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ABSTRACT 

The generalized logit model is a logistic regression model where the target (or dependent variable) has 3 
or more levels, and the levels are unordered. Predictors for the generalized logit model may be NOD 
(nominal, ordinal, discrete-numeric) where, generally, the number of levels is under 16. Alternatively, 
predictors may be continuous where the predictor is numeric and has many levels. This paper discusses 
methods that screen, bin, or transform the NOD and continuous predictors, as preparation for model 
fitting. These same methods also apply to the cumulative logit model (where the target is ordered). The 
binning methodology is applied to NOD predictors and generalizes the concept of information value. The 
method of transforming a continuous predictor is an extension of the function selection procedure (FSP) 
to the multinomial target. SAS® macros are presented which implement the methods for screening, 
binning, and transforming. Familiarity with PROC LOGISTIC is assumed. 

INTRODUCTION  

The generalized logistic model extends the binary logistic model to the case where the target has J > 2 
levels, and the levels are unordered. Some papers and books use the term multinomial logit model. But in 
conformance with SAS terminology, the term, generalized logistic model, or generalized logit, is used. 
The conditional logit, which is a generalization of the generalized logit, is not discussed in this paper. 

The cumulative logit (cum logit) extends the binary logistic model to the case where the target has J > 2 
levels, and where the levels are ordered. The number of levels J should be relatively small with J=10 
being large. If a target has J > 10, then an alternative modeling approach is probably better. The common 
(but restrictive) form of the cum logit is the proportional odds (PO) model. The cum logit partial 
proportional odds (PPO) model provides a generalization. If the target is count-data, then the Poisson, 
Negative Binomial, or ZIP regression model may be preferred. These are performed by PROC GENMOD 
or PROC COUNTREG (in SAS/ETS). 

The purpose of this paper is to discuss methods to screen, bin, or transform predictors prior to the model 
fitting stage for the generalized logit but with reference to the cumulative logit. At each stage (screening, 
binning, transforming) SAS macros will be demonstrated.  

“Screening” is the process of finding predictors with enough predictive power to be considered further.  

For predictors having only a few levels, “binning” is a process to reduce the number of levels while 
maintaining predictive power.1 Binning achieves parsimony and can reveal logical relationships between 
the predictor and the target.2  

Finally, “transforming” of continuous numeric refers to how such a predictor is represented in a model in 
order to have good predictive power. For example, a transformation might replace continuous numeric 
(positive) X with Log(X) or by adding a second order term X2. 

THE GENERALIZED LOGIT  

For the generalized logit the levels of the target can be character or numeric provided the ordering is not 
meaningful. It is most convenient to let the target levels be integers 1 to J. Let J ≥ 2 and denote the target 
by Y. Let Pi,j be the probability that P(Yi=j) for the ith subject or observation. 

 

 
1 “Few” is a subjective term but can be viewed as under 16 and perhaps no more than 10. Predictors with a few levels 
fall into three categories: nominal, ordinal, and discrete-numeric. 
2 Binning for the binary logit model is presented in Lund (2017) and for the cumulative logit model in Lund (2019). 
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When J = 2 the generalized logit is the familiar binary logistic. Let a binary target have levels 1 and 2 with 
probabilities P1 = P(Y=1) and P2 = P(Y=2). In binary logistic there is a linear combination of predictors and 

coefficients, denoted by xbeta = ∑ βkxi,k
K
k=0  , related to odds Pi,1 / Pi,2 as shown:  

Pi,1 / Pi,2  = exp(∑ βkxi,k
K
k=0 ) = exp(xbeta)  … xi,0 = 1 

where “i” indexes the observation and there are K predictors. 

For the generalized logit the level “J” is traditionally taken as a reference level, or base level. With this 
convention, the probability of each level j = 1 to J-1 is compared to the probability for level J to form J-1 
odds for j = 1 to J-1. Each odds equals an exp(xbetaj) where the coefficients βj,k for predictor Xk depend 

on j. 

Pi,j / Pi,J = exp(xbetaj) = exp(∑ βj,kxi,k
K
k=0 )    … xi,0 = 1 

These J-1 equations are called the response equations. 

Using these J-1 equations and ∑ Pi,j
J
j=1  = 1, the formulas for Pi,j are found: 

Pi,j = exp(xbetai,j) / (1 +  ∑ exp (xbetai,h
J−1
h=1 )) for j = 1 to J-1 

Pi,J = 1 / (1 +  ∑ exp (xbetai,h
J−1
h=1 )) 

Formally, Pi,J / Pi,J = exp(xbetaJ) = 1 for all X. This implies that each βJ,k is set to 0. 

The coefficients (and probabilities) are fit simultaneously by maximizing the likelihood function:  

L(b) = ∏ ∏ P
i,j

Yi,j
 

J
j=1

n
i=1  

 where Yi,j = 1 if Yi = j, else Yi,j = 0 and sample size is n. 

A new feature was added to PROC LOGISTIC in SAS/STAT 14.1 for the generalized logit. This new 
feature is the statement EQUALSLOPES. This statement allows the modeler to specify which predictors 
may have equal slopes across the response equations.  

For example, if the predictors X1 and X2 are in a generalized logit model, then the use of 
EQUALSLOPES, below, forces X2 to have equal slopes across the response equations.  

PROC LOGISTIC DATA= Test; 

MODEL Y= X1 X2 / LINK= glogit EQUALSLOPES= (X2); 

run; 

UNEQUALSLOPES is the default for PROC LOGISTIC and it will be the main focus of this paper. 

CUMULATIVE LOGIT PROPORTIONAL ODDS MODEL 

Let J ≥ 2 and denote the target by Y with levels 1 to J. For the cumulative (cum) logit, the levels for the 
target can be character or numeric provided the ordering is meaningful. Let Pi,j be the probability that 
P(Yi=j) for the ith observation. The Cum Logit Proportional Odds (PO) model is defined by the J-1 
response equations as follows: 

∑ Pi,j
J0
j=1  / ∑ Pi,j

J
j=J0+1  = exp( αJo

+ ∑ βkxi,k
K
k=1  ) … for 1 ≤ J0 ≤ J-1 

 where αj < αj+1 for all j, the βk are slope parameters with no restriction, and Xk are predictors. 

Note: 

• βk does not depend on j.  

• αj1
+ ∑ βkxi,k

K
k=1  < αj2

+ ∑ βkxi,k
K
k=1  for j1 <  j2 for all x. 

