
1 

SESUG 2022 Paper ### 

A Two-Staged Local Regression Based Binning Method for 

Weight of Evidence Transformation in Credit Scoring Models 

Hui Wang, Shirong Huang, Emma Zhou and Erin Martin, Federal Home Loan Bank of 

Atlanta 

  

ABSTRACT  

Weight of Evidence (WOE) variable transformation method is widely and commonly used in 

credit risk analysis. This work provides a two-staged, local regression based binning method 

to estimate WOE. Using the banking industry dataset as an example, this paper shows that 

when a sufficient number of bins are selected and appropriate smooth factor is chosen, the 

loss of information and prediction accuracy could be minimized. The proposed method 

performs well on imbalanced dataset. It can also handle either monotonic or U-shaped 

relationships between the transformed WOE and original variable by delivering results that 

have business soundness. The model created with this approach can enable the users to 

experience more smooth credit score migration when a financial ratio shifts from one bin to 

another. Considering the widely acknowledged advantages of using WOE method, such as 

the ease of handling missing values, and the good interpretability of the model after 

transformation, this approach is considered to have good performance compared to the 

existing variable transformation approaches and can meet the business needs specifically 

for credit risk analysis. 

INTRODUCTION  

In credit risk modeling process, the choice of a proper variable transformation method is 

always an important topic. Weight of Evidence (WOE) variable transformation method is 

widely and commonly used in credit risk analysis in the industry. The WOE method can be 

generalized to the method of transforming each independent variable into its WOE and then 

fit into the logistic regression framework, which is described as follows: 

log⁡(
p

1 − p
) = C +∑βiWOE(xi)

j

i=1

 

where WOE(xi) is the WOE transformation of variable xi.  

Generally, the WOE method has lots of advantages such as the capability to handle missing 

values and the variable’s non-linearity, as well as to maintain the interpretability of the 

model after the transformation. However, according to our experience, the performance of 

the current WOE estimation approaches was not satisfying on extremely imbalanced data. 

In addition, these algorithms could cause the large change in credit score when customer’s 

financial ratio changes from one bin to adjacent ones.   

This work provides a two-staged, local regression based binning method to estimate WOE. 

Using the banking industry dataset as an example, the paper shows that when sufficient 

number of bins were selected and appropriate smooth factor was chosen, the loss of 

information could be minimal. The LOESS smooth WOE method can also handle both 

monotonic and U-shaped relationship between the WOE and variable by delivering result 

that have business soundness. Considering the advantages of WOE method in handling the 

missing value as well as in interpreting the model after transformation, this approach is 

considered to have good performance among other variable transformation approaches and 

can serve as an applicable variable transformation method in credit risk modeling analysis. 
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LITERATURE REVIEW 

In this part, the WOE framework is firstly introduced under continuous independent variable 

environment. The relationship between WOE framework and Naïve Bayes method is 

discussed. Subsequently, a variety of binning methods for the WOE component are 

introduced. The advantages and disadvantages of these approaches are reviewed. Finally, 

the objectives and expected outcome of new binning approach is summarized. 

INTRODUCTION OF THE WOE FRAMEWORK 

The weight of evidence (WOE) approach is a good framework for variable screening and 

exploratory analysis for credit risk modeling. WOE and information value (IV) are closely 

related to concepts from information theory where one of the goals is to understand the 

uncertainty involved in predicting the outcome of random events given varying degrees of 

knowledge of other variables (Hughes, 2015; Shannon, 1948; Singer & Kouda, 1999; Wod, 

1985).  

A credit risk scoring model contains a binary dependent variable Y (default/failure as 1, non-

default/non-failure as 0) and a set of predictive variables (x1, …, xj). The WOE framework is 

based on the following relationship: 

ln
P(Y = 1|x1, … , xj)

P(Y = 0|x1, … , xj)
= ln

P(Y = 1)

P(Y = 0)
+∑βjln

f(xj|Y = 1)

f(xj|Y = 0)

p

j=1

 

where P(Y = 1|x1, … , xj) is the conditional probability of Y=1 given the observed set of 

independent variables (x1, …, xj), βj is a set of coefficient denotes the weight of each 

independent variables and ln
f(xj|Y = 1)

f(xj|Y = 0)
 is called the weight of evidence of variable xj. 

It is known that the WOE framework is closely related to the Naïve Bayes method: 

ln
P(Y = 1|x1…xj)

P(Y = 0|x1…xj)
= ln

P(Y = 1)

P(Y = 0)
+∑ln

P(xi|Y = 1)

P(xi|Y = 0)

j

i=1

 

The above equation is the Naive Bayes (NB) classifier (Friedman, Hastie, & Tibshirani, 

2001). The Naive Bayes model essentially indicates that the logit(p) is equal to the direct 

summary of the individual weight of evidence variables. The word “naive” comes from the 

fact that this model relies on the assumption that all predictors are conditionally 

independent, which is a strong assumption. 

The strong assumption of Naive Bayes model that all variables are conditionally independent 

from each other can be alleviated by various types of methods. A large number of literature 

proposes approaches to alleviate the conditional independence assumption. Such 

approaches can be placed into two general categories (Cortizo, Giraldez, & Gaya, 2007; 

Zaidi, Cerquides, Carman, & Webb, 2013; Zheng & Webb, 2008).  

The first category is the Semi-Naive Bayes methods (Zheng & Webb, 2008). These methods 

are aimed at enhancing Naive Bayes’ accuracy by relaxing the assumption of conditional 

independence between variables. In this category, the Semi-Naive Bayesian methods can be 

roughly subdivided into several groups (Zheng & Webb, 2008). The first group applies Naive 

Bayes to a subset of variables generated by deleting variables. The second group adds 

explicit interdependencies between variables. The third group applies Naive Bayes to a 

subset of training instances. The fourth group performs adjustments to the output of Naive 

Bayes without altering its direct operation. The fifth group introduces hidden variables to 

Naive Bayes.  

In our modeling practice, considering the interpretability of the model after adjustment, the 

first approach of using a subset of variables of the dataset can be used by implementing 
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variable selection methods such as stepwise or lasso method. In the multivariable analysis 

part of the modeling process, correlation matrix and clustering analysis on variables can be 

implemented to reduce the number of strongly correlated variables. Thus the correlation 

between the final variables that entered into the WOE model could be small. 

The second category comprises variable weighting methods (Zaidi et al., 2013). The 

attribute weighting can be viewed as a means of increasing the influence of highly predictive 

variables and discounting variables that have little predictive power. There are also various 

approaches on how to weight each variables (Zaidi et al., 2013). The primary value of 

variable weighting is its capacity to alleviate the assumption of conditional attribute 

independence. One of the commonly used weighting method is to set (Zaidi et al., 2013) 

P(x1…xj|Y = 1) = ∏P(xi|Y = 1)βi

j

i=1

 

which add a weight term βj to each variable’s probability density function.  

ln
P(Y = 1|x1…xj)

P(Y = 0|x1…xj)
= ln

P(Y = 1)

P(Y = 0)
+∑βiln

P(xi|Y = 1)

P(xi|Y = 0)

j

i=1

 

The above equation is the credit score modeling field commonly used as ‘WOE’ framework 

that use logistic regression method with WOE transformation on independent variables. By 

using this approach, the assumption that all variables in the model are independent is 

alleviated. The underlying WOEs are still estimated under univariate environment. 

Hence, one can use a logistic regression model to estimate the equation, just using a ‘WOE’ 

transformation on each independent variables xj. In the credit scoring industry this “semi-

naive” version of model is popular. The idea is to transform the variables into WOE variables 

and then use logistic regression to fit the model. 

