
1

SESUG Paper 83-2021

PROC FORMAT for Scrappy SAS Users and Posh Programmers
Rachel Straney, University of Central Florida; Lesa Caves, RTI International

ABSTRACT
Whether you are just starting out with SAS® or have been using it for years - PROC FORMAT is one of
the most important procedures that you can use. PROC FORMAT is a deceptively powerful procedure
that can be used to label and stylize data values in various ways. It also has the ability to be leveraged for
data creation. People may use this procedure for some of its fundamental uses, but there are many tools
in the FORMAT procedure that can optimize your SAS program and save time. This paper will cover an
introduction to the procedure, share ways that the procedure can be integrated with data step processing,
and additional helpful tricks to make your programming easier.

INTRODUCTION
Whether you are just starting out with SAS® or have been using it for years - the FORMAT procedure is
one of the most important procedures that you can use. It is a deceptively powerful procedure that can be
used to label and stylize data values in various ways. If you ever find yourself working with raw data that
needs context, the FORMAT procedure can help! This paper will address the following topics related to
the FORMAT procedure:

• What is a SAS format?

• Creating basic formats

• Grouping data with formats

• Creating new variables from a defined format

• Creating formats from a SAS dataset

DATA USED FOR EXAMPLES
The data used for this paper consists of characteristics for the many cats of the authors and their friends.
As often found in analytic raw data, the variables are both character and numeric, but all are in coded
values that have little stand alone interpretation. The data are as follows:

DATA CATS;
LENGTH NAME $10.;
INPUT NAME $ AGE WEIGHT COLOR PATTERN HAIR RESIDENCE $ SEX;
CARDS;
Valkyrie 1 8.2 1 1 1 NC 1
Katness 1 10 2 3 2 NC 1
Sam 6 9.2 6 4 3 NC 2
Ellie 3 10.1 3 6 2 NC 1
Alia 14 11.2 4 2 1 FL 1
Bagheera 10 10.9 1 1 1 FL 2

2

Oliver 7 11.5 5 7 1 FL 1 2
Lancelot 8 9.4 4 4 1 FL 2
Darla 18 12 3 4 2 CA 1
Einstein 4 11 6 4 2 NY 2
Begonia .5 4 1 5 2 WA 1
Patience 11 10.5 3 4 2 FL 1
Annie 13 13.2 4 4 1 FL 1
Maggie 16 9.5 5 3 1 FL 1
;

RUN;

The resulting SAS dataset is shown in Display 1:

Display 1. Screenshot of CATS SAS dataset

3

WHAT IS A SAS FORMAT?
A SAS format is a text label that defines a data value. Upon creation, formats must be defined as either
numeric or character and can only be used with variables of the same type. SAS has over 250
predefined formats that are available to users. These formats range from DOLLARw.d, which displays
values with commas and a dollar sign, and DATEw. which displays a date value in either DDMMYY,
DDMMYYYY, or DD-MM-YYYY. The following link lists all pre-defined SAS formats from the SAS 9.4
Programming Documentation:
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/leforinforref/p0z62k899n6a7wn1r5in6q5253v1.
htm. In addition to using predefined SAS formats, you can also create your own custom formats. The
basic syntax is:

PROC FORMAT;
VALUE <$> <FORMAT_NAME>
<DATA VALUES & LABELS>
;

RUN;

• $: If the format is created for a character variable, this symbol must proceed the format name.

• Format name: The name must begin with a letter or underscore, cannot end with a number, and
it cannot be named the same as an existing SAS defined format. The total length of the name
cannot exceed 32 characters.

• Data Values & Labels: Values and labels should be written in the following way: Value(s) =
“Label”. The last label should have a semicolon at the very end. Values within the FORMAT
procedure cannot be duplicated.

CREATING BASIC FORMATS
The best way to get started with SAS formats is to start simple. The following section will walk through an
example of how to create and apply a basic numeric SAS format. The FREQUENCY procedure is used to
output a distribution for the variable SEX from the dataset CATS. Without applying a format, the values
are numeric and do not have any analytic utility on their own. In order to properly interpret the distribution
of SEX, we need to label the values in the FREQUENCY procedure so that the output displays what the
values mean.

The accompanying documentation with the CATS dataset indicates that 1 represents female and 2
represents male. Using the FORMAT procedure below, we can create a simple numeric format called
SEXF to define the 1’s and 2’s in your data with the labels “Female” and “Male,” respectively.

PROC FORMAT;
VALUE SEXF
1 = "Female"
2 = "Male"
;

RUN;

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/leforinforref/p0z62k899n6a7wn1r5in6q5253v1.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/leforinforref/p0z62k899n6a7wn1r5in6q5253v1.htm

4

Figure 1 shows the FREQUENCY procedure for SEX with and without the format SEXF applied.