When J = 2 the cumulative logit is the usual binary logistic model. 
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In order to simplify the equation above, suppose the target Y has levels A, B, C and there are two 
predictors X1 and X2. Here are the two response equations, this time after taking logarithms:   

Log (Pi,A / (Pi,B + Pi,C)) = αA + βX1*Xi,1 + βX2*Xi,2 

Log ((Pi,A + Pi,B) / Pi,C) = αB + βX1*Xi,1 + βX2*Xi,2 

CUMULATIVE LOGIT PARTIAL PROPORTIONAL ODDS (PPO) MODEL 

In this generalization, one or more of the coefficients of the predictors can be depend on j. In the example 
below the target has three levels A, B, C and there are two predictors X1 and X2. The coefficients of X2 
will be allowed to be different in the two response equations: 

 Log(Pi,A / (Pi,B + Pi,C)) = αA + βX1*Xi,1 + βX2,A*Xi,2 

 Log(Pi,A + Pi,B) / Pi,C)) = αB + βX1*Xi,1 + βX2,B*Xi,2 

In PROC LOGISTIC the cum logit PPO model is implemented by use of the UNEQUALSLOPES 
statement which allows the modeler to specify which predictors may have unequal slopes across the 
response equations. For example, if the predictors are X1 and X2 for a cum logit model, then the use of 
UNEQUALSLOPES, below, allows X2 to have unequal slopes across the response equations.3 

PROC LOGISTIC DATA= Test; 

MODEL Y= X1 X2 / UNEQUALSLOPES= (X2); 

run; 

EQUALSLOPES is the default. The cumulative logit model is fit by maximum likelihood estimation. 

NOD PREDICTORS 

A Nominal, Ordinal, or Discrete-numeric predictor X with number of levels more than 2 but generally less 
than 16 (and typically ≤ 10) will be called a NOD predictor. Normally, such predictors enter a logistic 
model as dummy variables via a CLASS statement. Alternatives to using the CLASS statement could be 
(i) weight of evidence coding or (ii) conversion of X to become a numeric predictor if X has numeric or 
ordinal scaling (not discussed in this paper). The meaning and usage of weight of evidence coding of a 
NOD X for the cumulative logit and generalized logit is defined and discussed in a later section. 

THE SATURATED MODEL 

For a NOD predictor X with L levels the saturated model, for cum logit or generalized logit, are given by: 

Generalized Logit: 

PROC LOGISTIC DATA= Test; 

CLASS X; 

MODEL Y= X / UNEQUALSLOPES= (X) /* = default */ LINK= glogit;  

run; 

Cumulative Logit: 

PROC LOGISTIC DATA= Test; 

CLASS X; 

MODEL Y= X / UNEQUALSLOPES= (X); 

run; 

In the saturated model there are L*(J-1) parameters. The probabilities P(Y = j | X = i) for j =1 to J-1 and 
i=1 to L are the row percentages of the Table X*Y. In particular, the log-likelihood and likelihood ratio 
chi-square (LRCS) are equal for the two models above.4 For large samples this LRCS has a chi-square 
distribution with (L-1)*(J-1) degrees of freedom. 

 
3 See NOTE at bottom of SAS webpage of Example 72.18 for discussion of the possibility of negative probabilities. 
http://support.sas.com/documentation/cdl/en/statug/68162/HTML/default/viewer.htm#statug_logistic_examples22.htm 
4 See Appendix 1 for formulas and an example calculation of the LRCS 
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The LRCS is a measure of predictive power of the saturated version of X to predict Y. If X and Y are 
independent, [i.e. P(Y=j | X=i) = P(Y=j)], then LRCS=0. At the other extreme, if for each j there is some 
X=i so that P(Y=j | X=i) = 1, then LRCS= -2*[Log-Likelihood of intercepts-only model] … using the 
convention that 0*Log(0) = 0. The larger the LRCS, the more the divergence from independence. 

The “c” or Model c (or c-statistic) is computed for the cumulative logit model.5 For the saturated model the 
Model c is simply the “c” from PROC LOGISTIC; CLASS X; MODEL Y=X / UNEQUALSLOPES=(X);.  

I have not found a paper that gives guidelines for what would constitute a good “c” in general, nor for “c” 
in the special situation of the saturated model. I’ve run some simulations which suggest that a “c” above 
0.60 indicates a strong predictor in the case of a saturated model.  

SCREENING NOD PREDICTORS: %MULTI_LOGIT_SCREEN_1 

The macro %MULTI_LOGIT_SCREEN_1 (DATASET, TARGET, INPUT, SORT) computes:  
(i) likelihood ratio chi-square (LRCS) for saturated model, (ii) LRCS significance level, and (iii) model c 
(meaningful only if cum logit is being considered). This is done for each predictor listed in the INPUT 
parameter. Target and predictors can be numeric or character.  

The major processing by the macro is performed by just one PROC SUMMARY. 

The right-most macro parameter is called SORT. It designates the sort sequence of the output Table. 
Choices are “LRCS” (significance of LRCS), “Model_c”, or “space”. If space, then INPUT order is used. 

EXAMPLE 

The macro %MULTI_LOGIT_SCREEN_1 will be applied to the data set TEST01.6 It is assumed for this 
example that the target Y is not ordered. 

%LET SLOPE1 = 0.01; %LET SLOPE2 = 0.05; %LET SLOPE3 = 0.10;  

%LET SLOPE4 = 0.20; %LET SLOPE5 = 0.99; %LET P_Seed = 5;  

DATA TEST01;  

Do i = 1 to 8000;  

   X1 = floor(12*ranuni(2)) - 1.5;  

   X2 = floor(2*ranuni(2)) - .5;  

   X3 = floor(2*ranuni(2)) - .5;  

   X4 = floor(2*ranuni(2)) - .5;  

   X5 = floor(2*ranuni(2)) - .5;  

   C1 = put(floor(4*ranuni(2)),z2.);  

   C1_all = &SLOPE1*(C1='00') + &SLOPE2*(C1='01') + &SLOPE3*(C1='02');  

   T = exp(0 + C1_all + &SLOPE1*X1 + &SLOPE2*X2 + &SLOPE3*X3 + &SLOPE4*X4 +  

      &SLOPE5*X5);  

   U = exp(1 + C1_all + &SLOPE1*X1 + &SLOPE2*X2 + &SLOPE3*X3 + &SLOPE4*X4 +  

      &SLOPE1*X5);  

   PA = 1 - 1/(1 + T);  

   PB = 1/(1 + T) - 1/(1 + U);  

   PC = 1 - (PA + PB);  

   R = ranuni(&P_Seed);  

   if R < PA then Y = "A"; /* Assign Y to match model probabilities */ 

   else if R < (PA + PB) then Y = "B";  

   else Y = "C";   

   Output;  

   End;  

run; 

Here, the macro call and report from %MULTI_LOGIT_SCREEN_1 are shown: 

 
5 For the computation see Lund (2019 p. 5 footnote) 
6 This data set simulates data from a cum logit PO model, although this is not relevant for the example. 
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%Multi_Logit_Screen_1(TEST01, Y, X1 X2 X3 X4 X5 C1, LRCS); 

Obs Var_Name Levels LRCS df Pr > ChiSq MODEL_C 

1 X5 2 708.03 2 <.0001 0.578 

2 X4 2 27.70 2 <.0001 0.525 

3 C1 4 11.27 6 0.0804 0.517 

4 X3 2 1.25 2 0.5365 0.505 

5 X2 2 1.19 2 0.5512 0.504 

6 X1 12 20.41 22 0.5572 0.518 

 NOTE: Model c is not meaningful for the generalized logit 

Table 1 

One use of right-tail probability, Pr > ChiSq, is to rank the predictors for the given data and target variable, 
and then investigate the least significant for elimination. Here, X1, X2, X3 are candidates for elimination.  

