
1

SESUG Paper 072-2021

The reporter package: A Powerful and Easy-to-use Reporting Package for R

David J. Bosak, r-sassy.org

ABSTRACT

SAS® programmers who come to R are often disappointed by the reporting options available. Creating a
report that takes a few minutes in SAS® can take hours in R. Sometimes it appears impossible to create
an equivalent report at all. The reporter package was built to overcome these difficulties. This package
contains functions to create regulatory-style statistical reports. Originally designed to generate tables,
listings, and figures (TLFs) for the pharmaceutical, biotechnology, and medical device industries, these
reports are generalized enough that they could be used in any industry. The reporter package can output
text, rich-text, and PDF file formats. The package specializes in printing wide and long tables with
automatic page wrapping and splitting. Reports can be produced with a minimum of function calls, and
without relying on other table packages. The package supports titles, footnotes, page headers, page
footers, spanning headers, page by variables, and automatic page numbering. This paper will provide a
brief overview of the reporter package. The reader should have some familiarity with the R language and
RStudio®.

INTRODUCTION

The 2020 pandemic gave me an opportunity to do something I’ve been wanting to do for years: learn R.
After some introductory lessons on basic R syntax, I tried to create a listing for a sample dataset I had
sitting around. The dataset had about 300 rows and 56 columns. Obviously, this dataset wasn’t going to
fit on a single page. In SAS®, this task would have taken about five lines of code. Yet I seemed to be
struggling to write the equivalent code in R. How hard could it be?

Six weeks later, I still couldn’t do it. I had learned about RMarkdown, pandoc, LaTeX, pander, flextable,
officer, gt, dt, huxtable, and probably a dozen more R packages. Yet my seemingly simple request still
wasn’t fulfilled: create a data listing with titles that repeat on every page and break/wrap the data so that
everything fits without flowing into the margins. I was amazed at how difficult it was to accomplish this
task in R.

That was the point at which I realized that R wasn’t nearly as mature as I had expected. There were still
a lot of opportunities for improvement. What I found exciting about R is that I could do the improvement
myself. So I began writing the reporter package.

The reporter package aims to create printable reports in as few lines of code as possible. It specializes in
printing large reports that don’t fit on one page. It supports repeating titles, footnotes, page headers, and
page footers. You can output in multiple file formats: TXT, RTF, and PDF. You can add ggplot graphics
to create figures. And it supports page-by variables, X of Y page numbering, and many other features to
make your life easier.

For those of you with a background in SAS®, you can think of the reporter package as a R equivalent to
PROC PRINT or PROC REPORT. For those of you with a background in R, you can think of the reporter
package as a pipe-enabled set of functions that creates reports directly, without using RMarkdown. This
paper is a brief introduction to the package.

HOW TO INSTALL

The reporter package can be installed from the R console. Simply run the following command:

install.packages("reporter")

Then put the following line at the top of your program or script:

library(reporter)

To view the help pages for the package, run ?reporter on the console.

2

CREATE A LISTING

After hundreds of hours developing the reporter package, you can now easily create the listing I
attempted at the beginning of the pandemic. And it only takes five lines of code! Here they are:

library(reporter)

Get temporary file path

tmp <- file.path(tempdir(), "example1.rtf")

Create the report

rpt <- create_report(tmp,

 orientation = "portrait",

 output_type = "RTF") %>%

 page_header(left = "Sponsor: AHS",

 right = "Study: Iris") %>%

 titles("Listing 1.0", "IRIS Data Listing") %>%

 add_content(create_table(iris)) %>%

 page_footer(left = Sys.time(),

 center = "Confidential",

 right = "Page [pg] of [tpg]")

Write the report

write_report(rpt)

View the report

file.show(tmp)

The above lines of code create a three-page listing, shown here:

Figure 1. A Table with Spanning Headers

Note the following about this report:

• The titles, page header, and page footer repeat on every page automatically

• The column headers repeat on every page automatically

• Column widths are determined automatically

3

• The pages break at an appropriate place automatically

• The page numbers increment automatically

• If the table had more columns, it would break horizontally to the next page automatically

• You can output the same report in TXT or PDF by changing the output_type parameter and the file

name

These are all features that currently do not exist as part of any other R reporting package. To users of
SAS®, they are all expected features. But these features have not been available in R until now.