THE INFORMATION VALUE 

We can leverage WOE to measure the predictive strength of xj – i.e., how well it helps us to 

separate cases when Y=1 from cases when Y=0. This can be done through the information 

value (IV) which is defined by: 

IVj = ∫ ln
f(xj|Y = 1)

f(xj|Y = 0)
(f(xj|Y = 1) − f(xj|Y = 0)) dx 

Note that the IV is essentially a weighted “sum” of all the individual WOE values where the 

weights incorporate the absolute difference between the numerator and the denominator 

(WOE captures the relative difference). Generally, if IV is too small then the variable has 

very little predictive power and will not add much meaningful predictive power to the model. 

ESTIMATION OF WOE USING BINNING APPROACH 

The most commonly used approach to estimate the conditional probability density function 

is to bin xj and then use a histogram-type estimate, which is also called the binning 

approach. Let B1, …, Bj denotes the bins for xj, the WOE for xj for bin i can be written as, 

WOEij = ln
P(xj ∈ Bi|Y = 1)

P(xj ∈ Bi|Y = 0)
 

And the IV for variable xj can be calculated as, 

IVj = ∑(P(xj ∈ Bi|Y = 1) − P(xj ∈ Bi|Y = 0)) ∗ WOEij

k

i=1
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During implementation of WOE transformation on variables, several automatic binning 

methods can be the candidates, such as equal-width binning, equal-size binning, optimal 

binning, tree based binning, and monotonic regression binning.  

COMMONLY-USED BINNING METHODS 

In this part, a brief review for commonly used binning method is given together with our 

comments on them(Mironchyk & Tchistiakov, 2017). 

Equal-width binning and equal-size binning 

These two approaches are straightforward approaches for binning (Thomas, Crook, & 

Edelman, 2017a). For equal-width binning, the user firstly decide the number of bins, then 

the whole range of predictor values is divided into a pre-specified number of equal-width 

intervals. Via this practice, each interval defines borders (minimum and maximum) for 

corresponding bin. The number of bins of the equal-width binning method is predefined. The 

problem with this method is that, after applying the method, the number of default (Y=1) or 

non-default (Y=0) in each bin is not determined. There are possibilities that one bin 

contains too many default observations while lacking of non-default observations, or vice 

versa. In addition, the business soundness of the transformation is unsupported. 

For equal-size binning, the method split the range of predictor values into intervals that 

each bin contains equal number of observations. The width of bins varies depending on 

density of observations. The target number of bins of the equal-size binning is also 

predefined. The problem with this method is similar with the equal-width method. In 

addition, according to our experiments, when encountered imbalanced data, the first or last 

bin may not have enough default or non-default observations for an accurate WOE 

estimation. 

Optimal binning and related algorithms 

The optimal binning and its related algorithms mainly include the optimal binning (Siddiqi, 

2012), multi-interval discretization (Fayyad & Irani, 1993), Chi-merge (Kerber, 1992) and 

conditional inference tree algorithms (Hothorn, Hornik, Strobl, & Zeileis, 2010; Mironchyk & 

Tchistiakov, 2017). 

Optimal binning algorithm is deemed as an evolution of the previous two algorithms. It can 

be considered as an enhancement on top of the previous two methods, as in this case a 

predictor variable is used to define cutoff points for intervals. This algorithm aims to define 

bins to have sufficiently different statistical mean estimates of predictor value.  It consists of 

the following steps: 1) start with the bins that are small in size (the number of observations 

in each bin is small) but sufficiently large in the total count of bins (large enough quantity of 

bins); 2) for each neighboring pair of bins, compute the p-value; 3) find the largest p-value 

of all pairs. If it is above some threshold, merge corresponding pair of bins then repeat step 

1, otherwise exit. 

Multi-interval discretization binning is based on entropy minimization heuristic search for 

recursively splitting of continuous range into sub-intervals, and recursively define the best 

bins. The purpose of this method is to separate classes based on observation frequencies. 

This algorithm maximized the test statistics related to entropy to discover the cutoff point 

for each bin.   

Chi-merge algorithm is similar to optimal binning merging. But this method substitutes p-

value with Chi-square to test similarity of adjacent bins. The algorithm consists of the 

following steps: 1) the input range is initialized by splitting it into sub-intervals with each 

sample getting own interval; 2) for every pair of adjacent sub-intervals a Chi-square value 

is computed; 3) merge pair with lowest Chi-square into single bin; 4) repeat step 1 and 2 

until the maximum Chi-square is less than some predefined threshold. 
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Conditional inference trees such as multidimensional formulation of algorithm are also based 

on exhaustive search of partition scheme that would maximize some test statistics. 

The common drawbacks of these methods are that, all of these methods optimized some 

test statistics in the process. In literature, it is said that categorizing variables using 

optimized test statistics with insufficient number of categories, for example dichotomizing 

variables (setting bin number to 2) based on optimized test statistics such as p-value, will 

lead to several problems (Altman & Royston, 2006). Firstly, information is lost, so the 

statistical power to detect a relationship between the variable and outcome is reduced. 

Secondly, observations close to but on opposite sides of the cutoff point are characterized 

as being very different rather than very similar. This will be more critical especially when 

not enough bins were generated. 

It is also noticed that when applying these methods to imbalanced dataset, the results are 

mostly not desired. Firstly, we observe it from the outputs that not enough bins were 

generated. Secondly, the output trend of WOE is not smooth & monotonic or smooth & U-

shaped, which makes the result to have less business sense. Thus, the new method should 

be able to handle imbalanced dataset as well as generate output that make business sense. 

Monotonic binning approaches 

Monotonic binning approaches guarantee a monotonic relationship between the WOE of the 

variable and variable’s value after transformation. It is expected that after applying the 

binning algorithm, if one walks from one bin to another in the same direction, there is a 

monotonic change of credit risk indicator. One example of the approaches is provided below. 

Maximum-likelihood monotone coarse classifier is one example of the monotonic binning 

approaches (Thomas, Crook, & Edelman, 2017b). It is also known as "Monotone Adjacent 

Pooling Algorithm". Here is a brief summary about how to implement this method. Assume 

that bad rate is going down as characteristic value increases. Start at the lowest 

characteristic value and keep adding values until the cumulative bad rate hits its maximum. 

This is the first coarse classification split point. Start calculating the cumulative bad rate 

from this point until it again hits maximum. This is the second split point. Repeat the 

process until all the split points are obtained (Thomas et al., 2017b). 

However, in credit risk modelling process for corporates and firms, it is observed that for 

some specific category of variables firm’s growth, a too low or too high value will increase 

the firm’s default rate. This have business soundness because a lack of growth or too 

aggressive growth of the firm will result in a higher default risk. Thus, the new binning 

algorithm should also be able to analyze a variable non-monotonic WOE trend, while 

maintaining most of the variables’ transformation to be monotonic when these variables are 

supposed to have a monotonic relationship with the default trend. 

There are other binning method such as smoothed WOE based on modified WOE definition 

(Garla, Chakraborty, & Cathie, 2013). Unfortunately, neither of them can generate desired 

smooth, monotonic or U-shaped WOE result when handling imbalanced dataset. 

ADVANTAGES AND CURRENT PROBLEMS OF WOE BINNING ALGORITHMS 

The WOE framework has lots of advantages. Generally, WOE can help the modeler to detect 

linear and non-linear relationships between the independent variables and the response. It 

can also visualize the correlations between the predictive variables and the binary outcome, 

providing the capability for users to visually check the economic soundness of the 

transformation. The method standardizes the scale of each variable, making it easier to 

compare with each other in term of ‘weight’ and it can handle missing values without 

additional steps. 

