
1

SESUG Paper 042-2021
SAS® Macro to Identify Potentially Obsolete

Variables in a File
Thomas E. Billings, MUFG Union Bank, N.A., San Francisco, California

This work by Thomas E. Billings is copyright by MUFG Union Bank, N.A. (2021).

ABSTRACT

The problem: you have SAS® datasets and/or database tables and want to identify variables that might be
obsolete. A SAS macro is presented that examines all the variables in each row of a f ile and determines
the earliest and latest as-of dates/datetimes when each variable is populated. The macro requires that the
f ile has an as-of date/datetime variable in each row, and that variable cannot be missing/null. The macro
creates a SAS dataset with the derived by-variable metadata, and those metadata are easily tested to
identify variables that may be obsolete/deprecated.

Keywords: DATA step, RETAIN, CALL SYMPUTX.
SAS® products: Base SAS.
User level: intermediate+.

INTRODUCTION

The situation: a tool that is used to enter data for a specific purpose/application – let’s call it the old or
legacy system – has run for many years and experienced numerous changes over the years, and now is
scheduled to be replaced by a new system. Both the old and new systems produce data, and those data
are captured in SAS® datasets (and/or a relational database). During the lifespan of the old system,
many new variables were added, and some variables and even some tables/files, have become
deprecated over time in the system-related datasets and database. Also, the documentation for the
system is poor; the deprecated tables are well known but it is unclear which variables in active tables are
deprecated or obsolete.

To preserve/support the numerous applications and reports based on the old system, the new system
data will be mapped into the existing datasets for the old system, with a few new variables added.
However, deprecated variables will not be supplied in the new system, so those variables will be set to
missing (or other default values) for records coming from the new system. We need to identify deprecated
variables in the old system, to make sure that all active (non-deprecated) variables are supplied in the
new system, and to avoid wasting resources on deprecated variables.

A SAS macro is presented here to identify potentially obsolete variables in a dataset/database table. For
the macro to be successfully applied, the target datasets/tables must have an as-of date variable (which
can be a SAS date or datetime) in each row. The user can specify the SAS format to be used with the as-
of date. For the analysis here, a variable is considered obsolete if the most recent as-of date when the
value is non-missing/non-null is before some reference date. (The reference date can be a single date for
the entire set of tables being analyzed or can vary/be by-table/dataset. Reference dates should be
determined in consultation with the relevant SMEs and/or system users.)

2

PROCESSING OVERVIEW

The macro analyzes input dataset/tables and produces an output (WORK) dataset that lists the tables,
variable names, and earliest/latest population dates for each variable. Given a target SAS dataset (or
database table) to be analyzed, the processing is as follows.

1. Use PROC CONTENTS with the OUT= option to create a dataset with the metadata for the target
f ile.

2. Using a DATA _NULL_ step, create separate macro variables: count - # numeric variables in the
f ile, count - # character variables in the file, a string that contains the character variable names
(separated by blanks), and a similar string that contains the numeric variable names.

3. Check: if the file has no variables (# numeric = # character = 0) then print warning message and
quit.

4. Use a DATA step to create an output file that contains the: table/dataset name, variable name,
earliest date the variable is populated (i.e., not missing/not null), the latest date the variable is
populated. The main logic steps are, with similar but separate blocks of code for character and
numeric variable types:
 Def ine ARRAYs that contain the variable values, plus RETAIN variable ARRAYs that will

contain the earliest and latest non-missing as-of date for each variable
 Use DO loops over the arrays to check the values for each variable (missing/non-missing) in

each row, setting the value of earliest (“f irst”) and latest as-of date associated with the
variable.

 At end of the input file, output the array values into a SAS dataset that contains 1 row for
each variable, with the values: libref, dataset/table name, variable name, earliest non-
missing as-of date, latest non-missing as-of date.

5. Finally, concatenate the dataset created above with other tables created by the macro. This is to
allow checking a group of (related) datasets/tables (this is optional/can be deleted from the macro
if you prefer).

ANNOTATED CODE

The macro below has a rather odd option, zerofilt=. This is because one of the database tables to be
analyzed has an odd feature: for numeric variables, zero usually means the value is missing (i.e., zero is
used instead of null). The keyword option defaults to N (for No), so it can be ignored when analyzing
datasets that use missing or null in the standard manner.