No Format Applied With Format Applied

PROC FREQ DATA = CATS;
TABLE SEX;
TITLE 'Frequency of SEX - no
format';

RUN;

PROC FREQ DATA = CATS;
TABLE SEX;
FORMAT SEX SEXF.;
TITLE 'Frequency of SEX -
formatted';

RUN;

Figure 1. FREQUENCY procedure for SEX with and without format

GROUPING DATA WITH FORMATS
Formats are also helpful to group data into categories. While you could create a new variable, a format
allows you to group your data without altering your underlying data. Using the FORMAT procedure below,
we can create a format called AGE_CAT to display the numeric variable AGE into predefined age ranges.

PROC FORMAT;
VALUE AGE_CAT
low - <1= "Kitten"
1 - <3 = "Junior"
3 - <7 = "Adult"
7 - <11 = "Mature"
11 - <15 = "Senior"
15 - high = "Geriatric"
;

RUN;

Instead of defining the values for a given label one-by-one, as we defined for the format SEXF example,
we are providing value ranges. All age values less than 1 are grouped as “Kitten”, values 1 to less than 3
are grouped as “Junior”, values 3 to less than 7 are grouped as “Adult”, values 7 to less than 11 are
grouped as “Mature”, values 11 to less than 15 are grouped as “Senior”, and values 15 and older are
grouped as “Geriatric”. Figure 2 shows the FREQUENCY procedure with and without the AGE_CAT
format applied. While the frequency with no format applied shows one cat aged 16 and one cat aged 18,
the frequency with the format AGE_CAT applied groups these two cats into one category, “Geriatric”.

5

No Format Applied With Format Applied

PROC FREQ DATA = CATS;
TABLE AGE;
TITLE 'Frequency of AGE - no
format';

RUN;

PROC FREQ DATA = CATS;
TABLE AGE;
FORMAT AGE AGE_CAT.;
TITLE 'Frequency of AGE -
formatted';

RUN;

Figure 2. FREQUENCY procedure for AGE with and without format

6

Character variables can be grouped similarly using formats as well. Figure 3 shows the variable
RESIDENCE grouped into regions of the country.

PROC FORMAT;

VALUE $ RES_CAT
"NY" = "North"
"CA", "WA" = "West"
"NC", "FL" = "South"
;

RUN;

No Format Applied With Format Applied

PROC FREQ DATA = CATS;
TABLE RESIDENCE;
TITLE 'Frequency of RESIDENCE -
no format';

RUN;

PROC FREQ DATA = CATS;
TABLE RESIDENCE;
FORMAT RESIDENCE $RES_CAT.;
TITLE 'Frequency of RESIDENCE -
formatted';

RUN;

Figure 3. FREQUENCY procedure for RESIDENCE with and without format

7

COMMON FORMAT PROCEDURE PROBLEMS
When creating a format, it is important to ensure that the categories are mutually exclusive and all data
values are accounted for. Common problems that can occur when creating formats are shared below by
example with a suggestion for improvement.

Format ranges are not mutually exclusive: When a range is not mutually exclusive, values can be
displayed in the incorrect group. To correct this, make sure that there is no overlap in the groupings to
ensure the data are formatted properly.

Example Improvement

PROC FORMAT;
VALUE NOT_EXCLUSIVE
low-14 = "Not Geriatric"
14-high = "Geriatric"
;

RUN;

PROC FORMAT;
VALUE EXCLUSIVE
low-<14 = "Not Geriatric"
14-high = "Geriatric"
;

RUN;

Formats are not comprehensive: When a format is applied to a variable and doesn’t cover all values,
the resulting output will be a combination of both formatted and unformatted values. The example code
below would be sufficient for variables with values that are integers, but a variable that has values with
decimal places would be problematic. To correct this, use the less than operator (<), LOW and HIGH to
ensure that groupings are comprehensive.

Example Improvement

PROC FORMAT;
VALUE NOT_COMPREHENSIVE
0-8 = "Small"
9-11 = "Normal"
12-15 = "Large"
;

RUN;

PROC FORMAT;
VALUE COMPREHENSIVE
low-9 = "Small"
9-<12 = "Normal"
12-high = "Large"
;

RUN;

Format lists contain duplicates: When a format contains duplicate values a SAS error is generated and
the format is not created. To correct this, remove any duplicate values that exist.

Example Improvement

PROC FORMAT;
VALUE $ DUPLICATE
"NY" = "North"
"CA", "WA" = "West"
"NC", "FL", "NY" = "East"
;

RUN;

PROC FORMAT;
VALUE $ NO_DUPLICATE
"NY" = "North"
"CA", "WA" = "West"
"NC", "FL" = "East"
;

RUN;

8

CREATING NEW VARIABLES FROM A DEFINED FORMAT
Now that we have shown the basics of the FORMAT procedure, we will turn to ways that the procedure
can be integrated with data step processing. If you have an existing SAS format, whether in a format
library or one you have defined in your code, there is a quick way to get that information into your dataset
as a permanent SAS variable. The use of an existing format with the PUT function can replace IF-THEN
logic, which SAS users commonly use to create new variables from existing ones.