However, there are also problems in the current binning methods to estimate the weight of 

evidence. Firstly, according to our experiments, most of the algorithms do not perform well 
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on extremely imbalanced data as discussed above. Secondly, these algorithm either cannot 

handle the U-shaped WOE variables or the output generated was not smooth thus make no 

business sense. In such case when the financial ratio migrate from one bin to another, the 

corresponding credit score will deteriorate or improve towards the opposite direction 

compared to what user expected. Last, those algorithms generate insufficient number of 

bins which cause a sudden PD change when the customer’s financial ratio jumps from one 

bin to its adjacent bin. 

BINNING ALGORITHM OBJECTIVES 

In previous literature, some specific requirements for a binning algorithm were introduced. 

These requirements can be derived into the following three requirements (Mironchyk & 

Tchistiakov, 2017; Zeng, 2014): 

 Monotonicity: The algorithm should be able to generate WOE that has a monotonic 

relationship with the original variable. However, in credit risk modelling process for 

financial corporates, we’ve observed that for some specific category of variables such as 

firm’s growth, there is a U-shaped relationship and it make business sense.  

 Representativeness: The algorithm should reflect maximized correlation between the 

dependent and independent variable. The loss in either the information or the prediction 

accuracy should be minimal.  

 Constraints: The algorithm should produce number of bins within particular constraints. 

For example, sufficient number of bins should be generated so that when the variable’s 

value switched from one be to another, not too dramatically PD change will occur. This 

enables the model user to obtain a smoother PD transition during model usage, which 

means they will be able to explain the credit score change to customers easily. 

PROPOSED BINNING ALGORITHM’S OBJECTIVES 

In general, based on the literature review and the discussion above, the objectives of new 

binning algorithm are: 

 Business soundness and monotonicity: The result of the binning algorithm should make 

business sense. The new binning algorithm should be able to incorporate non-monotonic 

relationship variable default trend into the model, while maintaining most of the 

variables’ transformation to be monotonic when these variables are supposed to have a 

monotonic relationship with the default trend. 

 Minimal loss of information (representativeness): There should be no significant 

decrease in prediction accuracy on the transformed variables compared to the original 

untransformed variable. The information loss from the transformation step should be 

small. 

 Handle imbalanced data: The algorithm should be able to handle imbalanced data. 

 Specific requirement: The algorithm should generate sufficient bins to facilitate the 

model’s implementation. The WOE difference between adjacent bins shouldn’t be too 

large. The model should be easy to transfer from statistical software to other 

environments, for example from SAS or Python to Excel software. 

PROPOSED METHOD 

Based on the binning algorithm objectives discussed above, an algorithm is proposed to 

perform the WOE smoothing and calculation. The general process of this algorithm is shown 

below: 
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Figure 1. Process of the WOE smoothing algorithm 

In this algorithm, the variable in the dataset are transformed by the following procedure: 

 Step 1: Based on the training dataset, select the rare event observation first. Since the 

default event (Y=1) is rare here, select all Y=1 first. 

 Step 2: Evenly distribute the Y=1 observations by number to m bins via the ranking of 

the target predictor. Specifically, the observations were assigned to the designated bin 
via floor(rank ∗ m⁡/(n_def + 1)), here n_def refers to the total number of Y=1 observations in 

the training data. In the model development, this process was noted as original binning.  

 Step 3: Apply the bin range to the training dataset. Obtain each bin’s number of Y=1 

and number of Y=0. 

 Step 4: Starting from the 1st bin, if the specific bin contains Y=1 observations less than 

specified number n, combine it with the next bin. Otherwise proceed to the next bin. Do 

this until the last bin. Repeat this process with Y=0 observations. This is to ensure that 

each bin has number of both Y=1 and Y=0 observations larger than specified number n. 

 Step 5: Apply new combined bin’s range to obtain coarse WOE in each bin by the 

equation 

WOEij = ln
P(xj ∈ Bi|Y = 1)

P(xj ∈ Bi|Y = 0)
 

where B1, …, Bk  denotes the bins for variable xj. 

 Step 6: Apply local regression on coarse WOE with specified smooth factor to obtain the 

smoothed WOE of each bin.  

 Step 7: Perform visual check and minimal manual adjustment on the bins to ensure the 

variable’s business soundness. When necessary, ensure the transformed variable to 

have a monotonic relationship between the variable and its WOE by adjusting smooth 

factor or manually combining bins.  

Specifically in the local regression step, according to the SAS supporting document (SAS), 

the mechanism of the LOESS was: 

 Set ‘degree’ parameter as 1, which means the regression is a local linear fitting. 

 Set ‘smooth’ factor as the specified number, for example 0.6, which means 60% of the 

observations is used to perform local regression estimates, specifically the number of 
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points in the local neighborhoods would be q = floor(0.6 ∗ k), where k is the number of 

bins (Wicklin, 2016). 

 Calling parameter ‘direct’, which meant the local regression would be done at every 

point in the input data set. 

 Set ‘alpha=0.05’, which was the significant level for the confidence interval of each fitted 

data point. The value 0.05 was the default and commonly used.  

 Then for each element of the raw WOEij, found the q nearest neighbors, and denoted 

their distances to raw WOEij as d1, d2, … , dq, assign their weights as  

wi =
32

5
(1 − (

di
dq
)

3

)

3

 

 The q points in the local neighborhood of raw WOEij are used to fit and score a local 

weighted regression model at raw WOEij. The score is the WOE_LOESS value. 

In this approach, since the coarse WOE is smoothed, the IV of the smoothed WOE is then 

revised as: 

IVj = ∑(P(xj ∈ Bi|Y = 1) − P(xj ∈ Bi|Y = 0)) ∗ LOESS_WOEij

k

i=1

 

Where coarse weight of evidence “WOE” is replaced by smoothed weight of evidence 

LOESS_WOE. 

DATA AND SETTINGS 

In this paper, the data used are the quarterly financial statement data with 46 predictor 

variables obtained from US banks on a nation-wide basis over 15 years period from 2005 to 

2019. The variables are from capital, asset quality, earning, liquidity, size and 

macroeconomic indicator categories. The default data are collected from FDIC failure list 

(Federal Deposit Insurance Corporation). The data were cleaned and combined firstly and 

then divided into 80% training dataset and 20% testing dataset. The training dataset 

contains 370,634 observations with 2,820 default observations. The testing dataset contains 

41,226 observation with 327 default observations.  

In the result and discussion part, a minimum of 30 observations for both Y=1 and Y=0 

observations in each bin is used. For algorithm and result demonstration, starting number of 

bins for each variable was selected to be 50 and smooth factor selected to be 0.6. For the 

discussion of initial bin size, smooth factor was set to be 0.6 while initial bin size varied from 

2 to 100. For the discussion of smooth factor, initial bin size was selected to be 50 and 

smooth factor varied from 0.1 to 0.9. 

For the discussion of initial bin size and smooth factor in multivariate environment, a 

benchmark model was implemented. The 46 variables in the training dataset went through 

a variable selection process. Firstly, the variables were analyzed under univariate 

environment and variables with too low AR/IV were discarded. Subsequently the remaining 

variables were selected under multivariate environment with lasso method. The collinearity 

between variables were also considered during the process. The VIF for the benchmark 

model for each variable is less than 1.5. The final benchmark model is guided by the CAMEL 

framework and contains six variables (Federal Financial Institutions Examination Council, 

1996). Two variables are from asset quality category (variable 1 and 10), one variable from 

capital category (variable 15), one variable from earning category (variable 26), one 

variable from liquidity category (variable 35) and one variable from macroeconomic 

indicator category (variable 39).  
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RESULT AND DISCUSSION  

EXAMPLE OF PROPOSED METHOD’S OUTPUT 

After applying the proposed algorithm on the dataset, a set of results were obtained and 

demonstrated below.  