/* Parameters: inlibref, inlibn=: libref and table/dataset name.
 datevar=, target date/datetime variable, datefmt=format (no .) to use
 zerofilt=N the zero=missing option */

%macro date_util(inlibref=, inlibn=, datevar=, datefmt=, zerofilt=N);
 %local for_set;

/* get metadata, save in temp file */

 proc contents data=&inlibref..&inlibn. out=work.temp (keep= memname libname
name type length) noprint;
 run;

/* input temp metadata file */

 data _null_;
 set work.temp end=temp_end;
 length num_numeric num_char 8 nvarlist cvarlist $32000;
 retain num_numeric num_char nvarlist cvarlist;

 if _n_ = 1 then /* initialize variables */

3

 do;
 num_numeric = 0;
 num_char = 0;
 call missing(nvarlist, cvarlist);
 end;

 if (type = 1) then /* count numeric variables, append names to list */
 do;
 num_numeric = num_numeric+1;
 nvarlist=cat(strip(nvarlist)," ",strip(name));
 end;
 else
 do; /* count character variables, append name to list */
 num_char = num_char+1;
 cvarlist=cat(strip(cvarlist)," ",strip(name));
 end;

 if (temp_end) then /* copy counts, varnames to macro variables */
 do;
 call symputx("num_numeric",strip(put(num_numeric,5.)),G);
 call symputx("num_char",strip(put(num_char,5.)),G);
 call symputx("nvarlist",strip(nvarlist),G);
 call symputx("cvarlist",strip(cvarlist),G);
 end;
 run;

/* debug prints */

 %put File: &inlibref..&inlibn.: num_numeric=&num_numeric.;
 %put File: &inlibref..&inlibn.: num_char=&num_char.;

 %put nvarlist=&nvarlist.;
 %put cvarlist=&cvarlist.;

/* if file has no variables, exit with warning message */

 %if (&num_numeric. = 0) and (&num_char. = 0) %then
 %do;
 %put WARNING: FILE &inlibref..&inlibn. has no variables;;

 %return;
 %end;

/* process target table, identify earliest/latest as-of dates for each variable */

 data work.s_&inlibn.;
 set &inlibref..&inlibn. end=endinp;
 length inlibref $40 inlib_file_name $8 varname $40 vartype $20;

 %if (&num_numeric ne 0) %then
 %do;
 length nv_first1-nv_first&num_numeric. nv_latest1-
nv_latest&num_numeric. 8.;
 retain nv_first1-nv_first&num_numeric. nv_latest1-
nv_latest&num_numeric. 8.;
/* NVF = first/earliest
 array NVF{&num_numeric.} nv_first1-nv_first&num_numeric.;
 array NVL{&num_numeric.} nv_latest1-nv_latest&num_numeric.;
 array NN{&num_numeric.} &nvarlist.;

 if _n_ = 1 then
 do; /* initialize arrays */
 do i = 1 to &num_numeric.;

4

 call missing(NVF{i},NVL{i});
 end;
 end;

 do i = 1 to &num_numeric.;
 %if (&zerofilt. ne N) %then
 %do;
 if NN{i} = 0 then
 call missing(NN{I});
 %end;
 /* check, set values for earliest, latest as-of dates */
 if not missing(NN{I}) then
 do;
 if missing(NVF{i}) then
 NVF{i} = &datevar.;
 else NVF{i} = min(&datevar.,NVF{I});

 if missing(NVL{i}) then
 NVL{i} = &datevar.;
 else NVL{i} = max(&datevar.,NVL{I});
 end;
 end;

 if (endinp) then /* at end of file, output results */
 do;
 do i = 1 to &num_numeric.;
 inlibref = "&inlibref.";
 inlib_file_name = "&inlibn.";
 varname = vname(NN{I});
 earliest = NVF{i};
 latest = NVL{i};
 vartype = "NUMERIC";
 output;
 end;
 end;
 %end;

/* similar logic for character variables in target table */
 %if (&num_char ne 0) %then
 %do;
 length cv_first1-cv_first&num_char. cv_latest1-
cv_latest&num_char. 8.;
 retain cv_first1-cv_first&num_char. cv_latest1-
cv_latest&num_char. 8.;
 array CVF{&num_char.} cv_first1-cv_first&num_char.;
 array CVL{&num_char.} cv_latest1-cv_latest&num_char.;
 array CN{&num_char.} &cvarlist.;

 if _n_ = 1 then
 do;
 do i = 1 to &num_char.;
 call missing(CVF{i},CVL{i});
 end;
 end;

 do i = 1 to &num_char.;

 if not missing(CN{I}) then
 do;
 if missing(CVF{i}) then
 CVF{i} = &datevar.;
 else CVF{i} = min(&datevar.,CVF{I});

5

 if missing(CVL{i}) then
 CVL{i} = &datevar.;
 else CVL{i} = max(&datevar.,CVL{I});
 end;
 end;

 if (endinp) then
 do;
 do i = 1 to &num_char.;
 inlibref = "&inlibref.";
 inlib_file_name = "&inlibn.";
 varname = vname(CN{I});
 earliest = CVF{i};
 latest = CVL{i};
 vartype = "CHARACTER";
 output;
 end;
 end;
 %end;

 keep inlibref inlib_file_name varname earliest latest vartype;
 format earliest latest &datefmt..;
 run;

