
1

SESUG 2021 Paper 054

Identifying Data Inconsistencies with SAS®
Imelda C. Go, Cognia, Inc.

ABSTRACT
This paper goes over a quality control example on how to identify data inconsistencies when
the expectation is data consistency. PROC MEANS is used to diagnose data inconsistency
and to generate an output data set. This data set is then presented to the reader using
PROC TABULATE, which helps present the inconsistencies in a way different from viewing a
data set. For example, a test item appears on different test forms. The metadata for the
same item are expected to be identical across test forms where the item appears. How can
you easily confirm that the item metadata are identical across all test forms and how can
you identify inconsistencies in a report that facilitates the identification and correction of the
inconsistencies? With macro techniques, we can further automate this process to include
output via ODS Excel for archiving and sharing our findings.

INTRODUCTION
The method uses PROC MEANS predominantly to identify the inconsistencies. An example
from the assessment industry will be used to illustrate the technique. Let us assume the
following:

 We have 3 mathematics test forms (A-C) with 3 items each (2 operational (OP) test
items and 1 field (FT) test).

 The 1st and 3rd items are both OP items, while the 2nd item is an FT item.
 The expectation is that the same item (based on ItemID), wherever it appears

among the forms, has the same AnswerKey, ItemFunction, ItemType, and Position
values.

Subject FormID ItemID AnswerKey ItemFunction ItemType Position
math A 11 A OP MC 1
math A 33 Yellow FT CR 2
math A 22 C OP MC 3
math B 11 A OP CR 1
math B 44 Red FT CR 2
math B 22 C OP MC 3
math C 11 A OP CR 1
math C 55 Blue FT CR 3
math C 22 B OP MC 2

Given the above data, we see the following issues:

 For ItemID=22, the AnswerKey is C on two forms and is B on form C.
 For ItemID=11, the ItemType value is inconsistent. It is MC on one form and CR on

the other two.
 ItemID=11 and ItemID=22 appear as the 1st and 3rd items on forms A and B but not

on form C.

2

For such a short test, we can examine the data visually with ease. We want a solution,
which tells us exactly where the inconsistencies are quickly and with less effort.

For the sake of providing an example, let us also expand the scenario to using these items
for a 3rd and 4th grade test. (The 3rd and 4th grade test have the exact same items.) Also
assume that there are no missing values for each variable. The sample code was prepared
with the intent to illustrate the technique. In actual practice, certain parts of it can be
rewritten more succinctly (e.g., PROC SQL coding) or be adjusted (e.g., missing values are
present).

We will process the 3rd and 4th grade test data set using PROC MEANS. Without a VAR
statement, PROC MEANS will attempt to use all numeric variables on the data set. To make
things simpler, add a numeric variable called NumRecords with a value of 1 to the data set.

We will use a combination of PROC MEANS, PROC TABULATE, and ODS Excel to create
output, regarding data inconsistencies, and send the output to an Excel file with multiple
worksheets.

3

The only input required from the user is shown below in the six %LET statements. Beyond
that, the code is data-driven/generalized and will function based on the values in the %LET
statements.

%let InputData=Sample;

%let DataVars=AnswerKey ItemFunction
ItemType Position;

%let IDVar=ItemID;

%let FormVar=FormID;

%let GroupVars=Subject &IDVar.;

%let OutPath=C:\Users\imelda.go\Desktop;

&InputData specifies the data set.

&DataVars is a list of variables that
need to be checked for consistency.

&IDVar is the item ID.

&FormVar is the test form ID.

&GroupVars lists the groups of items
where you want to check
inconsistencies for. It is at minimum
the &IDvar.

By specifying Subject prior to &IDVar,
you will be checking for inconsistencies
within each value of the subject
variable. Leave &IDVar in the last
position in the list since &GroupVars
will be used in a CLASS statement
where the order of variables listed
affects the _type_ variable generated
by PROC MEANS.

%let GroupVarsAsterisk =
%sysfunc(translate(&GroupVars,'*',' '));

%let GroupVarsComma =
%sysfunc(translate(&GroupVars,',',' '));

%let
NDataVars=%sysfunc(countw(&DataVars));

%let
NGroupVars=%sysfunc(countw(&GroupVars));

&GroupVarsAsterisk is the
&GroupVars value with an asterisk (*)
as the delimiter, which will be used in
TYPES statement.

&GroupVarsComma is the &GroupVars
value with a comma (,) as the
delimiter, which will be used in PROC
SQL.