There is no cut-off value across applications for Pr > ChiSq since the tail probability is influenced by 
sample size. In this regard, LRCS might be computed for bootstrap samples of size 1000 (assuming a full 
sample of N ≥ 1000) to obtain average Pr > ChiSq’s and a measure of variability. The bootstrap sample 
size is set to 1000 so that the average right-tail probability and its variability can be compared to a 
standard alpha, such as 0.15.  

In this example just 10 bootstrap samples were used. PROC SURVEYSELECT provides bootstrap 
sampling.7 Averages of Pr > ChiSq from 10 bootstrap samples for X5, X4, X1, X2, X3, C1 are shown 
below. Only X5 had right-tail probability consistently below 0.15. Predictors X2, X3, and C1 are 
candidates for elimination. 

Var_Name 
Average of Pr > ChiSq 

for 10 bootstrap samples  
Percent where 

(Pr > ChiSq) < 0.15 

X5 <.0001 100% 

X4 0.189 80% 

X1 0.219 40% 

X2 0.624 10% 

X3 0.520 10% 

C1 0.402 30% 

Table 1b 

BINNING NOD PREDICTORS 

Binning is widely used for simplifying NOD predictors for binary logistic models. Binning is the process of 
reducing the number of levels of a NOD predictor to achieve parsimony while preserving, as much as 
possible, the power of the predictor. This practice is especially prevalent in credit risk modeling.  

Suppose X has levels 1, 2, 3. A step in binning might be to combine 1 and 3. Now the binned X has 2 
levels {1, 3}, {2}. Here, “non-adjacent” binning was allowed (1 and 3 are not adjacent in the ordering of X). 
If only adjacent levels may be combined, then {1, 2}, {3} is an allowable step. The other allowable step is 
{1}, {2, 3}. A modeler chooses non-adjacent or adjacent binning depending on meaning of X and its 
purpose in the model. 

 
7 PROC SURVEYSELECT DATA=TEST01 out=BootSamples noprint seed=123    
 n=1000 method=urs  reps=10 /* 10 resamples */;  
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THE FINAL BINNING SOLUTION 

A k-bin solution is defined by the membership of levels of X within k bins. The final binning solution is 
given by specifying the number k of bins and the membership of the levels of X in these k bins. 

When binning predictors for binary logistic regression, the binning process is designed to attempt to 
maximize the information formation (IV) of the final binning solution. As an alternative to maximizing IV, 
the -2*log(likelihood) for the saturated model of Y for the binned predictor X can be minimized.8 

EXTENSION OF IV TO GENERALIZED LOGIT AND CUM LOGIT  

How can the ideas of information value and -2*log(likelihood) be extended to the generalized logit and 
cumulative logit in order to guide the binning process? The extension of -2*log(likelihood) is 
straightforward, simply compute -2*log(likelihood) for the saturated model of Y and predictor X.  

But an extension of IV is needed in order to apply the concept of information value, for the purpose of 
binning, to the generalized logit and cumulative logit. 

This extension depends on forming “binary splits” of target Y. But the definition of “binary split” varies with 
whether cumulative or generalized logit is being considered. 

For the cumulative logit the observations are divided (low vs. high) at a split point of the ordered target 
levels. There are J-1 splits. For example, if target has levels A, B, C there are 2 splits: {A} v. {B, C} and 
{A, B} v. {C}. For the cumulative logit, all observations are utilized for each binary split. 

For the generalized logit the binary splits are between a target level “j” and the target base “J”. The target 
base takes a special role. Only the observations with target levels “j” or “J” are used in the “j” split. For a 
target with levels A, B, C, with C as the base, there are 2 splits: {A} v. {C} and {B} v. {C}. 

Consider the X*Y Data Sample (Table 2) and the two different forms of binary splits. For the generalized 
logit the {A} v. {C} split uses only 13 observations in total. The ordered split {A} v. {B, C} for the cum logit 
uses all 17 observations in the sample.  

 Data Sample   Generalized Logit   Cum Logit 

 Y   Split: Level v. Base 
 

  Ordered Binary Split 
 X A B C  X A C B C  X A  {B, C} {A, B} C 

1 4 1 1  1 4 1 1 1  1 4 2 5 1 

2 3 1 3  2 3 3 1 3  2 3 4 4 3 

3 1 2 1  3 1 1 2 1  3 1 3 3 1 

Table 2 

Now the usual binary information value is computed for each split (see Table 3). 

Generalized Logit 
Split: Level v. Base 

IV (Info Value) 
 Cumulative Logit 

Ordered Split 
IV (Info Value) 

A v. C 0.4158  A v. {B, C} 0.4413 

B v. C 0.5924  {A, B} v. C 0.3269 

Table 3 

%MULTI_LOGIT_BIN 

An algorithm, in the form of a SAS macro %MULTI_LOGIT_BIN, performs binning for either cumulative 
logit or generalized logit.9  The modeler must first select adjacent or non-adjacent binning in order to 
identify which pairs of levels are eligible for collapse. Then the modeler picks a criterion (same criterion at 
every kth step) to optimize in the search for the eligible pair to collapse.10  

 
8 Equivalent to maximizing LRCS for saturated models. 
9 Binning for binary logit model was presented in Lund (2017) and for cumulative logit model in Lund (2019). 
10 In %MULTI_LOGIT_BIN parameter MODE: non-adjacent binning is coded “A” and adjacent binning is coded “J”. 
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Here are four criteria that can guide the binning process at each kth step. These criteria apply to both the 
cumulative and generalized logit, but with the distinctive computations of the IV’s. 

1. Maximize IV:  IV is the average of the IV’s for the binary splits 
2. Maximize MIN_IV:  MIN_IV is the smallest IV across the binary splits 
3. Maximize MAX_IV: MAX_IV is the largest IV across the binary splits 
4. Minimize -2*LL: for saturated model of Y and X. This criterion is equivalent to maximizing LRCS. 

The X*Y sample from Table 2 is first regarded as a sample from a cumulative logit population. If 
non-adjacent binning is used, then there are 3 possible 2-bin solutions. The best 2-bin solution according 
to IV, MAX_IV, and MIN_IV is {1} {2, 3}. But {1, 2} {3} is best for criterion -2*LL. See Table 4. 

