
1 

Paper 102-2022 

Simplified Linux SAS ® Log Comparison: Filtering Differences Into "Useful" 
and "Useless" Files 

Bruce Gilsen, Federal Reserve Board, Washington, DC 
 

ABSTRACT  
SAS ® log files from two executions of the same program are frequently compared.  For example, we 
might compare today's results to a baseline run we know is correct to test if a change to the SAS release, 
operating system, external data, our code, or anything else has altered the results. 

Log file comparisons are often done programmatically, but it's also common to generate a line-by-line 
comparison with the Linux diff command and eyeball the results.  This "eyeball analysis" can be difficult 
when programs have many steps because the diff output is often cluttered with many records that are 
useless to most people such as step summaries with real and/or CPU time differences and page 
headings with date/time differences. 

The DIFFSPLIT macro runs diff for two SAS log files, parses the output with Perl Regular Expressions in 
a DATA step, and splits the diff output into two files: one with useful file differences, and the other with 
useless differences, allowing us to focus on just the differences of interest. 

The macro in this paper compares files in Linux and treats step summaries with real and/or CPU time 
differences and page headings with date/time differences as useless.  As shown in the paper, it can 
easily be extended to run on other platforms such as Windows or split the text using different criteria. 

 

INTRODUCTION 
SAS log files from two executions of the same program are frequently compared.  For example, we might 
compare today's results to a baseline run we know is correct to test if a change to the SAS release, 
operating system, external data, our code, or anything else has altered the results. 

Log file comparisons are often done programmatically, but it's also common to generate a line-by-line 
comparison with the Linux diff command and eyeball the results.  This "eyeball analysis" can be difficult 
when programs have many steps because the diff output is often cluttered with many records that are 
useless to most people such as step summaries with real and/or CPU time differences and page 
headings with date/time differences. 

In my case, I run a SAS test job with over 100 steps to test operating system or SAS software upgrades.  
When I compare SAS logs from the production and test environments, the diff command generates 
hundreds of records, most of which are blocks of records like the following that aren't useful to me. 

 

Step summaries with real and/or CPU time differences. 
   394c394 
   <       real time           0.01 seconds 
   --- 
   >       real time           0.06 seconds 
 
   414,415c414,415 
   <       real time           0.02 seconds 
   <       cpu time            0.01 seconds 
   --- 
   >       real time           0.14 seconds 
   >       cpu time            0.02 seconds 



2 

 
   456c456 
   <       cpu time            0.01 seconds 
   --- 
   >       cpu time            0.00 seconds 
 

Page headings with date/time differences. 
   < 7                                The SAS System 10:40 Saturday, November 7, 2020 
   --- 
   > 7                                The SAS System 15:31 Saturday, November 7, 2020 
 

WORK library names. 
   2051c2051 
   <  WORK=/data/lscratch/sas_m1xxx00/SAS_work6A980009D952_sas001.abcd.gov 
   --- 
   >  WORK=/data/lscratch/sas_m1xxx00/SAS_work57F500004BB4_sas002.abcd.gov 
 

Temporary file names. 
   4680c4680 
   <       Filename=/tmp/getf.645458.out, 
   --- 
   >       Filename=/tmp/getf.19380.out, 
 

Date/time stamps for files written to in DATA steps. 
   4953c4953 
   <       Last Modified=23Sep2021:18:06:14 
   --- 
   >       Last Modified=24Sep2021:18:06:29 
 

To focus on just differences of interest, I developed the DIFFSPLIT macro, which has the following steps. 

• Run diff for two SAS log files. 

• Parse the diff output with Perl Regular Expressions in a DATA Step. 

• Split the diff output into two files: one with useful file differences, and the other with useless 
differences as described above.   

To simplify the macro in this paper and focus on a few potentially common cases, it only runs in Linux and 
treats step summaries with real and/or CPU time differences and page headings with date/time 
differences as useless.  The macro can easily be extended to run on other platforms or split the text using 
different criteria, as shown at the end of the paper. 

 

In this paper, the term "compare block" refers to a group of records consisting of line number(s) where 
differences occur (e.g., 4680c4680 or 414,415c414,415) and the records that differ. 

 

A SMALL EXAMPLE TO ILLUSTRATE THE DIFF COMMAND  
Permanent data sets XXX.ONE and XXX.TWO normally have the following values. 
 
     XXX.ONE            XXX.TWO 



3 

   var1 var11         var2 var22 
     1    2             11   22 
     3    4             33   44 
     5    6             55   66 
 

The following simple program runs nightly, and the log is compared to the prior night's log with the diff 
command to check for problems.  
   libname xxx 'my/directory/path'; 
   data one; 
     set xxx.one; 
     var111=var1+var11; 
   run; 
   proc print data=one; 
   run; 
   data two; 
     set xxx.two; 
     var222=var2+var22; 
   run; 
   proc print data=two; 
   run; 
 
One night, data set TWO has a fourth observation.  This kind of change - an external change to a data set 
- can realistically happen in a real application. 
 