CREATE A TABLE

Further, you can create a summary table of statistics from the same package. Tables generally take the
following steps:

1. Create the table content

2. Create the report and add the content

3. Write the report

The reporter package contains many functions and features to control the output.

A SIMPLE TABLE

Let us start with a simple table. The table will look like this:

Figure 2. A Simple Table

To speed up the example, we will use prepared data. The data is this:

Read in prepared data

df <- read.table(header = TRUE, text = '

 var label A B

 "ampg" "N" "19" "13"

 "ampg" "Mean" "18.8 (6.5)" "22.0 (4.9)"

 "ampg" "Median" "16.4" "21.4"

 "ampg" "Q1 - Q3" "15.1 - 21.2" "19.2 - 22.8"

 "ampg" "Range" "10.4 - 33.9" "14.7 - 32.4"

 "cyl" "8 Cylinder" "10 (52.6%)" "4 (30.8%)"

 "cyl" "6 Cylinder" "4 (21.1%)" "3 (23.1%)"

 "cyl" "4 Cylinder" "5 (26.3%)" "6 (46.2%)"')

4

To create the report in Figure 2, it will be necessary to have greater control over the column definitions.
The column definitions can be controlled using the define() function. This function allows you to set

the column label, width, alignment, and much more. Examine the following example:

#library(reporter)

Create temporary path

tmp <- file.path(tempdir(), "example2.rtf")

Create table

tbl <- create_table(df, first_row_blank = TRUE) %>%

 define(var, label = "Variable", blank_after = TRUE, dedupe = TRUE,

 format = c(ampg = "Miles Per Gallon", cyl = "Cylinders")) %>%

 define(label, label = "") %>%

 define(A, label = "Group A", width = 1.25, align = "center", n = 19) %>%

 define(B, label = "Group B", width = 1.25, align = "center", n = 13)

Create report and add content

rpt <- create_report(tmp, orientation = "portrait",

 output_type = "RTF") %>%

 page_header(left = "Sponsor: Motor Trend", right = "Study: Cars") %>%

 titles("Table 1.0", "MTCARS Summary Table") %>%

 add_content(tbl) %>%

 footnotes("* Motor Trend, 1974") %>%

 page_footer(left = Sys.time(),

 center = "Confidential",

 right = "Page [pg] of [tpg]")

Write out report

write_report(rpt)

View the report

file.show(tmp)

A SIMPLE TABLE WITH STUB

Now let’s modify the above example slightly to add a stub column. A stub column will nest the labels of
the first two columns in a hierarchical manner, like so:

Figure 3. A Simple Table with Stub Column

5

The report in Figure 3 is created in a nearly identical manner to the report in Figure 2. The only
differences are the addition of a stub() function to combine the first two columns of the report, and

some adjustments to the define() statements for those two columns. The code for this report is as

follows:

#library(reporter)

Create temporary path

tmp <- file.path(tempdir(), "example3.rtf")

Create table

tbl <- create_table(df, first_row_blank = TRUE) %>%

 stub(c("var", "label")) %>%

 define(var, blank_after = TRUE, label_row = TRUE,

 format = c(ampg = "Miles Per Gallon", cyl = "Cylinders")) %>%

 define(label, indent = .25) %>%

 define(A, label = "Group A", width = 1.25, align = "center", n = 19) %>%

 define(B, label = "Group B", width = 1.25, align = "center", n = 13)

Create report and add content

rpt <- create_report(tmp, orientation = "portrait", output_type = "RTF")

%>%

 page_header(left = "Sponsor: Motor Trend", right = "Study: Cars") %>%

 titles("Table 1.0", "MTCARS Summary Table") %>%

 add_content(tbl) %>%

 footnotes("* Motor Trend, 1974") %>%

 page_footer(left = Sys.time(),

 center = "Confidential",

 right = "Page [pg] of [tpg]")

Write out report

write_report(rpt)

View the report

file.show(tmp)

SPANNING HEADERS

Most reporting tools in R do not support spanning headers. The reporter package does. Not only does it
support spanning headers, you can define them in a very intuitive way. You simply add a
spanning_header()to the table, tell it the columns you want to span, and supply a label. If you want

more than one level of spanning header, you can define it using the level parameter.