Cum Logit (non-adjacent binning) Ordered Binary Splits 

X BINs - 2_LL AVG_IV MIN_IV MAX_IV IV: A v {B C} IV: {A B} v C 

{1} {2 3} 34.392 0.288 0.227 0.348 0.348 0.227 

{1 3} {2} 34.653 0.157 0.020 0.293 0.020 0.293 

{1 2} {3} 33.901 0.138 0.014 0.261 0.261 0.014 

Table 4: Non-adjacent Bins 

Choice of which of the 3 variants of IV to use is subjective. MAX_IV may insure that a single binary split 
determines the final binning solution. This approach could lead to a solution where X strongly 
differentiates between, say, {A, B, C, D} v. {E}, but is weak otherwise. MIN_IV looks for a final solution for 
X where even the weakest split is strong. Average IV is a compromise between MAX_IV and MIN_IV.  

The X*Y sample from Table 2 is used again, now to show non-adjacent binning for the generalized logit 
model. When considering the splits for the generalized logit, the best 2-bin solution is {1, 3} {2} according 
to IV, MAX_IV, and MIN_IV. But {1, 2} {3} is best for the criterion -2*LL. See Table 5. Choice of base 
(here it is “3”) can significantly affect the IV rankings. But -2*LL is not affected by choice of base. 

Generalized Logit (non-adjacent binning) Split: Level v. Base 

X BINs - 2_LL AVG_IV MIN_IV MAX_IV IV: A v B IV: B v C 

{1,3} {2} 34.653 0.366 0.206 0.526 0.206 0.526 

{1,2} {3} 33.901 0.229 0.042 0.416 0.042 0.416 

{1} {2,3} 34.392 0.215 0.014 0.416 0.416 0.014 

Table 5 Non-adjacent Bins 

If predictor X has L levels, the binning takes L-2 steps to reach a 2-bin solution. Stopping rules for binning 
are, frankly, subjective. If there is a sharp drop-off in the binning criterion from k bins to k-1 bins, then the 
“rule” is stop at k bins. Other factors that affect when to stop are: (i) There should be no bins with a very 
small count of observations. (ii) Relationship between the target and the bins should be logical. 

When a final binning solution is selected, it may not be optimal according to whatever criterion was 
selected. Even though at each step the optimal eligible pair is selected for collapse, it is possible that a 
non-optimal choice could eventually have led to a better final binning solution. I think the potential impact 
on the quality of the final binning solution, if reaching a non-optimal solution, is minor. 

SAS statements for Weight of Evidence Coding and for the Bin Coding for each binary split are generated 
by %MULTI_LOGIT_BIN. For the binning solution {1} v. {2 3} for the cumulative logit model, the WOE and 
BIN codings are below. The WOE coding values are different for the generalized logit model. 

CUM LOGIT: Weight of Evidence Coding  CUM LOGIT: Bin Coding 

if X in ( 1 ) then X_woe1 = 0.8109302162 ;  if X in ( 1 ) then X_bin = 1; 

if X in ( 1 ) then X_woe2 = 0.7339691751 ;  if X in ( 2, 3 ) then X_bin = 2; 

if X in ( 2,3 ) then X_woe1 = -0.441832752 ;   

if X in ( 2,3 ) then X_woe2 = -0.315852949 ;   

Table 6 

The parameter list for %MULTI_LOGIT_BIN and an example of a macro call is given in the Appendix 2. 
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REMARKS CONCERNING GENERALIZED LOGIT 

There may be concern about using the three IV binning methods for the generalized logit because of the 
preferential role played by the selected base level.11 For the generalized logit I believe that if the base has 
a large observation count, is distinctive in meaning, and is important to the interpretation of the model, 
then these IV-based binning approaches are useful in modeling.12 Each level is compared to the 
“important” base. E.g. Consider the base of “no crime” versus “property crime” or “assault crime” for a 
sample of teenage victims. Here, it seems natural to compare the “crimes” against a base of “no crime”. 

In contrast, the method of -2*LL does not depend on the base and is fully general. Since the probabilities 
for the saturated model for cumulative logit and generalized logit are the row percentages from the X*Y 
table, these two -2*LL are equal for a given binning and lead to the same final binning solution. 

DUMMIES AND WOE’S IN CUMULATIVE AND GENERALIZED LOGIT MODELS 

Dummy variable coding of X_bin can be used in either model. If X has L levels, then there are L-1 
dummies. The modeler must specify equal or unequal slopes.13 For J target levels there are J-1 WOE 
transforms. These provide an alternative to using dummies. Again, choice of equal slopes or unequal 
slopes is needed. The macro computes the correlations between the J-1 WOE transforms. If high 
correlations, then some WOE transforms might be omitted from the model. For k=2 bins, correlation 
among any of the J-1 WOE’s is 1. See example in Appendix 2 of using WOE transforms in a model. 

But there is ambiguity regarding the degrees of freedom (d.f.) to assign to a WOE variable. For discussion 
of the d.f. problem for WOE’s, see Lund (2021). This makes predictor selection methods that depend on 
d.f. (e.g. P-values, AIC, BIC) dubious when applied to WOE predictors.14   

TRANSFORMING CONTINUOUS NUMERIC PREDICTORS 

A continuous predictor X is numeric with many levels. Predictor X could measure miles, minutes, dollars, 
etc. The Function Selection Procedure (FSP) recommends a transformation of X, such as Log(X) or X**2. 
The FSP is discussed in detail in Royston and Sauerbrei (2008) (hereafter R-S) in their book Multivariate 
Model-building. In R-S the FSP is applied to find transformations of predictors for the binary logistic model 
as well as for ordinary regression and Cox regression.  

The FSP approach can be applied to the generalized logit model and the cumulative logit model (PO and 
PPO). Most of the mechanics of FSP extend without change from the binary case. 

FSP HAS TWO PRELIMINARY STEPS  

First, the predictor X must be positive and, if needed, a translation of X is applied. In fact, for numerical 
stability, it is better to translate X so that the minimum of X is 1 (if minimum is not already 1 or more). 

Next, a class of transformations of X, called fractional polynomials (FP), is defined. These fractional 
polynomials are given by: 

Xp where p is taken from S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3} and where “X0” denotes log(X) 

FP1 refers to the collection of 8 linear functions formed by the selection of one Xp. That is,  

g(X,p) = β0 + β1 Xp 

In this definition it is the “p” that matters. For the generalized logit and cum logit PPO the coefficients 
would vary across the response equations. This variation is not relevant to the definition of FP1. 

 
11 The total number of binary splits is ( J

2
). Would computing IV’s for all these (i) improve, (ii) not affect, or (iii) make 

worst the binning solutions based on total IV? I have not investigated this reasonable question. 
12 Compare to the approach by Begg and Gray (1984) of fitting J-1 binary logistics of non-base levels to a base. 
13 A model comparison test of Unequalslopes v. Equalslopes for CLASS X; MODEL Y=X / … could be conducted. 
14 Recommendation: Use CLASS X (i.e. dummy variables) when employing a predictor selection method to fit a 
model. Once predictors have been selected, then replace CLASS variables by WOE transforms and refit the existing 
model. Fit statistics, on a validation sample, of the CLASS model and WOE model are compared to determine if all 
(or some) of the WOE predictors can be used. 
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FP2 refers to the collection of 36 linear functions formed by selection of two Xp as shown below: 

 g(X,p1,p2) = β0 + β1 Xp1 + β2 Xp2 p1 ≠ p2 … 28 pairs 

 g(X,p1,p1) = β0 + β1 Xp1 + β2 Xp1 log(X) p1 = p2 … 8 pairs 

For each response equation, FP1 produces only monotonic curves (since [translated] X ≥ 1). FP2 
produces curves with a variety of non-monotonic shapes. 

