondent’s birthdate, sex, and social security number (SSN) in character formats. It is also
recommended that the data contains a unique identification number for each respondent, a
respondent’s first name and last name, and other miscellaneous variables that can be used for
identification (this paper will also use a respondent’s middle name, high school graduation year and
their birth country). An example of a simulated data structure that follows these conditions can be seen
below in Figure 1:

2

Figure 1: Example of a Proper Data Structure for the %duplicate_identify Macro1

MACRO PARAMETERS

Before being able to call upon %duplicate_identify, an understanding of this macro’s
parameters are recommended. The parameters are described below, with the full code used to build
this macro available in Appendix A.

%duplicate_identify(dataset1,dataset2,blockingvar,compvar1,compvar2,

compvar3,compvar4,compvar5,compscore,sex_var,ssn4_var,ssn4score,

birthdate_var,birthdatescore,blockssn4ind,blockbirthind);

dataset1: This parameter correspondents to the dataset that you want deduplicated.

dataset2: This parameter allows users to specify a 2nd dataset that they want deduplicated. This allows
users to determine if there are duplicate records between datasets. If you are only interested in
deduplicating a single dataset (only looking for duplicate records within a single dataset), this parameter
must be the same as dataset1.

blockingvar: This parameter corresponds to the variable that you want every potential duplicate pair
identified by this macro to have an exact match on. For example, if you require all social security
numbers to be an exact match when determining duplicates, you will specify social security number as
your blocking variable. If you have multiple blocking variables you want to use it’s recommended to run
this macro multiple times, specifying different blocking variables each time and then synthesizing the
resulting outputs across the multiple blocking variable configurations for the best results. Defining and
using a blocking variable is required for the use of this macro, otherwise SAS will produce an error.

compvar1-5: These parameters correspond to the comparison variables you would like to be used in the
matching score calculation, in addition to birthdate, sex and SSN, and it’s recommended that compvar1-
compvar5 variables be in character format. This macro needs a minimum of 3 comparison variables and
can have up to 5. If you use less than 5, leave the unused compvar4/compvar5 parameters blank. The
compged() function is used within this macro to create matching scores on each comparison variable
specified for each potential match pair by computing the generalized edit distance for each string. The
generalized edit distance represents the minimum-cost sequence of operations required to turn one
string into another string. The smaller the number, the closer the match, as each operation required to
turn one string into another adds on to the total “cost” (SAS Institute Inc. 2016). Please refer to the SAS

1 To protect all SED respondents and their personally identifiable information, a dataset with these conditions was
randomly generated for the use of this paper from the data simulation website www.mockaroo.com.

http://www.mockaroo.com/

3

documentation on the compged() function, provided in the references, for a full list of what certain
differences between two strings “costs”. The final match score is created by summing across these
comparison variables, a social security number matching score, and a birthdate matching score. The
code used in this macro to compute these scores is shown below, using the code for the macro variable
compar4 as an example:

%if &compvar4^='' %then %do;

&compvar4._comp=compged(&compvar4._data1,&compvar4._data2);

%end;

%if &compvar4= %then %do;

&compvar4._comp=0;

%end;

compscore: This parameter corresponds to highest match score you’re comfortable with after summing
the compged() scores calculated for each comparison variable. The comparison score calculation can be
seen below.

comp_score=&compvar1._comp+&compvar2._comp+&compvar3._comp+&compvar4._c

omp+&compvar5._comp;

Sex_var: This parameter corresponds to the variable name that represents sex in your dataset. It is

assumed that all datasets that are run through this macro have a sex variable. Sex must be an exact

match for this macro to consider a pair a potential match, and therefore no cutoff score needs to be

specified.

Ssn4_var: This parameter corresponds to the variable name that represents SSN in your dataset. It is
assumed that all datasets that are run through this macro have a social security number variable.

ssn4score: This parameter corresponds to the highest match score you’re comfortable with after using
the compged() function on SSNs. Since SSN is typically required to have a near perfect match when
identifying duplicates, a low cutoff score of 25 is recommended. This will allow for potential typos and
human errors that can occur when inputting their social security number.

birthdate_var: This parameter corresponds to the variable name that represents birthdate in your
dataset. It is assumed that all datasets that are run through this macro have a birthdate variable.

birthdatescore: This parameter corresponds to the highest match score you’re comfortable with after
using the compged() function on birthdates. As with SSNs, birthdate matches are typically required to
have a near perfect match when identifying duplicates and a lower cutoff score of 25 is recommended.

blockssn4ind: This is an indicator variable used to indicate if your blocking variable is SSN. If so, match
scores will not be calculated for social security number since they are required to be a direct and perfect
match as a blocking variable. A value of 1 means that SSN is used as a blocking variable, and a value of 0
means that SSN is not being used as a blocking variable.

blockbirthind: This is an indicator variable used to indicate if your blocking variable is the respondents’
birthdates. If so, match scores will not be calculated for birthdates since they are required to be a direct

4

and perfect match as a blocking variable. A value of 1 means that birthdate is used as a blocking
variable, and a value of 0 means that birthdate is not being used as a blocking variable.