Here is a sample report showing multiple spanning headers:

6

Figure 4. A Table with Spanning Headers

Here is the code that produces the above example:

library(reporter)

Create temporary path

tmp <- file.path(tempdir(), "example4.rtf")

Prepare Data

dat <- mtcars[1:10,]

df <- data.frame(vehicle = rownames(dat), dat)

Define Table with spanning headers

tbl <- create_table(df) %>%

 titles("Table 1.0", "MTCARS Spanning Headers") %>%

 spanning_header(from = "mpg", to = "hp", label = "Group 1", n = 10) %>%

 spanning_header(from = "drat", to = "qsec", label = "Group 2",n = 10) %>%

 spanning_header(from = "vs", to = "carb", label = "Group 3", n = 10) %>%

 spanning_header(from = "drat", to = "carb",

 label = "Meta-Group", level = 2) %>%

 define(vehicle, label = "Vehicle") %>%

 define(mpg, format = "%.1f") %>%

 define(disp, visible = FALSE) %>%

 define(am, visible = FALSE)

Create Report and add table

rpt <- create_report(tmp, output_type = "RTF") %>%

 add_content(tbl, align = "left")

Write the report

write_report(rpt)

View the report

file.show(tmp)

7

PAGE BY

The page-by is another feature that is not well-supported in other R packages. The page-by groups the
report by the values of a particular variable. Here are three pages of a simple report with a page-by:

Figure 5. Three Pages of a Report with a Page-by

Notice in the report sample above that the data has been grouped by cylinders, and a page-break
inserted for each group. The page-by label is displayed between the titles and the table header.

In other packages, it may take a considerable amount of work to get such a report. With the reporter
package, it is easy! The code is hardly any different than the previous examples. The only significant
difference is the addition of a page_by() function. You also have to order by data by the page-by

variable before sending it to the reporting functions. Here is the code:

library(reporter)

Create temporary path

tmp <- file.path(tempdir(), "example5.rtf")

Prepare data

dat <- mtcars[order(mtcars$cyl),]

dat <- data.frame(vehicle = rownames(dat), dat)

Define table

tbl <- create_table(dat, show_cols = 1:8) %>%

 page_by(cyl, label="Cylinders: ")

Create the report

rpt <- create_report(tmp, orientation = "portrait", output_type ="RTF") %>%

 titles("Listing 3.0", "MTCARS Data Listing with Page By") %>%

 add_content(tbl)

Write the report

write_report(rpt)

View the report

file.show(tmp)

8

CREATE A FIGURE

In addition to listings and tables, the reporter package can create figures. A figure is accomplished using
the popular ggplot2 package, and adding the plot to the report with the create_plot() and

add_content() functions. Here is what a figure looks like:

Figure 6. Example of a Figure

This figure is generated very much the same way as the tables and listings. You follow the same basic
steps:

1. Create the plot content

2. Create the report and add the content

3. Write the report

Here is the code that generates the above figure:

library(reporter)

library(ggplot2)

Create temporary path

tmp <- file.path(tempdir(), "example6.rtf")

Generate plot

p <- ggplot(mtcars, aes(x=disp, y=mpg)) + geom_point()

Define plot object

plt <- create_plot(p, height = 4, width = 8) %>%

 titles("Figure 1.0", "MTCARS Mileage By Displacement",

 blank_row = "none") %>%

 footnotes("* Motor Trend, 1974")

Add plot to report

rpt <- create_report(tmp, output_type = "RTF") %>%

 set_margins(top = 1, bottom = 1) %>%

9

 options_fixed(font_size = 12) %>%

 page_header("Sponsor: Motor Trend", "Study: cars") %>%

 add_content(plt) %>%

 page_footer(Sys.time(), "Confidential", "Page [pg] of [tpg]")

Write out report

write_report(rpt)

View the report

file.show(tmp)

CONCLUSION

The reporter package was designed to overcome the limitations of existing R reporting packages. It
allows you easily create data listings and many styles of tables and figures. The package requires no
knowledge of RMarkdown, LaTeX, pandoc, or any other technology. It is the only reporting package with
the intelligence to break/wrap your data when needed to prevent pages overflows. The code interface is
intuitive and easy to use. Full documentation of the package and more examples are available online at
reporter.r-sassy.org.

The reporter package is part of a system of packages called sassy. This system replicates many ideas
from SAS® software into R. For more information, see the sassy site at r-sassy.org.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

David J. Bosak
r-sassy.org
269-870-7343
dbosak01@gmail.com

https://reporter.r-sassy.org/
https://r-sassy.org/