FSP HAS TWO MAIN STEPS 

I. Searching for Best Transformations: There is an exhaustive search of FP1 to find the function with 
maximum likelihood in a logistic regression.15 This is called the FP1 solution. Then, a second exhaustive 
search of FP2 is conducted to find the function with maximum likelihood within this collection. This is 
called the FP2 solution. 

II. Performing Significance Testing: FSP significance testing of X has three steps called A, B, and C. 
The test-statistics for the three steps are the differences of -2 Log Likelihood’s, as shown below. The test 
statistic is assumed to be chi-square with degrees of freedom give in Table 8. The degrees of freedom for 
the test statistic depends on the Step and the type of logistic regression. 

Test-Statistic = (-2 Log Likelihood Restricted Model) - (-2 Log Likelihood FP2 Solution) 

where the “restrictive model” is, respectively, Null, Linear, FP1 models.  

THE THREE STEPS (with references to Table 8): 

A. Perform a “A” d.f. test at the α level of the -2 log likelihood of the FP2 solution against 
the -2 log likelihood null model (no predictor). If the test is not significant, drop X from consideration 
and stop; otherwise continue. 

B. Perform a “B” d.f. test at the α level of the FP2 solution against X. If the test is not significant, stop, 
the recommended transform is linear X; otherwise continue. 

C. Perform a “C” d.f. test at the α level of the FP2 solution against the FP1 solution. If the test is 
significant, the recommended transform is the FP2 solution, otherwise the FP1 solution is the 
recommended transform.16 

  
A: FP2 solution against 

Null (Intercept) 
B: FP2 solution 

against X (Linear) 
C: FP2 solution against 

the FP1 solution 

Binary Logistic 4 3 2 

Cum Logit PO 4 3 2 

Cum Logit PPO 2*(J - 1) + 2 (J - 1) + 2 (J - 1) + 1 

GL (unequalslopes) 2*(J - 1) + 2 (J - 1) + 2 (J - 1) + 1 

Table 8 

The significance testing and associated degrees of freedom for GL (and Cum Logit PPO) are based on: 

• Assumption of large sample chi-square distribution for the test-statistic 

• Intuitive, but not rigorously established, formulas for degrees of freedom shown in Table 8.  

For example, the degrees of freedom for GL of “FP2 versus Null” is 2*(J-1) + 2. The first term, 2*(J-1), 
counts the coefficients for the two fractional polynomials across the J - 1 response equations. The 
additional term of “2” counts the choice of fractional polynomial exponent (from the list of 8).  

For binary logistic the rationale for degrees of freedom (4, 3, 2) in the 3-step tests of FSP is given in R-S 
(p. 79). A similar rationale applies to cumulative logit PO model. See Lund (2018) for discussion. See 
Appendix 3 for some simulations have been run to support the d.f. formulas for the generalized logit.  

 
15 “Logistic regression” applies to model of interest: binary logistic, cum logit PO, cum logit PPO, or generalized logit. 
16 If FP2 solution is selected, then the two fractional polynomial transforms are both entered into the model. 
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IMPLEMENTATION OF FSP BY MACROS 17 

Presently, there are 3 macros for implementing FSP for (i) Cum Logit PO, (ii) Cum Logit PPO, 
(iii) Generalized Logit. All three run the binary logistic model but the Cum Logit PO version is 
recommended in this case. The macro names are: FSP_8LR, FSP_8LR_PPO, FSP_8LR_GLOGIT. The 
macro parameters are the same for all three macros. Here is the macro call for FSP_8LR_GLOGIT 

%FSP_8LR_GLOGIT (DATASET, TARGET, INPUT, VERBOSE, ORDER, WEIGHT); 

Parameter definitions: 

DATASET: The data set containing the target and predictors 
TARGET: Target variable (character or numeric). At least two non-missing levels  
INPUT: Numeric predictors (at least one). Predictors are delimited by a space.  
VERBOSE: YES … “YES" produces more output. 
ORDER:  A | D … Order for modeling the TARGET (A=ascending, D=descending). This is a dummy 

parameter (has no effect) except for %FSP_8LR 
WEIGHT:  A variable for the WEIGHT statement in PROC LOGISTIC | space (no weight variable) 

Data set GL_01 simulates a generalized logit dataset with target Y with 3 levels and predictors X1 and 
X2. Predictor X2 enters the model as a linear effect, but X1 enters as the transform 1/X1. 

Data GL_01;   

 do i = 1 to 8000;   

  X1 = floor(15*ranuni(3)) + 1; 

  X2 = rannor(4);   

     xbeta1 = (2*(1/X1) - 2*X2);   

     xbeta2 = (1*(1/X1) + 2*X2);   

     P1 = exp(xbeta1) / (1 + exp(xbeta1) + exp(xbeta2));   

     P2 = exp(xbeta2) / (1 + exp(xbeta1) + exp(xbeta2));   

     P3 = 1 - P1 - P2;  

     R = ranuni(6);   

     if R < P1 then Y = 1;   

     else if P1 <= R < P1 + P2 then Y = 2;   

     else Y = 3;   

     output;   

     end;   

run;  

%FSP_8LR_GLogit(GL_01, Y, X1 X2, NO, DUMMY,  );  

Results are given in Table 9. The best transform for predictor X1 is (X1)**(-2) (i.e. “p=-2”). [But p-value for 
the FP2 solution of (X1)**(-1) and X1**2 is borderline insignificant at 10.5%.] The best transform for 
predictor X2 is “linear” (simply X2). The p-value for moving to FP1 is insignificant at 67.2%. In order to 
apply the eight fractional polynomial transforms, X2 had been translated by 4.665 units. Now this 
translation is unneeded. 

Pred Off-set  Test Deviance Test Stat df p-value transform1 transform2 

X1 0 Null v. FP2 16177.2 86.47 6 0     

X1 0 Linear v. 
FP2 

16143.5 52.79 4 0 Linear   

X1 0 FP1 v. FP2 16096.9 6.14 3 0.105 p=-2   

X1 0   16090.8       p=-1 p=2 

X2 4.665 Null v. FP2 16177.2 6260.73 6 0     

X2 4.665 Linear v. 
FP2 

9918.8 2.35 4 0.672 Linear   

X2 4.665 FP1 v. FP2 9918.8 2.35 3 0.503 Linear   

X2 4.665   9916.5       log p=3 

Table 9 

 
17 Versions of this macro for cumulative logit model are presented in Lund (2018, 2019). 
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CONCLUSIONS 

This paper presented three macros that can perform for the generalized logit model, the screening, 
binning, or transforming of predictors. These steps are performed prior to beginning the stage of model 
fitting. 