Bin Average_x Minimum_x Maximum_x Cnt_Observation Cnt_Bad Cnt_Good Bad% WOE_Coarse WOE_LOESS 

0 1346.4 725.7 . 204 169 35 82.84% 6.445 6.401 

1 653.5 607.5 725.7 106 56 50 52.83% 4.984 5.139 

2 569.0 529.3 607.5 126 57 69 45.24% 4.680 5.058 

3 503.9 481.6 529.3 97 56 41 57.73% 5.183 4.980 

4 458.6 440.4 481.6 104 56 48 53.85% 5.025 4.928 

5 425.8 412.0 440.4 101 57 44 56.44% 5.130 4.902 

6 398.9 389.4 412.0 102 56 46 54.90% 5.068 4.875 

        …………           

40 52.6 49.2 56.5 4829 57 4772 1.18% 0.443 0.039 

41 46.1 43.3 49.2 5653 56 5597 0.99% 0.266 -0.228 

42 38.8 35.0 43.3 11442 56 11386 0.49% -0.444 -0.528 

43 31.5 28.5 43.3 14336 57 14279 0.40% -0.653 -0.834 

44 24.6 21.3 28.5 24853 56 24797 0.23% -1.222 -1.127 

45 18.5 16.0 21.3 29492 57 29435 0.19% -1.376 -1.386 

46 11.5 7.9 16.0 79596 56 79540 0.07% -2.388 -1.684 

47 3.0 . 7.9 179105 56 179049 0.03% -3.199 -2.055 

Table 1. Example of final output table on a single variable of proposed WOE 

smoothing algorithm 

Table 1 shows the final output of the WOE smoothing algorithm on one single variable 

(Texas ratio in this example). In the table, typical results that other WOE binning algorithms 

reported were provided. Those results include bin number, minimum, maximum and 

average value of independent variable x in each bin, count of total observation, Y=1 

observation and Y=0 observation in each bin, bad ratio and raw WOE. Additionally, the 

smoothed WOE value of each bin is also reported in this table.  

The algorithm will automatically analyze all the independent variables in the dataset. For 

each analyzed variable, the results in Table 1 and Table 2 will be reported. In addition, 

accuracy ratio (AR) will be reported for both coarse and smoothed transformation of the 

variable. IV and LOESS modified IV will also be provided for coarse and smoothed WOE 

transformed variable. This will help the users to determine whether the smoothing 

procedure cause information loss. In addition, whether the transformed variable is 

monotonic is also reported in the output. 
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Figure 2. (a). Smoothed WOE vs. coarse WOE. (b). Final smoothed WOE example 

Figure 2 shows the variable transformation output graph. Figure 2(a) shows the comparison 

between smoothed WOE and coarse WOE. Figure 2(b) shows the final transformation result. 

These graphs can help the user to determine whether the smoothed WOE has significant 

deviation from coarse WOE. It can also help the users to determine whether the 

transformation has business soundness.  

From the results, for all 46 variables, it is observed that after applying the algorithm, more 

than 90% of the transformed variables have already met its desired monotonicity/non-

monotonicity properties. And the rest of the variables only require minimal manual 

adjustment on the bins, typically combining 1-2 bins.  

 

Figure 3. (a) (b). Example of non-linear relationship between independent variable 

and WOE generated by proposed WOE smoothing algorithm 

The algorithm is also capable of handling the variables that has non-monotonic WOE 

relationships. As can be seen from Figure 3(a) (b), the non-linear relationship on the WOE is 

correctly captured. Such relationship could make business sense. For example, Leading-

Economic-Index quarter over quarter (LEI_QoQ) could have non-linear WOE relationship 

because when the economy shrinks or expands too fast, the default risk may increase.  

Table 2 shows the summary of the analysis result of all variables on the training dataset. AR 

and IV of coarse and smoothed WOE were reported. It can be seen that most variables have 

comparable AR or IV between coarse and smoothed WOE, indicating no significant 

information loss on the smoothing step. 
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Var  Name Category AR AR_LOESS IV IV_LOESS 

1 Variable 1 Asset Quality 90.77% 90.76% 5.19 4.41 

2 Variable 2 Asset Quality 87.69% 87.67% 4.27 3.82 

3 Variable 3 Asset Quality 86.15% 86.11% 3.94 3.57 

4 Variable 4 Asset Quality 86.65% 86.63% 4.05 3.73 

5 Variable 5 Asset Quality 85.97% 85.81% 3.98 3.69 

6 Variable 6 Asset Quality 72.17% 72.10% 2.31 1.92 

7 Variable 7 Asset Quality 75.95% 75.90% 2.49 2.40 

8 Variable 8 Asset Quality 70.08% 69.66% 2.08 2.00 

9 Variable 9 Asset Quality 66.35% 66.08% 1.84 1.79 

10 Variable 10 Asset Quality 62.56% 62.36% 1.55 1.52 

11 Variable 11 Asset Quality 21.14% 12.50% 0.21 0.22 

12 Variable 12 Asset Quality 67.06% 65.35% 2.02 1.86 

13 Variable 13 Asset Quality 65.71% 62.42% 1.89 1.59 

14 Variable 14 Asset Quality 52.75% 51.34% 0.99 0.91 

15 Variable 15 Capital 89.31% 89.29% 5.22 5.37 

16 Variable 16 Capital 71.27% 71.16% 2.73 2.74 

17 Variable 17 Capital 83.38% 83.36% 4.14 4.27 

18 Variable 18 Capital 83.23% 83.22% 4.30 4.36 

19 Variable 19 Capital 83.26% 83.23% 4.12 4.23 

20 Variable 20 Capital 82.63% 82.59% 4.06 4.14 

21 Variable 21 Capital 85.23% 85.20% 4.61 4.73 

22 Variable 22 Capital 83.58% 83.57% 4.32 4.43 

23 Variable 23 Capital 82.84% 82.78% 4.23 4.31 

24 Variable 24 Earnings 31.58% 30.00% 0.37 0.34 

25 Variable 25 Earnings 87.48% 87.19% 4.33 3.89 

26 Variable 26 Earnings 87.42% 87.24% 4.36 4.03 

27 Variable 27 Earnings 86.81% 86.53% 4.23 3.96 

28 Variable 28 Earnings 76.32% 72.22% 2.77 2.34 

29 Variable 29 Earnings 38.45% 37.58% 0.80 0.73 

30 Variable 30 Earnings 49.31% 48.74% 0.99 0.93 

31 Variable 31 Earnings 62.02% 61.71% 1.62 1.57 

32 Variable 32 Earnings 15.60% 13.80% 0.08 0.06 

33 Variable 33 Liquidity 18.80% 14.72% 0.12 0.06 

34 Variable 34 Liquidity 46.04% 44.82% 0.86 0.85 

35 Variable 35 Liquidity 36.98% 35.49% 0.62 0.61 

36 Variable 36 Liquidity 32.71% 30.05% 0.47 0.45 

37 Variable 37 Size 18.93% 16.05% 0.11 0.08 

38 Variable 38 Size 18.93% 16.28% 0.11 0.09 

39 Variable 39 Macroeconomic Indicator 61.39% 60.00% 1.62 1.47 

40 Variable 40 Macroeconomic Indicator 47.71% 36.52% 0.80 0.40 

41 Variable 41 Macroeconomic Indicator 54.17% 43.40% 1.13 0.90 

42 Variable 42 Macroeconomic Indicator 57.79% 54.71% 1.43 1.10 

43 Variable 43 Macroeconomic Indicator 48.89% 41.06% 0.89 0.69 

44 Variable 44 Macroeconomic Indicator 42.48% 24.42% 0.61 0.23 

45 Variable 45 Macroeconomic Indicator 55.65% 49.54% 1.16 0.98 

46 Variable 46 Macroeconomic Indicator 36.88% 32.62% 0.49 0.36 

Table 2. AR and IV of coarse and smoothed WOE on training dataset 
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Figure 4. Relationship between IV and AR under univariate condition 