A comparison of the current and prior log with results written to the file logcompare.text by the Linux diff 
command is done as follows. 
   diff myprog1.log myprog1.prior.log > logcompare.txt 
 
The file logcompare.txt is listed below.  Please note the following. 

• DATA step and PROC PRINT information in the SAS log reflecting the data changes are likely to 
be of interest. 

• Two instances of page headers with date/time differences and multiple instances of real and/or 
CPU time results with small time differences are not likely to be of interest. 

 
   2c2 
   <                                               14:38 Thursday, September 23, 2021 
   --- 
   >                                               14:47 Thursday, September 23, 2021 
   61c61 
   <                                               14:38 Thursday, September 23, 2021 
   --- 
   >                                               14:47 Thursday, September 23, 2021 
   72,73c72,73 
   <       real time           0.01 seconds 
   <       cpu time            0.01 seconds 
   --- 
   >       real time           0.00 seconds 
   >       cpu time            0.00 seconds 
   82c82 
   <       real time           0.03 seconds 
   --- 
   >       real time           0.02 seconds 
   91,92c91,92 
   < NOTE: There were 3 observations read from the data set XXX.TWO. 
   < NOTE: The data set WORK.TWO has 3 observations and 3 variables. 
   --- 
   > NOTE: There were 4 observations read from the data set XXX.TWO. 
   > NOTE: The data set WORK.TWO has 4 observations and 3 variables. 



4 

   95c95 
   <       cpu time            0.00 seconds 
   --- 
   >       cpu time            0.01 seconds 
   101c101 
   < NOTE: There were 3 observations read from the data set WORK.TWO. 
   --- 
   > NOTE: There were 4 observations read from the data set WORK.TWO. 
   110c110 
   <       real time           0.14 seconds 
   --- 
   >       real time           0.13 seconds 
 
This is a small application, but a larger application can have dozens or even hundreds of page header 
records, CPU/real time records, or other compare blocks that aren't of interest, making log comparisons 
more difficult.  That was the impetus for writing the DIFFSPLIT macro to split diff output into two files. 
 

MACRO DIFFSPLIT: SYNTAX 
Macro DIFFSPLIT is called as follows. 
 
%DIFFSPLIT(file1=logfile1,file2=logfile2,outfile=outfileprefix); 
 
Required arguments: 
 
file1=logfile1 
  First log file to compare.  The file must exist. 
 
file2=logfile2 
  Second log file to compare.  The file must exist. 
 
outfile=outfileprefix 
  File name for the two result files, which are named outfileprefix.useful.txt and outfileprefix.useless.txt. 
 

MACRO DIFFSPLIT: NOTES 
1. The macro looks for the start of a compare block that contains either a single pair of records or multiple 
records to see if they meet one of the "useless" criteria.  Since we need access to multiple records at 
once, all records are copied into a temporary array at the start of the macro. 
 
2. A few simplifying assumptions in the macro are as follows. 

• diff begins the first record or group of records that differ with < and the second record or groups of 
records that differ with >.  To simplify the regular expressions, we assume that < and > are 
ordered properly and just match either character by testing as follows: [\<\>].  To be robust, 
additional testing could be added. 

• Elements of the temporary character array that holds all the records have a length of 200, which 
assumes the longest record is 200 characters.  If necessary, the temporary array can be defined 
with a larger element size in part 4 of the code below.  

 
3. Here are some examples of the first record of common compare blocks generated by diff. 
 
The first record of a compare block that might be "useless" has 1 of 2 forms: 
 
A single record compare. 
   361c361              (record numbers match) 
   361c365              (record numbers differ) 



5 

 
A multi record compare. 
   785,786c785,786       (record numbers match) 
   3885,3890c3890,3895   (record numbers differ) 
 
Here are some other common examples of the first record of a compare block. 
   23c34,36              (1 record to multiple records) 
   42a58,62              (42 in file 1 and 57 in file 2 are the same, 
                         extra records 58-62 in file 2) 
   44,76c64,126          (blocks are different size, record numbers) 
   167,223d248           (166 in file 1 and 223 in file 2 are the same, 
                         extra records 167-223 in file 2) 
 

MACRO DIFFSPLIT: CODE 
Each section of the macro is described below. 
 