One screening of NOD predictors uses the right-tail probability of the LRCS. This probability is sensitive to 
sample size with larger samples producing smaller, but perhaps less meaningful, right-tail probabilities. 
Instead, the macro MULTI_LOGIT_SCREEN_1 can be applied to numerous bootstrap samples of fixed 
sample size (e.g. 1000) to provide LRCS’s. Then average right-tail probabilities, with a measure of 
variability, can be compared to a benchmark cutoff alpha value. 

The introduction of generalized IV criteria provides an alternative approach to screening. The usage of 
generalized IV is specialized to cases where there is a distinctive reference level for the target. Values of 
the generalized IV’s are dependent of the choice of base level. 

Binning of NOD predictors can be guided by maximizing LRCS at each step or by maximizing one of the 
versions of the generalized IV’s.  

The binning macro MULTI_LOGIT_BIN also provides SAS code for weight of evidence transformations of 
NOD predictors. These WOE variables may be a useful replacement to dummy variables produced by a 
CLASS statement in PROC LOGISTIC. 

The degrees of freedom formulas for the steps of FSP for the generalized logit have not been validated 
by simulation studies. A limited simulation study is given Appendix 3. A definitive simulation study would 
be a large undertaking. 

In a strict sense, the macros %FSP_LR8 … do not precisely find the FP2 solution having maximum 
likelihood. To achieve a significant improvement in computational efficiency, the score chi-square is 
involved in finding the FP2 solution. See Lund (2018 p. 7) for discussion. 
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APPENDIX 1: LIKELIHOOD RATIO CHI-SQUARE FOR THE SATURATED MODEL 

The data set is used to illustrate the saturated models for the cum logit PPO and for the generalized logit 
for predictor X and target Y. PROC LOGISTIC fits the saturated models. 

DATA Test;  

input X Y @@;  

datalines;  

1 1 1 2 1 3 1 1 2 1 2 3 2 3  

2 3 2 2 3 3 3 1 3 1 3 3 3 2  

;  

PROC LOGISTIC DATA= Test; 

CLASS X1; 

MODEL Y= X / unequalslopes = (X); 

run; 

or  

PROC LOGISTIC DATA= Test; 

CLASS X1; 

MODEL Y= X / link = GLOGIT; 

run; 

But to fit the saturated model, PROC LOGISTIC need not be run. The probabilities pi,j of target level j for 
row level i are equal to the row percentages in the X * Y cross-tabs, as in Table 10. 

Here is the formula, with reference to Table 10: 

 pi,j = ni,j / ni. … where ni,j gives cell counts, ni. gives row total. 

X 

Y 

1 2 3 Tot 

1 n1,1 = 2 
.50 

1 
.25 

1 
.25 

n1. = 4  

2 1 
.20 

1 
.20 

3 
.60 

n2. =5  

3 2 
.40 

1 
.20 

2 
.40 

n3. =5  

 n.1= 5 n.2 = 3 n.3 = 6 n = 14 

Table 10. Row percentages are the probabilities for the Saturated Model 

The log-likelihoods and likelihood ratio chi-square can be computed from these probabilities by the 
formulas below: 

 LL(full) = Log-Likelihood (intercept and covariates) = ∑  3
𝑖=1 ∑  3

j=1  ni,j * log( pi,j) = -14.185 

 LL(restricted) = Log-Likelihood (intercept Only) = ∑  3
j=1 n.j * log(n.j / n) = -14.853 

Likelihood Ratio Chi-Sq = -2 * { LL(restricted) - LL(full) } = 1.337 (4 d.f.) 

If independence, then P(Y=j | X=i) = P(Y=j) or ni,j / ni. = n.j / n. Substituting ni,j / ni. = n.j / n  

into ∑  3
𝑖=1 ∑  3

j=1  ni,j * log( pi,j), after some manipulation, gives ∑  3
j=1 n.j * log(n.j / n). Then, LRCS = 0. 

APPENDIX 2: PARAMETERS AND EXAMPLE FOR %MULTI_LOGIT_BIN 

MODEL: GLOGIT | CUMLOGIT, (space defaults to CUMLOGIT) 

DATASET: Data set to be processed 

TARGET: Target variable (numeric or character) with at least 2 levels. Missing is ignored. 

X: Predictor variable (numeric or character).  
If numeric, then X has integer values from 0 to 99. If character, then “embedded space”, !, +, _, # may 
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not occur in the value. If character values represent an ordered predictor, then care is needed to 
assign values that give the intended ordering. X must have at least 2 levels. Missing is ignored. 

W: A frequency variable if present in DATASET. Otherwise enter 1. Space is not permitted as an entry. 

METHOD: LL or IV or MIN_IV or MAX_IV 

MODE: A or J. A = Any pairs of levels can be combined. J = Only pairs with adjacent levels can be 
combined. 

ONE_ITER: YES | <other>. Statistics only for no-binning solution. ONE_ITER  has priority over MIN_BIN 

MIN_BIN: INTEGER > 1 | space.  
Integer value restricts the processing to bin solutions where the number of BINs is greater or equal to 
the INTEGER. If <space>, then all bin solutions are processed. 

VERBOSE: If not YES, then only Summary Report is displayed. VERBOSE=YES can be run to obtain 
SAS code statements for WOE and BINs for all kth steps. 

ZERO_ADJ:  YES | any other. If YES, then adds 1 to a cell with zero count. (Zero count causes a STOP.) 

RUN_TITLE:  Title1 for all Reports. No commas in the title. 

EXAMPLE DATA SET AND %MULTI_LOGIT_BIN MACRO CALL 18  

Data Summary;  

input obs Severity Age _freq_ @@;  

datalines;  

1  1  16 1   17 1  33 2  32 2  26 10  47 3  24 1  

2  1  18 4   18 1  34 2  33 2  27 3   48 3  25 2  

3  1  19 5   19 1  35 1  34 2  28 4   49 3  26 2  

4  1  20 3   20 1  37 1  35 2  29 3   50 3  27 1  

5  1  21 12  21 1  39 1  36 2  30 4   51 3  28 1  

6  1  22 5   22 1  42 4  37 2  31 2   52 3  29 1  

7  1  23 7   23 2  17 1  38 2  32 3   53 3  30 2  

8  1  24 12  24 2  18 3  39 2  35 1   54 3  31 1  

9  1  25 7   25 2  19 1  40 2  36 1   55 3  32 2  

10 1  26 8   26 2  20 3  41 2  37 1   56 3  33 1  

11 1  27 4   27 2  21 3  42 3  15 1   57 3  34 1  

12 1  28 4   28 2  22 6  43 3  19 1   58 3  35 2  

13 1  29 3   29 2  23 3  44 3  20 1   59 3  36 1  

14 1  30 3   30 2  24 5  45 3  21 1   60 3  38 1  

15 1  31 1   31 2  25 3  46 3  23 2   61 3  39 2  

16 1  32 3        

;  