It is known that both AR and IV can be used to measure prediction accuracy and 

information loss of the variables. However, IV is derived under univariate environment and 

AR can be used in both univariate and multivariate environment. In order to compare the 

performance of these two metrics, the relationship between IV and AR of variables was 

plotted as shown in Figure 4. From the result, it can be seen that there is an approximately 

non-linear monotonic relationship between IV and AR. This is also confirmed by calculating 

the Spearman correlation coefficient to be 0.975, which shows strong relationship between 

these two metrics. This indicates that in most cases when IV is high, AR will be high too. For 

convenience purpose, AR will be used as the metric for prediction accuracy in the following 

discussion. 

DEFAULT EVENTS IN EACH BIN 

For estimating WOE precisely, minimal of 5 default events in each bin is commonly required 

for each bin. Too few default events in each bin will cause the estimation of WOE to be too 

coarse, resulting in difficulties in smoothing the WOE later. Too many default events in each 

bin will decrease the number of bins that are used in the variable transformation process. 

Thus, the WOE difference between different bins will be relatively large. In the model 

implementation stage, it will cause the probability of default (PD) to jump too dramatically 

when a variable’s value change from one bin to the adjacent bin, which means a small 

change in variable value could possibly cause relatively large PD change.  

In this model development, since a single default event will result in a maximum number of 

6 default observations, 30 default and non-default observations were set as minimum 

requirement for each bin. Similar value on this criteria can also been seen on different fields 

in literatures (Boston University School of Public Health, 2016). And considering that 

particularly for the training dataset used in this paper, which has 2,820 default 

observations, this is a sufficient small number to start with. This will result in approximately 

100 bins to be the maximum bins allowed for each variable, which is a sufficient large bin 

number.  

INITIAL NUMBER OF BINS  

Figure 5(a) shows the AR of the benchmark model with different initial number of bins from 

2-100. Since the dataset is imbalanced, additional metric is provided to measure the 

prediction accuracy of the benchmark model. False positive rate and false negative rate 
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(FPR and FNR, or Type I and Type II error rate) can be used in this environment. Figure 

1(b) shows the total error rate (FPR+FNR) when varying the initial bin number. It is 

observed that, when the number of bins is less than 6, the information started to lose 

significantly. Thus, to avoid losing information, it is considered the number of bins should be 

larger than 10-20. However, it is also considered that the number of bins shouldn’t be 

excessively large, because when too many bins were assigned, some bins won’t have 

default (Y=1) observations. This will create missing value in certain bins. Consecutive 

missing value in bins will bring problems to the implementation of the WOE smoothing 

algorithms. It also should be noticed that when the number of bins was set to a proper 

value (20-50 for example), the training or testing AR is slightly higher than the original 

model without transformation and smoothing. One possible explanation is that the noise in 

the dataset is smoothed during the WOE transformation, creating a better and clear 

illustration on the relationship between variable and response. In this paper, a number of 50 

bins is considered appropriate to ensure minimal information loss and thus is used in the 

following analysis. 

 

Figure 5. AR and total error rate (false positive rate + false negative rate) of 

model based on different starting number of bins 

SMOOTH FACTOR  

Smooth factor between 0.1-0.9 were applied to obtain the results. Figure 6 shows the 

coarse WOE versus smoothed WOE with respect to different smoothing factor. In the figure, 

the red line shows the coarse WOE and the blue line shows the smoothed WOE. As can be 

seen in Figure 6(b)-(d), when applying the smooth factor between 0.3-0.7, the noise within 

the coarse WOE is effectively smoothed and the smoothed WOE can effectively reflect the 

true value of the coarse WOE, showing no significant deviance from the true WOE value.  

Applying a high value of smooth factor will cause the variable’s WOE being smoothed too 

much and potentially lose significant relationship characteristics to the coarse ones in the 

variable. For example, when applying factor value of 0.9 or even larger to the WOE of 

independent variable x, the relationship between x and its WOE will be close to a straight 

line. On the other hand, applying a small factor will not smooth the coarse WOE enough. 

The smoothed WOE will still have too much noise and will not be monotonic or have 

business soundness. It will also possibly cause the overfitting problem because the WOE are 

trying to fit the detailed features of the training data, instead of capturing a general default 

trend. This will also bring difficulties to the model implementation process since the 

probability of default change doesn’t make business sense when the independent variable 

value changes. In this work, a smooth factor of 0.6 is deemed to be able to obtain a 

desirable result.  
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Figure 6. (a)-(e). WOE smoothing result with smooth factor of 0.1, 0.3, 0.5, 0.7, 

0.9, respectively (using Texas ratio as example). 

In addition, the effect of applying smoothing LOESS regression on model prediction 

accuracy is also discussed. Figure 7(a) shows the AR of the benchmark model before and 

after smoothing on training dataset. No significant AR drop was observed from the result. 

Figure 7 shows the total error rate, which is false positive rate + false negative rate 

(FPR+FNR) before and after applying the LOESS regression. No significant increase of total 

error rate was observed. The same analysis was also performed on the testing data. Similar 

result was obtained for the testing dataset, suggesting no significant overfitting problem 

after smoothing. It indicates that the algorithm is successful and the loss of information is 

minimal. 
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Figure 7. AR and total error rate (false positive rate + false negative rate) of 

model based on different smooth factor 

EXAMINE OF THE TRANSFORMATION NECESSARY MONOTONIC 

RELATIONSHIP AND BUSINESS SOUNDNESS  

After transformation, the WOE of variables are examined graphically to check its business 

soundness. For example, from business perspective, the probability of default should 

increase as Texas ratio (used in Figure 2 and Figure 6) increase because the higher the 

Texas ratio is the worse the asset quality will be. In addition, the marginal effect of Texas 

ratio on increasing the probability of default decreases when Texas ratio is large enough. 

This is also consistent with the business judgement. Figure 2(b) shows an example for the 

transformed variables. The relationship between original variable and transformed variables 

(WOE) is clearly illustrated.  

CONCLUSION  

This work provides a two-staged, local regression based binning method to estimate WOE. A 

banking industry dataset was used as an example to show that when initial number of bins 

were selected to be appropriately large (>20) and appropriate smooth factor was chosen 

(0.3-0.7), the loss of information and prediction accuracy could be minimal. The LOESS 

smooth WOE method can also handle both monotonic and U-shaped relationship between 

the WOE and variable by delivering result that have business soundness. The proposed 

approach can serve as a variable transformation method in credit risk modeling analysis for 

both variable screening and actual production model variable transformation purpose. 

From the discussion above, it is known that the binning approach actually used a step 

function to estimate WOE. In the future, the continuous functions can also be applied to 

estimate WOE. This will fully eliminate the credit score jumping problem at bin boundary 

caused by the binning method. One idea could be using a piecewise linear function to 

“connect each bin’s WOE” after the applying the current method. Another idea could be 

directly using a continuous function to estimate WOE. However, the choosing of function 

family and the necessary steps to make the transformation having business sense remains 

as a problem that needs further study. 
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Before running the following program, please save the two SAS code into directory first. 