EXAMPLE

Below is an example of calling %duplicate_identify using the dataset shown in Figure 1.

%duplicate_identify(database_match,database_match,ssn4,first_name,

last_name,middle_name,hsgradyear,birthcountry,

250,ssn,25,birthdate_char,25,1,0);

In this example, only one dataset is used, titled “database_match”. SSN is defined as the
blocking variable, meaning any potential duplicate pairs created by this macro will have exact matches
on SSN.

The 5 comparison variables used are first_name, last name, middle_name, hsgradyear and
birthcountry with a cutoff score of 250. This means some of the potential matches identified can have
slightly different first names, last names, middle names, high school graduation years and birth
countries so that typos and misspellings can be accounted for.

The social security number variable is titled SSN, with a cutoff score of 25, and the birthdate
variable is titled birthdate_char with a cutoff score of 25. However, since this example uses SSN as the
blocking variable, it will not be used in the match score calculations. Therefore, blockssn4ind is set to 1,
and blockbirthind is set to 0.

At the end of the score calculations, the potential matches are sorted by their final match scores
and outputted in descending order for manual review. Since a lower match score corresponds with a
higher probability of a match, the pairs with the highest chances of being a match/duplicate are at the
top. With the specifications used above, all potential matches identified by this macro will have
matching social security numbers (on the last 4 digits), with very similar first names, last names,
birthdays, high school graduation year and birth countries.

OUTPUT AND RESULTS

Below are some match pairs that were identified using the %duplicate_identify macro with the
parameters specified above (for sake of space, high school graduation date and country born cannot be
seen in these figures but are included in this macro’s output).

 At the top of the dataset are cases that are a perfect match, shown below in Figure 2:

Figure 2: Examples of highly matching pairs

In the middle of the dataset are cases that are a perfect match, shown below in Figure 3:

5

Figure 3: Examples of moderately matching pairs

Lastly, at the bottom of the dataset are cases that are likely not matches but do have some matching
data, shown below in Figure 4:

Figure 4: Examples of low matching pairs

CONCLUSION

Ultimately, this macro provides users with an easy-to-use process for identifying duplicates within a
single dataset or between two datasets. However, there are some disadvantages that should be
considered when using this macro, along with areas for future improvements.

1. Running this macro on very large datasets can take a considerable amount of time and

processing resources. Once computed, the final output requires manual review and large

datasets with a high volume of potential pairs can still be burdensome to analyze.

2. Less specific blocking variables can generate many false-positive matching pairs. For example,

using respondent’s last name as a blocking variable could identify multiple rows as duplicates for

respondents with the same last name.

3. Only one blocking variable can be used with this macro. If multiple blocking variables are

required, it is recommended that you run the %duplicate_identify macro multiple times with

varying configurations, and then synthesizing your potential matches across configurations, for

the best results.

 Future improvements in progress include adding a process of identifying all match pairs that
have an exact match across all specified comparison variables, social security number and birthdate, and
then outputting these separately as “guaranteed matches” to reduce the burden of manual review.

REFERENCES

SAS Institute Inc. 2016. SAS® 9.4 Functions and CALL Routines: Reference, Fifth Edition, pp 488-494. Cary,
NC: SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

William Zachary Smith
RTI International
919-541-6987
wzsmith@rti.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

mailto:wzsmith@rti.org

6

Other brand and product names are trademarks of their respective companies.

APPENDIX A: CODE USED TO BUILD %DUPLICATE_IDENTIFY

/*Importing Datafile*/

proc import

datafile='/rtpnfil02/rtpnfil02_vol7/sed17/Users/wzsmith/Fake_Data_SESU

G.xlsx' out=database

DBMS=xlsx replace;

run;

/*Create Variables for Matching*/

data database_match;

retain id first_name last_name middle_Name ssn birthdate_char sex

hsgradyear birthcountry;

set database;

/*In Case Dataset does not have IDs for each case, create them*/

ID=_N_;

/*Make sure Birthdate is in character format*/

birthdate_char = put(birthdate,mmddyy10.);

keep id first_name last_name middle_Name ssn birthdate_char sex

hsgradyear birthcountry;

run;

/*Macro Definition*/

%macro

duplicate_identify(dataset1,dataset2,blockingvar,compvar1,compvar2,com

pvar3,compvar4,compvar5,compscore,ssn_var,ssnscore,birthdate_var,birth

datescore,blockssnind,blockbirthind);

/*Create duplicate dummy dataset for merging and comparisons*/

data matchdata1;

set &dataset1;

run;

data matchdata2;

set &dataset2;

run;

/*Rename every variable to eliminate any merging issues*/

proc sql;

select name||"="||cats(name,'_data1') into:rename_list separated by "

"

from dictionary.columns

where libname="WORK" and memname="MATCHDATA1";

quit;

proc datasets library=work nolist;