The format HARIF, below, can serve as our starting point:

PROC FORMAT;
VALUE HAIRF
1 = "Short"
2 = "Medium"
3 = "Long"
;

RUN;

The following code can be used to apply the existing format HAIRF and create the variable HAIR_DESCR
as a stand alone variable within our SAS dataset.

DATA CATS;
SET CATS;

 HAIR_DESCR = PUT(HAIR, HAIRF.);
RUN;

The HAIR_DESCR variable is created using the PUT function. This reads in the value for the variable
HAIR, applies the format HAIRF, and saves the result as the value for HAIR_DESCR. The resulting SAS
dataset is shown in Display 2.

Display 2. Screenshot of CATS SAS dataset with variable HAIR_DESCR

9

CREATING FORMATS FROM A SAS DATASET
Using the CATS dataset, we want to display the RESIDENCE variable as the full state name instead of
the two-character abbreviation. The CNTLIN= option in PROC FORMAT is an efficient way to achieve
this. The lookup table STATE contains all 50 state codes (STATE_CODE) as well as the long description
name (STATE_DESCR). A lookup table is a SAS dataset that serves as a crosswalk for raw code values
and descriptions. The data structure for the SAS lookup table, STATE, is displayed in Display 3:

Display 3. Partial screenshot of STATE SAS dataset

Before we can use the lookup table to create our format, we must get the table into the right structure.
SAS expects the referenced dataset to have specific variable names and structure. The dataset must
include the following variables: START, LABEL, FMTNAME. A variable for TYPE is optional. The rules as
to how to define these variables are listed below.

● START: this variable contains the unformatted values from your lookup table. Using the STATE

example, this variable would be STATE_CODE. Values for the START variable cannot be
duplicated.

● LABEL: this variable contains the formatted values from your lookup table. Using the STATE
example, this variable would be STATE_DESCR.

● FMTNAME: this variable contains the name of your format. This must adhere to all of the rules for
naming a SAS format, described above.

● TYPE (optional): this variable specifies the type of format you are creating, character or numeric.
By default, SAS can differentiate a character from a numeric format based on the format name
and the use of ‘$’. For instances where a character variable includes numeric values, such as a
variable that has leading zeros, it can be helpful to define the format type.

10

The code below creates a SAS dataset, FMT_DS, from our STATE lookup table and prepares it with the
correct structure to use for the CNTLIN= option. This is achieved using the retain statement to create the
variable FMTNAME and a rename statement to change STATE_CODE to START and STATE_DESCR to
LABEL.

DATA FMT_DS;
SET STATE;

RETAIN FMTNAME '$STATE_DESCR' TYPE 'C';
RENAME STATE_CODE = START STATE_DESCR = LABEL;

RUN;

Display 4. Partial screenshot of FMT_DS SAS dataset

With the dataset FMT_DS created, we can create a SAS format from our lookup table using CNTLIN=
and apply this format to output from our CATS dataset. The syntax for this option is:

PROC FORMAT CNTLIN=FMT_DS;
RUN;

11

Figure 4 shows the FREQUENCY procedure for RESIDENCE with and without the format
$STATE_DESCR applied.

No Format Applied With Format Applied

PROC FREQ DATA = CATS;
TABLE RESIDENCE;
TITLE 'Frequency of RESIDENCE -
no format';

RUN;

PROC FREQ DATA = CATS;
TABLE RESIDENCE;
TITLE 'Frequency of RESIDENCE -
formatted';
FORMAT RESIDENCE $STATE_DESCR.;

RUN;

Figure 4. FREQUENCY procedure for RESIDENCE with and without format
The example we shared is simplified, using a lookup table to describe the power of the CNTLIN= option.
Lookup tables can be created from a variety of data sources. With a few preliminary data processing
steps, you can go from source data to SAS format with the CNTLIN= option.

CONCLUSIONS
As you can see, SAS formats are extremely useful and can be applied in a variety of ways to make
programming efficient. Formats allow users to label or stylize data values without actually changing the
underlying data. Multiple formats can be created to categorize a variable in different ways and then be
applied for different reporting needs. We have focused on the FREQUENCY procedure, but SAS formats
can be applied to any other procedures available. We also covered more sophisticated ways to use
formats in creating permanent SAS variables and dynamically generating formats using underlying source
data. This paper shows a small fraction of what you can do with the FORMAT procedure. We hope this
brief introduction has spurred your interest to learn more about what this powerful procedure can do.

ACKNOWLEDGMENTS
We would like to thank our cats for their willing participation.

12

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Rachel Straney
Applications Systems Analyst
University of Central Florida
rstraney@ucf.edu

Lesa Caves
Research Education Analyst
RTI International
lcaves@rti.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:rstraney@ucf.edu

	Abstract
	Introduction
	Data Used For Examples
	What is a SAS format?
	Creating Basic Formats
	Grouping Data with Formats
	Creating New Variables From a Defined format
	Creating formats from a sas dataset
	Conclusions
	Acknowledgments
	Contact Information