Appendix 2 contains the macros that combine bins according to parameter setting and the 
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macro that check the monotonicity of WOE. Please load Appendix 2 code first before running 

the main code in Appendix 1. 

 

 

APPENDIX 1 

Code in Appendix 1 © 2022 Federal Home Loan Bank of Atlanta, All Rights Reserved 

 

exclude none; 

 

%let nvar=%sysfunc(countw(&var_list)); 

 

proc sql noprint; 

select TableVar 

into :var_1-:var_&nvar 

from checkfreq; quit; 

 

%macro Gen_Group;  

%do i = 1 %to &nvar;  

%Global group_&i.; 

%let group_&i.=%qscan(%bquote(&group_list),&i); 

%end; 

%mend Gen_Group; 

%Gen_Group; 

 

/*****Calculation of WOE*****/ 

%Macro DOLoop; 

%DO i=1 %to &nvar; 

 

%let var_x=&&var_&i.; 

%let j=%eval(&i.+1); 

 

/*Output default training dataset*/ 

data newtrain_def_&i.; 

set newtrain_&i.; 

if &Dep_Var=1 then output; 

run; 

 

/*Sort and group observation by varible x_i*/ 

PROC RANK DATA=newtrain_def_&i. groups=&&group_&i. out = newtrain_def_&j. 

Ties = low descending; 

var &var_x.; 

ranks Rnk_&var_x.; 

run; 

 

PROC MEANS data=newtrain_def_&j. noprint nway; 

Class Rnk_&var_x.; 

output out=range min(&var_x.)=min_&var_x. max(&var_x.)=max_&var_x.; 

run; 

 

/*Making the upper bound of each bin connected to each other*/ 

data range; 

set range; 

max2_&var_x.=lag(min_&var_x.); 

run; 
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/*If the bin is the last (max) bin then upper bound changed to 

99999999999999*/ 

data range; 

set range; 

if max2_&var_x.=. then max2_&var_x.=99999999999999; 

run; 

 

/*Update first bin minimum value (Y=1's lower limit not necessary to be 

dataset lower limit)*/ 

proc means data=work.range noprint min; 

var min_&var_x.; 

output out=minrange min=minvar; 

run; 

 

data _Null_; 

set minrange; 

call symput('minvar',minvar); 

run; 

 

data range; 

set range; 

if min_&var_x. EQ &minvar then min_&var_x.=-99999999999999; 

run; 

 

data range; 

set range; 

Rnk_2_&var_x.=_N_-1; 

run; 

 

/*Output for bin range before bin combination*/ 

proc sql; 

create table newtrain_&j. as select newtrain_&i..*,range.Rnk_2_&var_x. from 

newtrain_&i. 

join range 

on newtrain_&i..&var_x. >= range.min_&var_x. and newtrain_&i..&var_x. < 

range.max2_&var_x.; 

quit; 

 

proc sql; 

create table newtest_&j. as select newtest_&i..*,range.Rnk_2_&var_x. from 

newtest_&i. 

join range 

on newtest_&i..&var_x. >= range.min_&var_x. and newtest_&i..&var_x. < 

range.max2_&var_x.; 

quit; 

 

/*obtain average x, average y (&Dep_Var), average PD for each group*/ 

PROC MEANS data=newtrain_&j. noprint nway; 

Class Rnk_2_&var_x.; 

var &Dep_Var; 

output out=Result_Table mean(&var_x.)=avg_&var_x. sum(&Dep_Var)=num_def  

N=num_obs; 

run; 

 

/*Displaying the raw result*/ 

data Result_Table_display; 

retain Rnk_2_&var_x. avg_&var_x. num_obs num_def; 
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set Result_Table; 

rename Rnk_2_&var_x.=Raw_Bin_Rank_&var_x. avg_&var_x.=Average_&var_x. 

num_obs=Num_Observation num_def=Num_Bad; 

drop _FREQ_ _type_; 

run; 

 

title "Original Bin before Combine: &var_x."; 

proc print data=Result_Table_display; 

run; 

title; 

 

/*----------Call Combine Bin Macro------------------*/ 

%Combinebin(input_data=range,var_x=&var_x ,Min_Bin_Obs=&Min_Bin_Num_Obs); 

 

/*----------Regenerate Result_Table-----------------*/ 

/*reinitiate variable*/ 

data range; 

set range_out; 

run; 

 

proc sql; 

create table newtrain_&j. as select newtrain_&i..*,range.Rnk_2_&var_x. from 

newtrain_&i. 

join range 

on newtrain_&i..&var_x. >= range.min_&var_x. and newtrain_&i..&var_x. < 

range.max2_&var_x.; 

quit; 

 

proc sql; 

create table newtest_&j. as select newtest_&i..*,range.Rnk_2_&var_x. from 

newtest_&i. 

join range 

on newtest_&i..&var_x. >= range.min_&var_x. and newtest_&i..&var_x. < 

range.max2_&var_x.; 

quit; 

 

/*obtain average x, average y (&Dep_Var), average PD for each group*/ 

PROC MEANS data=newtrain_&j. noprint nway; 

Class Rnk_2_&var_x.; 

var &Dep_Var; 

output out=Result_Table mean(&var_x.)=avg_&var_x. sum(&Dep_Var)=num_def  

N=num_obs; 

run; 

 

/*----------End of Regenerate Result_Table--------------*/ 

/*Calculate WOE*/ 

data Result_Table_out; 

set Result_Table; 

/*treat computation problem, if phat=0 then WOE will be nonmeaningful, thus 

replace 0 with a small number, 0.0001 (0.01% PD) */ 

if num_def=0 then WOE_&var_x.=.; 

else WOE_&var_x.=-1*log(((num_obs-

num_def)/&num_tot_nondef)/(num_def/&num_tot_def)); 

run; 

 

/*Output 1, join table 2&3*/ 

proc sql; 

create table Output_1 as select * from Result_Table_out 
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left join (select badrate, min_&var_x., max2_&var_x., goods from range_out) 

on Result_Table_out.Rnk_2_&var_x.=range_out.Rnk_2_&var_x. order by 

Rnk_2_&var_x.; 

quit; 

 

/*Obtain loess smoothed WOE*/ 

ods exclude all; 

proc loess data=Result_Table_out; 

model WOE_&var_x. = avg_&var_x. / degree=1 smooth = &Smooth_F 

direct alpha=.05 all details;/*95% CI*/ 

ods output OutputStatistics = LOESSResult; 

run; 

/*select=AICC(steps); (Used for determining smooth parameter of 0.6)*/ 

ods exclude none; 

 

data LOESSResult; 

set LOESSResult; 

WOE_LOESS_&var_x.=Pred; 

drop Pred; 

run; 

 

/*Merge dataset and smoothed WOE*/ 

proc sql; 

create table variableplot as select * from LOESSResult 

left join (select WOE_&var_x. from Result_Table_out) on 

Result_Table_out.avg_&var_x.=LOESSResult.avg_&var_x. order by obs; 

quit; 

 

/*Output 2*/ 

proc sql; 

create table Output_&var_x. as select * from Output_1 

left join (select obs, LowerCL, UpperCL, WOE_LOESS_&var_x. from variableplot) 

on Output_1.avg_&var_x.=variableplot.avg_&var_x. order by Rnk_2_&var_x.; 

quit; 

 

/*Display the final result*/ 

data data.Output_&var_x._display; 

retain Rnk_2_&var_x. avg_&var_x. min_&var_x. max2_&var_x. num_obs num_def 

goods badrate WOE_&var_x. WOE_LOESS_&var_x. LowerCL UpperCL; 

set Output_&var_x.; 

drop _FREQ_ _TYPE_ LowerCL UpperCL; 

rename Rnk_2_&var_x.=Combined_Bin_Rank_&var_x. avg_&var_x.=Average_&var_x. 