7

modify matchdata1;

rename &rename_list;

quit;

proc sql;

select name||"="||cats(name,'_data2') into:rename_list separated by "

"

from dictionary.columns

where libname="WORK" and memname="MATCHDATA2";

quit;

proc datasets library=work nolist;

modify matchdata2;

rename &rename_list;

quit;

/*Make it so both datasets are able to be merged on blocking

variable*/

data matchdata1_&blockingvar;

set matchdata1;

rename &blockingvar._data1=&blockingvar;

if &blockingvar._data1^='';

run;

data matchdata2_&blockingvar;

set matchdata2;

rename &blockingvar._data2=&blockingvar;

if &blockingvar._data2^='';

run;

/*Create dataset with all possible case pairings that have matching

blocking variable values*/

proc sort data=matchdata1_&blockingvar; by &blockingvar; run;

proc sort data=matchdata2_&blockingvar; by &blockingvar; run;

proc sql;

create table &blockingvar._matches as

select * from matchdata1_&blockingvar, matchdata2_&blockingvar

where

matchdata1_&blockingvar..&blockingvar=matchdata2_&blockingvar..&blocki

ngvar and

matchdata1_&blockingvar..id_data1^=matchdata2_&blockingvar..id_data2;

quit;

proc sort data=&blockingvar._matches nodupkey; by id_data1 id_data2;

run;

data &blockingvar._match_scores;

set &blockingvar._matches;

/*Create Scores for the comparison variables specified in the macro*/

%if &compvar1^='' %then %do;

8

&compvar1._comp=compged(&compvar1._data1,&compvar1._data2);

%end;

%if &compvar1= %then %do;

&compvar1._comp=0;

%end;

%if &compvar2^= %then %do;

&compvar2._comp=compged(&compvar2._data1,&compvar2._data2);

%end;

%if &compvar2= %then %do;

&compvar2._comp=0;

%end;

%if &compvar3^= %then %do;

&compvar3._comp=compged(&compvar3._data1,&compvar3._data2);

%end;

%if &compvar3= %then %do;

&compvar3._comp=0;

%end;

%if &compvar4^= %then %do;

&compvar4._comp=compged(&compvar4._data1,&compvar4._data2);

%end;

%if &compvar4= %then %do;

&compvar4._comp=0;

%end;

%if &compvar5^= %then %do;

&compvar5._comp=compged(&compvar5._data1,&compvar5._data2);

%end;

%if &compvar5= %then %do;

&compvar5._comp=0;

%end;

comp_score=&compvar1._comp+&compvar2._comp+&compvar3._comp+&compvar4._

comp+&compvar5._comp;

/*Create Birthdate Score (Assumed to have this variable)*/

%if &blockbirthind^=1 %then %do;

birthdate_comp=compged(&birthdate_var._data1,&birthdate_var._data2);

%end;

/*Create ssn Score (Assumed to have this variable)*/

%if &blockssnind^=1 %then %do;

ssn_comp=compged(&ssn_var._data1, &ssn_var._data2);

%end;

9

/*Output the matches that meet the criteria specified in the macro*/

%if &blockssnind=1 %then %do;

if (comp_score<=250 and sex_data1=sex_data2) or birthdate_comp<=25

then keep=1;

%end;

%if &blockbirthind=1 %then %do;

if (comp_score<=250 and sex_data1=sex_data2) or ssn_comp<=25 then

keep=1;

%end;

%if &blockbirthind^=1 and &blockssnind^=1 %then %do;

if (comp_score<=250 and sex_data1=sex_data2) or ssn_comp<=25 or

birthdate_comp<=25 then keep=1;

%end;

if keep=1;

run;

%if &blockssnind=1 %then %do;

proc sort data=&blockingvar._match_scores

out=&blockingvar._match_scores_sorted; by comp_score birthdate_comp;

run;

%end;

%if &blockbirthind=1 %then %do;

proc sort data=&blockingvar._match_scores

out=&blockingvar._match_scores_sorted; by comp_score ssn_comp; run;

%end;

%if &blockbirthind^=1 and &blockssnind^=1 %then %do;

proc sort data=&blockingvar._match_scores

out=&blockingvar._match_scores_sorted; by comp_score ssn_comp

birthdate_comp; run;

%end;

data &blockingvar._match_scores_sorted;

retain linkage_id id_data1 id_data2 &blockingvar &ssn_var._data1

&ssn_var.data2 &birthdate_var._data1 &birthdate_var._data2

sex_data1 sex_data2 &compvar1._data1 &compvar1._data2 &compvar2._data1

&compvar2._data2 &compvar3._data1 &compvar3._data2 &compvar4._data1

&compvar4._data2 &compvar5._data1 &compvar5._data2;

set &blockingvar._match_scores_sorted;

linkage_id=_N_;

run;

%mend;

%duplicate_identify(database_match,database_match,ssn,first_name,last_name,mi

ddle_name,hsgradyear,birthcountry,250,ssn,25,birthdate_char,25,1,0);

10