&NDataVars is the number of variables
listed in &DataVars, which will be used
for automation (DO loop statement).

&NGroupVars is the number of
variables in listed in &GroupVars, which
will be used to calculate the value of
type that we need to identify
records of interest.

4

data TypeValue;
retain type 0;
if &NGroupVars>0 then
do i=1 to &NGroupVars;
type=type+ 2**(i-1);
end;
output;
call symputx('type',type);

Calculate the value of _type_ that
corresponds to the record with the
total number of times a combination
of values appear for variables listed in
&GroupVars.

In this example &GroupVar=subject
ItemID so we are counting the
number of records per subject and
itemID combination. In this case the
value of interest is _type_=3. It is 3
because we have 2 variables in
&GroupVars. Since these are the last
two variables listed in the CLASS
statement, the corresponding _type_
value will be 21+20=2+1=3.

proc means data=&InputData noprint n
chartype;
id &FormVar;
class &DataVars &GroupVars/missing;
types &GroupVarsasterisk.
&GroupVarsasterisk.*(&DataVars);
var NumRecords;
output out=CountCombos (where=(
stat="N"));

PROC MEANS allows us to count
various things. We can limit what
we count by using the TYPES
statement.

The ID statement adds the
&FormVar variable to the output
data set.

The order in which the variables
are listed in the CLASS statement
affect the values of the _type_
variable. Due to the need for
predictability, put &ItemGroupVars
at the very end of the list of
variables in the CLASS statement.
You need to know the right _type_
value to use in the next step.

The data were sorted for
instructional purposes to illustrate
below the rationale for the
technique.

5

The sorted data set is shown below.

 Whenever _type_=3, NumRecords is equal to the total number of records that appear
for each unique combination of subject and ItemID. In general, the data set tells us
the number of unique combinations listed in the CLASS statement but specifically the
combinations of interest specified in the TYPES statement. The _type_ value tells us
exactly which combination of variables is involved for each row in the data set. The
specific values for each combination of interest are in the data set.

 The variables in the CLASS statement are AnswerKey, ItemFunction, ItemType,

Position, Subject, ItemID. The sample data are such that NumRecords is always
6 if the data are all consistent. Wherever we see NumRecords not equal to 6, we see
inconsistencies in the values as shown. Where there are inconsistencies, note that
the _type_ values occur more than once among variable combinations. If the
type value occurs only once among the combinations of those variables, then the
data were consistent. We can also see which test forms these inconsistencies occur
because we used the ID statement.



6

The value of _type_ depends on the order in which the variables in the CLASS statement
are listed. The decimal value of _type_ appears as the default and using the PROC MEANS
CHARTYPE option will produce a character string representative of binary notation, which is
equivalent to the decimal value of _type_. For this reason, the &GroupVars was placed at
the end of the CLASS statement to increase predictability of the value and provide
automation opportunities.

AnswerKey ItemFunction ItemType Position Subject ItemID

Decimal
type
without
chartypes
PROC
MEANS
option

Binary
type
with
chartypes
PROC
MEANS
option

0 0 0 0 1 1 3 000011
0 0 0 1 1 1 7 000111
0 0 1 0 1 1 11 001011
0 1 0 0 1 1 19 010011
1 0 0 0 1 1 35 100011

%macro filter;
proc sort data=CountCombos; by &GroupVars
type;

data CheckThese ;
length Flag $30.;
retain TotalRecords . ;
set CountCombos;
by &GroupVars _type_;
if first.&IDVar and _type_=&type then
do; TotalRecords=NumRecords; delete; end;

This macro will create a flag
variable that will specify the
variable with inconsistency.

When _type_=3, then NumRecords is
the TotalRecords for each subject
and ItemID combination.

When _type_ is not 3, then it is the
record that counts the unique
combination of values for the
corresponding variables.

if NumRecords ne TotalRecords then do;
 %do i = 1 %to &NDataVars;
 %let column=%scan(&DataVars,&i);
 if &column ne "" then
Flag=strip(Flag)||"+&column";
 %end;
output; drop _stat_ _type_; end;
run;
%mend filter;

%filter;

Check if the record needs to be
flagged. That is, check if
NumRecords is not equal to
TotalRecords for the corresponding
&ItemVar variable. Only keep
flagged records. If
Numrecords=TotalRecords, that tells
us that there was only one value
for the column (i.e., data value
was consistent for that
combination of subject and
ItemID).