DATA Backache; length Age_group $8; Set Summary;  

 If SEVERITY=1 then TARGET="C";  

 Else If SEVERITY=2 then TARGET="B";  

 Else If SEVERITY=3 then TARGET="A";  

   if age <= 19 then Age_group="15to19";  

   else if age <= 22 then Age_group="20to22";  

   else if age <= 24 then Age_group="23to24";  

   else if age <= 26 then Age_group="25to26";  

   else if age <= 28 then Age_group="27to28";  

   else if age <= 30 then Age_group="29to30";  

   else if age <= 32 then Age_group="31to32";  

   else if age <= 35 then Age_group="33to35";  

   else                   Age_group="36andUP";  

run; 

 
18 Chatfield (1995, Exercise D.2). 
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REMARKS: SEVERITY=1 indicates no symptoms. This category is distinctive from SEVERITY 2 and 3. 
For this reason TARGET = “C” (SEVERITY=1) is made the base. (All three levels have about the same 
counts.)  

Here is the macro call for the generalized logit binning of TARGET versus AGE_GROUP.19 

%MULTI_LOGIT_BIN( MODEL=GLOGIT, DATASET=BACKACHE, TARGET=TARGET, 

X=Age_group, W=_FREQ_, MODE=A, METHOD=IV, ONE_ITER=, MIN_BIN=, VERBOSE=, 

ZERO_ADJ=, RUN_TITLE=); 

Table 11 gives the summary report of collapsing (“+” = just collapsed, “_” = previously collapsed) and the 
binning statistics for k = 9 to 2. 

There is a large decrease in Avg_IV after Step 5. Stopping at Step 5 is suggested. 

k Levels collapsed (see “+”) LRCS 
AVG 
_IV 

MIN 
_IV 

MAX 
_IV 

IV_1 IV_2 
corr_woe

_1_2 

9  17.602 0.331 0.185 0.478 0.478 0.185 0.063 

8 25to26+27to28 17.596 0.331 0.185 0.477 0.477 0.185 0.063 

7 15to19+23to24 17.499 0.329 0.183 0.474 0.474 0.183 0.055 

6 29to30+31to32 17.335 0.325 0.183 0.467 0.467 0.183 0.054 

5 33to35+36andUP 17.086 0.322 0.178 0.466 0.466 0.178 0.077 

4 15to19_23to24+20to22 16.151 0.303 0.168 0.439 0.439 0.168 0.126 

3 25to26_27to28+29to30_31to32 14.668 0.265 0.157 0.373 0.373 0.157 0.054 

2 25to26_27to28_29to30_31to32+33to35_36andUP 6.667 0.179 0.049 0.310 0.310 0.049 1.000 

Table 11 Binning Summary Report  

The best k-bin solutions for k = 8 to 2 are given in Table 12. 

k __BIN_1 __BIN_2 __BIN_3 __BIN_4 __BIN_5 __BIN_6 __BIN_7 __BIN_8 

8 15to19 20to22 23to24 25to26+27to28 29to30 31to32 33to35 36andUP 

7 15to19+23to24 20to22 25to26_27to28 29to30 31to32 33to35 36andUP   

6 15to19_23to24 20to22 25to26_27to28 29to30+31to32 33to35 36andUP     

5 15to19_23to24 20to22 25to26_27to28 29to30_31to32 
33to35+ 
36andUP 

      

4 
15to19_23to24+ 
20to22 

25to26_27to28 29to30_31to32 
33to35_ 
36andUP 

        

3 
15to19_23to24_ 
20to22 

25to26_27to28+ 
29to30_31to32 

33to35_ 
36andUP 

          

2 
15to19_23to24_ 
20to22 

25to26_27to28_ 
29to30_31to32+ 
33to35_36andUP 

            

Table 12 

The macro produces SAS code for the two WOE transforms for the 5-bin solution. The correlation 
between the two WOE transforms is very low at 0.0772. The two predictors, Age_groups_woe1 and 
Age_groups_woe2, could be used in the model to replace: 

CLASS Age_group_bin; 

The SAS code below is generated by the macro. It would be inserted into a DATA Step before running 
PROC LOGISTIC. 

  

 
19 See Lund (2019) where this same example is binned as a cumulative logit 
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if Age_group in ( "15to19","23to24" ) then Age_group_woe1= -0.52109529 ; 

if Age_group in ( "15to19","23to24" ) then Age_group_woe2= -0.364091542 ; 

if Age_group in ( "20to22" ) then Age_group_woe1= -1.065822466 ; 

if Age_group in ( "20to22" ) then Age_group_woe2= -0.072570693 ; 

if Age_group in ( "25to26","27to28" ) then Age_group_woe1= -0.10697212 ; 

if Age_group in ( "25to26","27to28" ) then Age_group_woe2= 0.2984929886 ; 

if Age_group in ( "29to30","31to32" ) then Age_group_woe1= 0.7259370034 ; 

if Age_group in ( "29to30","31to32" ) then Age_group_woe2= 0.6205764877 ; 

if Age_group in ( "33to35","36andUP" ) then Age_group_woe1= 0.918308896 ; 

if Age_group in ( "33to35","36andUP" ) then Age_group_woe2= -0.861028053 ; 

A skeleton of the PROC LOGISTIC is: 

PROC LOGISTIC DATA= <>; 

CLASS <>; 

MODEL TARGET= Age_group_woe1 Age_group_woe2 <others> / LINK=GLOGIT; 

APPENDIX 3: FSP SIMULATIONS AND DISCUSSIONS 

There are too many dimensions to control in order to conduct a definitive simulation study. These 
dimensions are: (1) the transformations of X that appears in the response equations of the model as well 
as other X’s in the model, (2) the number of levels of the Target, (3) the values of the coefficients of X.  

The data set GL_01, given earlier, is re-used in the simulations. Random seeds for X1, X2, and R are 
changed for each simulation run. Each simulated data set is run through %FSP_8LR_GLogit. 

FSP STEP1: TESTING THE NULL CASE VS. FP2  

TEST 1 

The code that generates datasets SIM_1 to SIM_100 is shown below. The target Y has J=3 levels. The 
coefficient of 1/X1 is set to zero. Here is the macro call and the code to create the data sets: 

%FSP_8LR_Glogit(SIM_&Seed, Y, X1, NO, );  

%DO Seed = 1 %TO &Num;  

DATA SIM_&Seed;  

do i = 1 to 8000;    

 X1 = floor(15*ranuni(&Seed)) + 1;  

 X2 = rannor(&Seed);    

 xbeta1 = (0*(1/X1) - 2*X2);    

 xbeta2 = (0*(1/X1) + 2*X2);    

 P1 = exp(xbeta1) / (1 + exp(xbeta1) + exp(xbeta2));    

 P2 = exp(xbeta2) / (1 + exp(xbeta1) + exp(xbeta2));    

 P3 = 1 - P1 - P2;   

 R = ranuni(&Seed);    

 if R < P1 then Y = 1;    

  else if P1 <= R < P1 + P2 then Y = 2;    

  else Y = 3;    

 output;    

 end;    

/* more code follows */ 

The formula in Table 8 for degrees of freedom for testing NULL vs. FP2 gives 6 = (J-1)*2 + 2. Since the 
NULL is true (X1 does not enter the model), the expected number of rejections of the NULL with 6 d.f. at 
α = 5% out of 100 data sets should be about 5. Likewise, 10 if α = 10% and 15 if α = 15%. 