min_&var_x.=Minimum_&var_x. max2_&var_x.=Maximum_&var_x. 

num_obs=Num_Observation num_def=Num_Bad goods=Num_Good badrate=Bad_Rate 

WOE_&var_x.=WOE_Raw_&var_x.; 

run; 

 

title "LOESS Smoothed WOE Result Summary: &var_x."; 

proc print data=data.Output_&var_x._display; 

run; 

title; 

 

/*Obtain IV and loess IV*/ 

data Output_&var_x._display_2; 

set data.Output_&var_x._display; 

Pre_IV_&var_x.= -1*((Num_Good/&num_tot_nondef)-(Num_Bad/&num_tot_def)) 

*WOE_Raw_&var_x.; 

Pre_IV_LOESS_&var_x.= -1*((Num_Good/&num_tot_nondef)-(Num_Bad/&num_tot_def)) 
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*WOE_LOESS_&var_x.; 

run; 

 

proc sql; 

create table iv_&var_x. as select sum(Pre_IV_&var_x.) as iv, 

sum(Pre_IV_LOESS_&var_x.) as iv_LOESS from Output_&var_x._display_2; quit; 

 

data _null_; 

set iv_&var_x.; 

call symputx('IV_raw', iv);  

call symputx('IV_LOESS', iv_LOESS);  

run; 

 

data Output_&var_x._graph; 

set Output_&var_x.; 

if min_&var_x.=-99999999999999 then min_&var_x.=.; 

if max2_&var_x.=99999999999999 then max2_&var_x.=.; 

run; 

 

/*Plot Coarse and LOESS Smoothed WOE*/ 

title "Coarse vs LOESS Smoothed WOE for &var_x."; 

proc sgplot data=Output_&var_x._graph; 

band x=avg_&var_x. lower=LowerCL upper=UpperCL /legendlabel="95% 

CI";/*Confidence band*/ 

scatter x=avg_&var_x. y=WOE_LOESS_&var_x./ markerattrs=(size=5px 

);/*Scatterplot*/ 

series x=avg_&var_x. y=WOE_LOESS_&var_x./ legendlabel="LOESS Smooth 

WOE";/*Smoothed scatterplot*/ 

series x=avg_&var_x. y=WOE_&var_x./ legendlabel="WOE" lineattrs=(Color=Red); 

run; 

title; 

 

/*LOESS Smoothed WOE*/ 

title "LOESS Smoothed WOE for &var_x."; 

proc sgplot data=Output_&var_x._graph noautolegend; 

   vector x=max2_&var_x. y=WOE_LOESS_&var_x. / xorigin=min_&var_x. 

yorigin=WOE_LOESS_&var_x. noarrowheads; 

   scatter x=min_&var_x. y=WOE_LOESS_&var_x. / 

markerattrs=(symbol=CircleFilled color=blue size=5px);      /* closed */ 

   scatter x=max2_&var_x. y=WOE_LOESS_&var_x. / filledoutlinedmarkers 

markerfillattrs=(color=white) /* open */ 

    markerattrs=(symbol=CircleFilled color=blue size=5px); 

   xaxis grid label="&var_x."; 

   yaxis grid label="LOESS WOE"; 

run; 

title; 

 

%Check_Monotonic(input_data=data.Output_&var_x._display,var_x=&var_x.); 

 

data var_merge; 

set Output_&var_x.; 

rnk=Obs-1; 

run; 

 

proc sql; 

create table newtrain_&j. as select * from newtrain_&j 

left join (select WOE_&var_x. , WOE_LOESS_&var_x. from var_merge) on 

newtrain_&j..Rnk_2_&var_x.=var_merge.rnk /*order by obs*/; 
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quit; 

 

proc sql; 

create table newtest_&j. as select * from newtest_&j 

left join (select WOE_&var_x. , WOE_LOESS_&var_x. from var_merge) on 

newtest_&j..Rnk_2_&var_x.=var_merge.rnk /*order by obs*/; 

quit; 

 

/*Accuracy Ratio*/ 

ods exclude all; 

proc logistic data=newtrain_&j.; 

Model &Dep_Var(event='1')=WOE_LOESS_&var_x./firth clparm=wald clodds=pl; 

Roc; 

ODS output ROCAssociation=AR_&var_x.; 

run; 

ods exclude none; 

 

data AR_&var_x.; 

set AR_&var_x.; 

if ROCModel='ROC1' then delete; 

run; 

 

proc sql noprint; 

select Area, SomersD 

 into :AUC_out separated by ',', 

 :AR_out separated by ',' 

 from AR_&var_x.; 

quit; 

 

title "Summary for Analyis of Variable: &var_x."; 

proc odstext; 

p "&var_x. is: &Mono_or_not"; 

p "Area Under Curve of &var_x.: &AUC_out"; 

p "Accuracy Ratio of &var_x.: &AR_out"; 

p "IV of &var_x. is: &IV_raw"; 

p "LOESS IV of &var_x. is: &IV_LOESS"; 

run; 

title; 

 

/*Output final dataset*/ 

%if &i=&nvar %then %do; 

data data.new_training_final; 

set newtrain_&j.; 

run; 

 

data data.new_testing_final; 

set newtest_&j.; 

run; 

%end; 

 

%end; 

%mend DOLoop; 

%DOLoop; 

APPENDIX 2 

Code in Appendix 2, © 2022 Federal Home Loan Bank of Atlanta, All Rights Reserved 

%Macro Check_Monotonic(input_data=,var_x=); 
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proc sort data=&input_data out=try; 

by WOE_LOESS_&var_x.; 

run; 

 

data try2; 

set try; 

diff=dif(Combined_Bin_Rank_&var_x.); 

If diff = . then delete; 

run; 

 

proc sql noprint; 

   create table try3 as 

   select distinct diff    

   from try2; 

quit; 

 

proc sql noprint; 

create table try4 as 

 select count(*) as nrow from try3; 

quit; 

 

data try5; 

set try4; 

if nrow eq 1 then WOE_LOESS_&var_x.='Monotonic'; 

else WOE_LOESS_&var_x.='Non-Monotonic'; 

drop nrow; 

run; 

 

%Global Mono_or_not; 

 

data _null_; 

set try5; 

call symputx('Mono_or_not', WOE_LOESS_&var_x.);  

run; 

 

%mend Check_Monotonic(input_data=,var_x=); 

 

%Macro CombineBin(input_data=,var_x=,Min_Bin_Obs=); 

 

%let BinNumLim=&Min_Bin_Obs; 

%let varx=&var_x; 

 

proc sql; 

create table table as select * from &input_data 

left join (select num_obs from Result_Table) on 

&input_data..Rnk_2_&varx.=Result_Table.Rnk_2_&varx. /*order by obs*/; 

quit; 

 

data table; 

set table; 

keep min_&varx max2_&varx _freq_ num_obs; 

run; 

 

data table; 

set table; 

Badrate=9999; 

WoE=9999; 

run; 
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data table; 

set table; 

rename min_&varx=Lower; 

rename max2_&varx=Upper; 

rename _freq_=Bads; 

rename num_obs=Freq; 

run; 

 

proc sort data = table; 

by Lower; 

run; 

 

/*********************************************/ 

/*   y=1 (default, combine bin < &BinNumLim) */ 

/*********************************************/ 

 

Data table1; 

set table; 

If bads<&BinNumLim then lt30=1; 

else lt30=0; 

retain sum_lt30; 

sum_lt30+lt30; 

lower=lag(upper); 

run; 

 

data _Null_; 