If it is a flagged record, the flag
value will contain the name of the
variable with inconsistencies.

7

Dataset checkthese has the following contents.

We will now take the checkthese data and do a few things to it to produce another way of
looking at the data.

proc sql;
create table UniqueIDs
as select unique Subject, &IDVar
,TotalRecords from CheckThese
where NumRecords ne TotalRecords;

This is the list of items with flagged
inconsistencies.

proc sql;
create table PreFinal as
select a.TotalRecords, b.*
from UniqueIDs as a left join &InputData
(drop=NumRecords) as b
on a.&IDVar=b.&IDVar and
a.Subject=b.Subject;

Add the item data to this list of unique
IDs with inconsistencies.

8

proc sql;
create table UniqueFlags
as select unique Subject, ItemID , Flag
from CheckThese;

Get all the unique subject, ItemID,
and flag combinations from
checkthese dataset.

proc sql;
create table Final as
select a.Flag, b.*
from UniqueFlags as a LEFT JOIN PreFinal
as b
ON a.&IDVar=b.&IDVar and
a.Subject=b.Subject;
quit;

This is the data with all the original
item data with the flagged records
together with the flag values. The
flag values tell us which variable is
being flagged for each row.

In this data set, we can see all the item data together with the flag value that tells us what
the inconsistency is. In the first six records, the flag indicates there is an inconsistency in
ItemType values for itemID. In the We see that the ItemType is MC in FormID=A and is CR
on the other forms.

9

%macro GenerateTables(column);
proc tabulate data=Final out=test
format=12.0;
class Flag &GroupVars &FormVar &DataVars
TotalRecords;
table
&GroupVarsAsterisk.*(&column)*TotalRecor
ds="# of &InputData Records with
ItemID", all='Number of Records with
Combination' FormID;
where find(Flag,"&column")>0;
title4 "&column: Item Inconsistencies
Across Forms";
run;

proc tabulate data=&InputData
format=12.0;
class &GroupVars &FormVar &DataVars ;
table &GroupVarsasterisk.*(&column),
all FormID;
title4 "&column: Data
Consistency/Inconcistency Across Forms";
run;
%mend GenerateTables;

For each variable specified, up to two
PROC TABULATE output tables are
generated.

The first PROC TABULATE output shows
us the inconsistencies only as they
appear in the final data set. This uses
a WHERE statement and therefore,
may not produce any output if no
records satisfy the condition.

The second one serves as a record for
what is in the data and uses the
original &dataset. Consistencies
and/or inconsistencies will appear in
the output.

%macro feedback(varlist);
 %do i = 1 %to &NDataVars;
 %let column=%scan(&varlist,&i);
 ods excel options
(sheet_name="&column");
 %GenerateTables(column=&column);
 %end;
%mend feedback;

The DO loop goes over each variable in
&ndatavars and runs the
%generatetables macro for each
variable.

ODS Excel options specified the
worksheet name.

Each DO loop iteration invokes the
%generatetables macro for each
variable in &varlist.

ods excel file="&OutPath.\&groupvars
feedback.xlsx" options
(sheet_interval='table'
embedded_titles='yes');
%feedback(varlist=&DataVars);
ods excel close;

We are going to send the output to an
Excel file using ODS.

We invoke the %feedback macro by
defaulting the varlist to &DataVars,
which is all the variables we wanted to
check the consistency of.

10

The macro variable &varlist has 4 variables in this example. There will be at most 4 x 2 of
PROC TABULATE output tables. The first PROC TABULATE output table will appear as long as
there were inconsistencies found for the particular variable. The second PROC TABULATE
output will always appear since it uses the original data set will all values in it. The PROC
TABULATE presentation of the information offers another way of looking at the data.

We can see easily below that the itemID=22 row has two keys. The key of B appears
in form C and the key of C appears in forms A and B.

The following is similar to the above table but also contains the information for all itemID
values.

11

No inconsistencies were detected for ItemFunction. Only the second PROC TABULATE
output was produced.

The following table shows that there was an inconsistency in ItemType when ItemID=11.

12

The following contains the information for ItemType consistency/inconsistency.

Position also has inconsistencies for ItemID=22.

13

The following shows Position values for all items.

All of these output tables were sent to an Excel file with several worksheets, one for each PROC
TABULATE output table. The worksheets for produced are as follows.