The results are given in Table 13. The values of test statistic T are denoted by t. The percentage of 
rejections [ P(T > t) < p-value ] of the NULL model are shown for p-value cut-offs of 5%, 10% and 15%. 

The simulations show that usage of 6 d.f., in this particular test, is good in that the number of rejections of 
the NULL hypothesis matches quite closely to the expected results. (See 5%, 10%, 17%). 
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p-value = 5% 10% 15% 

T (test-stat) d.f. = 5 6 7 5 6 7 5 6 7 

P(T > t) < p-value 6% (*) 5% 1% 17% 10% 5% 26% 17% 10% 

Table 13. FSP Step 1 – Rejection Rates of H0: NULL model v. H1: FP2 Solution … 100 cases 
(*) Read: If the test statistic T is given 5 d.f., and if its test value is t, then there are 6% of cases where 

P(T > t) < 0.05 

TEST  2 

In TEST 2 a single change is made to SIM_1 to SIM_100. The coefficient of (1/X1) in the second 
response equation is changed to 1. Therefore, H0: NULL model is false. 

 xbeta1 = (0*(1/X1) - 2*X2);    

 xbeta2 = (1*(1/X1) + 2*X2);  

In the simulation, at 6 d.f. only 1 Type 2 error was committed at 5%. 

p-value = 5% 10% 15% 

T (test-stat) d.f. = 5 6 7 5 6 7 5 6 7 

P(T > t) < p-value 100% 99% 99% 100% 100% 99% 100% 100% 100% 

Table 14. FSP Step 1 – Rejection Rates of H0: NULL model v. H1: FP2 Solution … 100 cases 

FSP STEP2: TESTING LINEAR MODEL VS. FP2 

TEST 3 

The same code is used to generate datasets SIM_101 to SIM_200 with the exception of changes to the 
xbeta1 and xbeta2 statements. Now the focus is on X2. The predictor X2 is linear in the generalized logit 
model. Therefore, H0: LINEAR model is true. 

Here is the macro call and the code to create the data sets: 

%FSP_8LR_Glogit(SIM_&Seed, Y, X2, NO, );  

 xbeta1 = (2*(1/X1) - 2*X2);    

 xbeta2 = (1*(1/X1) + 2*X2); 

The d.f. formula of Table 8 gives 4 = (J-1) + 2. The simulations show that usage of 4 d.f., in this particular 
test, is overly conservative (too infrequently rejects NULL hypothesis). A test-statistic using 3 d.f. (3%, 
12%, 16%) matches more closely to the expected results of 5, 10, 15. 

p-value = 5% 10% 15% 

T (test-stat) d.f. = 3 4 5 3 4 5 3 4 5 

P(T > t) < p-value 3% 2% 2% 12% 3% 2% 16% 8% 2% 

Table 15. FSP Step 2 – Rejection Rates of H0: LINEAR model v. H1: FP2 Solution … 100 cases 

For all 100 cases, with 6 d.f. the NULL model was rejected at <.0001 in the test: 
H0: NULL model v. H1: FP2 Solution  

FSP STEP3: TESTING FP1 VS. FP2  

The selection of a specific FP1 transformation for a simulation does not really reflect the proper null 
hypothesis. The formal null hypothesis compares the FP1 model to the FP2 model where each model is 
the best fit to the given data. But in the simulation a specific FP1 solution must be selected in order to 
generate a dataset for running through FSP. 

Further complicating the choice of an FP1 transformation for the simulation is the possibility that the 
LINEAR model will not be rejected. Without this rejection there is no test of FP1 vs. FP2. But many FP1 
transformations may appear linear over the range of X. 
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TEST 4 

The same code is used to generate datasets SIM_201 to SIM_300 with no changes to the xbeta1 and 
xbeta2 statements. But now the focus is on X1. The predictor X1 enters the generalized logit model as 
1/X1. Therefore, H0: FP1 model is true (with FP1 = 1/X1) 

Here is the macro call and the code to create the data sets: 

%FSP_8LR_Glogit(SIM_&Seed, Y, X1, NO, );  

 xbeta1 = (2*(1/X1) - 2*X2);    

 xbeta2 = (1*(1/X1) + 2*X2); 

The d.f. formula of Table 8 gives 3 = (J-1) + 1. The simulations show that usage of 3 d.f., in this particular 
test, is good in that the number of rejections of the NULL hypothesis matches quite closely to the 
expected results (See 3%, 7%, 13%). 

p-value = 5% 10% 15% 

T (test-stat) d.f. = 2 3 4 2 3 4 2 3 4 

P(T > t) < p-value 10% 3% 1% 19% 7% 3% 26% 13% 4% 

Table 16. FSP Step 3 – Rejection Rates of H0: FP1 model v. H1: FP2 Solution … 100 cases 

For all 100 cases, at 6 d.f. the NULL model was rejected at <.0001 in the test: 
H0: NULL model v. H1: FP2 Solution  

For all 100 cases, at 4 d.f. the LINEAR model was rejected at < 0.05 in the test: 
H0: LINEAR model v. H1: FP2 Solution 

The 100 selected FP1 solutions are shown in Table 17. These transforms are very similar in their 
relationship to the target. 

FP1_transform Frequency  
X1**(-0.5) 14  

X1**(-1) 74  

X1**(-2) 12  

Table 16. FP1 Transforms selection in Step 3 … 100 cases 

DISCUSSION OF DEGRESS OF FREEDOM 

Degrees of freedom formulas for FSP in Table 8 as applied the generalized logit are not disqualified by 
these simulations. Furthermore, the d.f. formulas in Table 8 have appeal due to the logic of their 
formulation. 

Many simulations would be required to provide definitive findings to determine appropriate degrees of 
freedom formulas. Notably, only the situation where Target Y had J=3 levels was simulated in this 
appendix and only two predictor variables were utilized in generating the simulated datasets. 

DISCUSSION OF EQUAL SLOPES OPTION 

PROC LOGISTIC offers the option of “equalslopes” for predictors in the generalized logit model. At this 
time there is no FSP macro for the generalized logit with the option for equalslopes. I recommend finding 
the FSP transformation for unequalslopes and then performing a model comparison test of this FSP 
solution with equalslopes vs. unequalslopes. If not significant, then the FSP solution could be 
implemented in the model with equalslopes. 

  