/* output is to a WORK file, same name as input file */
 proc sort data=work.s_&inlibn.;
 by latest;
 run;

 data work.concat_files; /* can delete this part if not useful to your app */
 %if (&setflag. = 0) %then
 %do;
 %let for_set=;
 %let setflag=1;
 %end;
 %else
 %do;
 %let for_set=%str()work.concat_files%str();
 %end;

 set &for_set. work.s_&inlibn.;
 run;

 proc datasets lib=Work nolist nowarn;
 delete temp;
 quit;

%mend;

USAGE NOTES

The macro above tests only for missing (or in the zerofilt option, for 0 which is reset to missing). An
obsolete variable might be set to – instead of null/missing - a specific default (e.g., ‘N” for No for a Yes/No
variable). If there are only a few such variables, the code above could be patched to set those variables
to missing – similar to the zerofilt option. If there are many such variables with different default values,
then another array can be created with the default values. That implies the default values are input into
SAS and loaded into the array. We do not present such code here as it is “left as an exercise for the
reader”.

6

If the earliest and latest as-of dates are both missing, then the variable is not only deprecated, but it is
uninitialized, i.e., was/is always null/missing.

PROC CONTENTS is used instead of the DICTIONARY tables/views, as it is more efficient.
DICTIONARY calls can take a long time.

Some database tables are huge, and caution/discretion should be exercised when using this macro on a
database. You should create a sample extract to test, instead of trying to read a huge file into SAS.
Also, you might want to modify the macro to make the output libref and dataset names into keyword
macro variables; that would allow you to set them in your macro calls.

SAMPLE OUTPUT (PARTIAL)

inlibref inlib_file_name varname vartype earliest latest
redacted testf il var1 NUMERIC . .
redacted testf il var2 NUMERIC . .
redacted testf il var3 NUMERIC . .
redacted testf il var4 CHARACTER . .
redacted testf il var5 CHARACTER . .
redacted testf il var6 NUMERIC 29-Mar-17 29-Mar-17
redacted testf il var7 CHARACTER 29-Mar-17 25-Jul-20
redacted testf il var9 CHARACTER 29-Mar-17 01-Jun-21
redacted testf il var10 NUMERIC 24-May-18 20-Apr-19
redacted testf il var11 NUMERIC 24-May-18 30-Apr-19
redacted testf il var12 NUMERIC 21-Feb-17 24-Jul-20
redacted testf il var13 NUMERIC 24-Jul-18 9-Oct-20
redacted testf il var14 NUMERIC 17-Jan-17 23-Dec-20

TO IDENTIFY DEPRECATED VARIABLES

The macro creates an output dataset that contains the target table names, variable names, and
earliest/latest populated as-of dates/datetimes. There is 1 row for each variable analyzed by the macro.
Variables where both dates are missing are uninitialized, and variables where the latest population date is
less than a reference date (that you determine), are potentially deprecated or obsolete.

EPILOGUE

This macro can create a list of probable obsolete and uninitialized variables in (a set of) SAS datasets
and/or database tables. However variables that are rarely populated might be present in the target files,
and before you formally classify a variable as obsolete, you should check with SMEs (subject matter
experts) to confirm that the identified variables are indeed obsolete/deprecated or uninitialized. (In other
words, apply due diligence to avoid false positives.)

Note: As of the date of publication, the author is an employee of MUFG Union Bank, N.A. The content of
this paper does not reflect the views or opinions or work product of MUFG Union Bank.

7

APPENDIX 1:
BSD 2-CLAUSE COPYRIGHT LICENSE (OPEN SOURCE)

* All program code in this paper is released under a Berkeley Systems
 Distribution BSD-2-Clause license, an open-source license that permits
 free reuse and republication under conditions;

/*
Copyright (c) 2020, MUFG Union Bank, N.A.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/

CONTACT INFORMATION

A list of the author’s SAS-related papers, including URLs for free access, is available at the URL (hosted
by Google Drive): https://goo.gl/uCUHoa

Note: Your enterprise web filter might prevent access to this URL from work, in which case you will need to access via a personal
device.

Thomas E. Billings
Email: tebillings@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://urldefense.proofpoint.com/v2/url?u=https-3A__goo.gl_uCUHoa&d=DwMFaQ&c=kRG5nTkfHQDBBUG6z7u8nA&r=KVbNhTz5q_S5e68uFw9Yu9DCmtYlIkkjqBIov7Jvnik&m=MB_iMj0c3IYXBncVxZ7E4_qJH3Ma3-O7gmiICfgJ5bo&s=-8lc2OKpiPAUdyFFnqdCXY0CHbNfLw1rdjzyI6wjsa0&e=
mailto:tebillings@yahoo.com