14

The &GroupVar value helps organize the tables according to relevant pools of items. In this
example, &GroupVar=Subject. This means we want to look at all the duplicates within each
subject value.

If we use &GroupVar=grade, the output will automatically adjust. Here we are looking at duplicates

within each grade value.

If we use &GroupVar=subject grade, we will be looking at duplicates within each
combination of subject and grade.

15

When &GroupVar=&ItemVar, then we will be strictly looking at item inconsistencies by
ItemID in this example.

Here’s the SAS coding described above in one continuous section.

%let InputData=Sample;
%let DataVars=AnswerKey ItemFunction ItemType Position;
%let IDVar=ItemID;
%let FormVar=FormID;
%let GroupVars=Subject &IDVar.;
%let OutPath=C:\Users\imelda.go\Desktop;
***********************************;
%let GroupVarsAsterisk = %sysfunc(translate(&GroupVars,'*',' '));
%let GroupVarsComma = %sysfunc(translate(&GroupVars,',',' '));
%let NDataVars=%sysfunc(countw(&DataVars));
%let NGroupVars=%sysfunc(countw(&GroupVars));

data TypeValue;
retain type 0;
if &NGroupVars>0 then
do i=1 to &NGroupVars;
type=type+ 2**(i-1);
end;
output;
call symputx('type',type);

proc means data=&InputData noprint n chartype;
class &DataVars &GroupVars/missing;
types &GroupVarsasterisk. &GroupVarsasterisk.*(&DataVars);
var NumRecords;
output out=CountCombos (where=(_stat_="N"));

proc sort data=CountCombos; by &GroupVars _type_;

16

%macro filter;
proc sort data=CountCombos; by &GroupVars _type_;

data CheckThese ;
length Flag $30.;
retain TotalRecords . ;
set CountCombos;
by &GroupVars _type_;
if first.&IDVar and _type_=&type then
do; TotalRecords=NumRecords; delete; end;

if NumRecords ne TotalRecords then do;
 %do i = 1 %to &NDataVars;
 %let column=%scan(&DataVars,&i);
 if &column ne "" then Flag=strip(Flag)||"+&column";
 %end;
output; drop _stat_ _type_; end;
run;
%mend filter;

%filter;

proc sql;
create table UniqueIDs
as select unique Subject, &IDVar ,TotalRecords from CheckThese
where NumRecords ne TotalRecords;

proc sql;
create table PreFinal as
select a.TotalRecords, b.*
from UniqueIDs as a left join &InputData (drop=NumRecords) as b
on a.&IDVar=b.&IDVar and a.Subject=b.Subject;

proc sql;
create table UniqueFlags
as select unique Subject, ItemID , Flag from CheckThese;

proc sql;
create table Final as
select a.Flag, b.*
from UniqueFlags as a LEFT JOIN PreFinal as b
ON a.&IDVar=b.&IDVar and a.Subject=b.Subject;
quit;

%macro GenerateTables(column);
proc tabulate data=Final out=test format=12.0;
class Flag &GroupVars &FormVar &DataVars TotalRecords;
table &GroupVarsAsterisk.*(&column)*TotalRecords="# of &InputData Records
with ItemID", all='Number of Records with Combination' FormID;
where find(Flag,"&column")>0;
title4 "&column: Item Inconsistencies Across Forms";

proc tabulate data=&InputData format=12.0;
class &GroupVars &FormVar &DataVars ;
table &GroupVarsasterisk.*(&column), all FormID;
title4 "&column: Data Consistency/Inconcistency Across Forms";
run;
%mend GenerateTables;

17

%macro feedback(varlist);
 %do i = 1 %to &NDataVars;
 %let column=%scan(&varlist,&i);
 ods excel options (sheet_name="&column");
 %GenerateTables(column=&column);
 %end;
%mend feedback;

ods excel file="&OutPath.\&groupvars feedback.xlsx" options
(sheet_interval='table' embedded_titles='yes');
%feedback(varlist=&DataVars);
ods excel close;

CONCLUSION
The SAS programming language offers different tools to identify data inconsistencies. The
use of different tools together has the potential to result in greater automated and data-
driven coding efficiency.

REFERENCES

Lafler, Kirk Paul (2017). “Removing Duplicates Using SAS®”, Proceedings of the 2017 SAS
Global Forum (SGF) Conference.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Imelda C. Go, Ph.D.
Cognia, Inc.
imelda.go@cognia.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration. Other brand and product names are trademarks of their respective companies.