Set table1; 

call symputx('m',sum_lt30); 

run; 

 

%put &=m; 

 

data table; 

set table1; 

drop lt30 

sum_lt30; 

run; 

 

%do %while(&m NE 0); 

 

Data table1; 

set table; 

If bads<&BinNumLim then lt30=1; 

else lt30=0; 

retain sum_lt30; 

sum_lt30+lt30; 

lower=lag(upper); 

run; 

 

proc sql; 

create table sum as select max(sum_lt30) as sum_lt30 from table1; 

quit; 

 

data _Null_; 

Set sum; 

call symputx('m',sum_lt30); 

run; 
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data table2; 

set table1; 

x + 1; 

run; 

 

proc sort data = table2; 

by descending x; 

run; 

 

data table3; 

set table2; 

lead_bads = lag(bads); 

lead_freq = lag(freq); 

lead_upper = lag(upper); 

lead_lt30 = lag(lt30); 

run; 

 

proc sort data = table3; 

by x; 

run; 

 

data table4; 

set table3; 

lag_x=lag(x); 

lag_lower = lag(lower); 

lag_bads = lag(bads); 

lag_freq = lag(freq); 

run; 

 

/*Generate number of rows variable*/ 

data _null_; 

if 0 then set table4 nobs=n; 

call symputx('nrows',n); 

stop; 

run; 

 

%put nobs=&nrows; 

/*-End-*/ 

 

proc sql; 

create table row as select * from table4 where sum_lt30=1; 

quit; 

 

proc sql; 

create table minrow as select * from row where x=(select min(x) from row); 

quit; 

 

Data minrow1; 

set minrow; 

if x ne &nrows then bads=bads+lead_bads; 

else  bads=bads+lag_bads; 

if x ne &nrows then freq=freq+lead_freq; 

else  freq=freq+lag_freq; 

if x ne &nrows then upper=lead_upper; 

else  upper = upper; 

if x ne &nrows then lower=lower; 

else  lower = lag_lower; 
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Run; 

 

proc sql; 

update table4 

set bads=(select bads from minrow1 where x=table4.x), 

freq=(select freq from minrow1 where x=table4.x), 

upper=(select upper from minrow1 where x=table4.x), 

lower=(select lower from minrow1 where x=table4.x) 

where exists (select * from minrow1 where x=table4.x); 

quit; 

 

proc sql; 

create table table5 as select * from table4 left join (select x as delete 

from minrow1) 

on minrow1.x = table4.lag_x; 

quit; 

 

data _Null_; 

Set minrow1; 

call symputx('current_row',x); 

run; 

 

data table6; 

set table5; 

if delete NE . then delete; 

/*Delete last row if last row criteria less than min_obs*/ 

if x=&nrows-1 and lead_lt30=1 and &current_row = &nrows then delete; 

drop lt30 

sum_lt30 

lag_bads 

x 

lead_bads 

lead_freq 

lead_upper 

lag_x 

lag_bads 

lag_freq 

lag_lower 

woe 

delete 

lead_lt30; 

run; 

 

data table; 

set table6; 

run; 

 

%end; 

 

data table; 

set table; 

badrate=bads/freq; 

run; 

 

/*********************************************/ 

/* Y=0 (non-default combine bin < &BinNumLim)*/ 

/*********************************************/ 

proc sort data=table out=table ; 
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  by descending upper ; 

run ; 

 

Data table1; 

set table; 

goods = freq - bads; 

If goods<&BinNumLim then lt30=1; 

else lt30=0; 

retain sum_lt30; 

sum_lt30+lt30; 

run; 

 

data _Null_; 

Set table1; 

call symputx('m',sum_lt30); 

run; 

 

%put &=m; 

 

data table; 

set table1; 

drop lt30 

sum_lt30; 

run; 

 

%do %while(&m NE 0); 

 

proc sort data=table out=table1 ; 

  by descending upper ; 

run; 

 

Data table2; 

set table1; 

goods = freq - bads; 

If goods <&BinNumLim then lt30=1; 

else lt30=0; 

retain sum_lt30; 

sum_lt30+lt30; 

run; 

 

proc sql; 

create table sum as select max(sum_lt30) as sum_lt30 from table2; 

quit; 

 

data _Null_; 

Set sum; 

call symputx('m',sum_lt30); 

run; 

 

 

data table3; 

set table2; 

x + 1; 

run; 

 

proc sort data = table3; 

by descending x; 

run; 



28 

 

data table4; 

set table3; 

lead_goods = lag(goods); 

lead_bads = lag(bads); 

lead_freq = lag(freq); 

lead_lower = lag(lower); 

lead_lt30 = lag(lt30); 

run; 

 

proc sort data = table4; 

by x; 

run; 

 

data table5; 

set table4; 

lag_x = lag(x); 

lag_lower = lag(lower); 

lag_bads = lag(bads); 

lag_freq = lag(freq); 

lag_upper = lag(upper); 

run; 

 

/*---generate number of rows variable---*/ 

data _null_; 

if 0 then set table5 nobs=n; 

call symputx('nrows',n); 

stop; 

run; 

 

%put nobs=&nrows; 

 

proc sql; 

create table row as select * from table5 where sum_lt30=1; 

quit; 

 

proc sql; 

create table minrow as select * from row where x=(select min(x) from row); 

quit; 

 

data minrow1; 

set minrow; 

if x ne &nrows then bads=bads+lead_bads; 

else  bads=bads+lag_bads; 

if x ne &nrows then goodss=goods+lead_goods; 

else  goods=goods+lag_goods; 

if x ne &nrows then freq=freq+lead_freq; 

else  freq=freq+lag_freq; 

if x ne &nrows then lower=lead_lower; 

else  lower = lower; 

if x ne &nrows then upper=upper; 

else  upper = lag_upper; 

Run; 

 

proc sql; 

update table5 

set bads=(select bads from minrow1 where x=table5.x), 

goods=(select goods from minrow1 where x=table5.x), 
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freq=(select freq from minrow1 where x=table5.x), 

upper=(select upper from minrow1 where x=table5.x), 

lower=(select lower from minrow1 where x=table5.x) 

where exists (select * from minrow1 where x=table5.x); 

quit; 

 

proc sql; 

create table table6 as select * from table5 left join (select x as delete 

from minrow1) 

on minrow1.x = table5.lag_x; 

quit; 

 

data _Null_; 

Set minrow1; 

call symputx('current_row',x); 

run; 

 

data table7; 

set table6; 

if delete NE . then delete; 

if x=&nrows-1 and lead_lt30=1 and &current_row = &nrows then delete; 

drop  

lt30 

sum_lt30 

lag_bads 

lag_goods 

lag_woe 

lag_lower 

lag_upper 

woe 

lag_freq 

goods 

x 

lead_bads 

lead_goods 

lead_freq 

lead_lower 

lag_x 

delete 

badrate 

lead_lt30; 

run; 

 

data table; 

set table7; 

run; 

 

%end; 

 

data table; 

set table; 

badrate=bads/freq; 

run; 

 

proc sort data=table out=table ; 

  by descending upper; 

run ; 
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data table; 

set table; 

goods=freq-bads; 

run; 

 

data range_out; 

set table; 

rename Lower=min_&varx; 

rename Upper=max2_&varx; 

rename Bads=_freq_; 

rename Freq=num_obs; 

run; 

 

data range_out; 

set range_out; 

if min_&varx. EQ . then min_&varx.=-99999999999999; 

run; 

 

data range_out; 

set range_out; 

Rnk_2_&varx.=_N_-1; 

run; 

 

%mend CombineBin(input_data=,var_x=,Min_Bin_Obs=); 