PART 1. DEFINE THE MACRO AND DO SOME SIMPLE PARAMETER ERROR CHECKING 
   %macro diffsplit(file1=,file2=,outfile=); 
    
     %if "&file1" = "" %then %do; 
        %put ERROR: First file to compare not entered, macro terminates; 
        %return; 
     %end; 
     %else %if "&file2" = "" %then %do; 
        %put ERROR: Second file to compare not entered, macro terminates; 
        %return; 
     %end; 
     %else %if "&outfile" = "" %then %do; 
        %put ERROR: Name for output files not entered, macro terminates; 
        %return; 
     %end; 
     %else %if %sysfunc(fileexist("&file1")) ne 1 %then %do; 
        %put ERROR: First file to compare (&file1) does not exist, macro 
terminates; 
        %return; 
     %end; 
     %else %if %sysfunc(fileexist("&file2")) ne 1 %then %do; 
        %put ERROR: Second file to compare (file2) does not exist, macro 
terminates; 
        %return; 
     %end; 
 

PART 2. CREATE "DIFF" FILE WITH DIFFERENCES BETWEEN THE 2 FILES 
The diff file name includes the date and time to ensure a unique name so the macro can be run multiple 
times without overwriting the output.  

• General filename format: /tmp/diffsplit_yyyymmdd_hhmmss 
• Example: /tmp/diffsplit_20210810_165308 for a file created on 8/10/2021, 4:53:08pm 

       /* Create macro variables: current DATE as yyyymmdd, current time as hhmmss */ 
     data _null_; 
       call symput ('datecurrent',put (date(),yymmddn8.)); 
       call symput ('timecurrent',compress(put(time(),time.),":")); 
     run; 



6 

       /* File with differences */ 
     %let diffile=/tmp/diffsplit_&datecurrent._&timecurrent; 
        
     x "diff &file1 &file2 > &diffile"; 
     %if %sysfunc(fileexist("&diffile")) ne 1 %then %do; 
        %put ERROR: Unable to create "diff" file with difference between files, macro 
terminates; 
        %return; 
     %end; 
 

PART 3. DETERMINE NUMBER OF RECORDS IN THE DIFF FILE 
• The number of records is used to create a temporary array containing the contents of the diff file 

in the next section. 
• The Linux command wc -l counts the number of diff file records.  We use a pipe to read the 

results into SAS.  Comparable code to count the number of records in Windows is as follows: 
   filename pipe1 pipe "find /c /v """" < &diffile"; 

     filename pipe1 pipe "wc -l < &diffile"; 
     data _null_; 
       infile pipe1 ;                                     
       input num_recs; 
       call symputx("num_recs",num_recs); 
     run;     
     %put number of records in diff file is: &num_recs; 
     %if &num_recs = 0 %then %do; 
      x "rm &diffile"; 
      %put ERROR: "Diff" file is empty, macro terminates; 
      %return; 
     %end; 
 

PART 4. READ THE DIFF FILE INTO A TEMPORARY CHARACTER ARRAY 
• Each temporary array element has a length of 200, which assumes the longest record is 200 

characters.  This can be increased if necessary. 
• Use TRUNCOVER because the record length varies and the strings have imbedded blanks. 
• Delete the diff file after reading it. 

     data _null_; 
       infile "&diffile" truncover; 
       array all_records (&num_recs) $200 _temporary_; 
       do i=1 to &num_recs; 
         input all_records(i) $200.; 
       end; 
       call system ("rm &diffile"); 
 

PART 5. CREATE TWO FILES FOR DIFF RESULTS: A "USELESS" FILE AND A "USEFUL" 
FILE 
       filename useless "&outfile..useless.txt"; 
       filename useful "&outfile..useful.txt"; 
 

PART 6. CREATE REGULAR EXPRESSIONS USED TO PARSE THE DIFF FILE RECORDS 
         /* Complete record: numbers then c then numbers,  
            for example 394c394 */ 
       regex1=prxparse("/^[0-9]+c[0-9]+\s*$/"); 



7 

    
        /* Complete record: numbers then comma then numbers then c then  
           numbers then comma then numbers, for example 414,415c414,415. 
           Capture all 4 numbers.  */ 
        regex2=prxparse("/^([0-9]+),([0-9]+)c([0-9]+),([0-9]+)\s*$/"); 
    
        /* Complete record: < or > then space(s) then real time or cpu time. 
           Example:    for regex3: <       real time           0.02 seconds 
                       for regex4: <       cpu time            0.01 seconds 
        */ 
       regex3=prxparse("/^[\<\>]\s+real time/"); 
       regex4=prxparse("/^[\<\>]\s+cpu time/"); 
    
         /* Complete record: < or > then space(s) then optionally  
            (for pages 2 and beyond) ^L then page-number then space(s)  
            then The SAS System, for example 
            <  ^L7                                The SAS System 10:40 
Saturday, November 7, 2020 
         */ 
       regex5=prxparse("/^[\<\>]\s+\^?L?[0-9]+\s+The SAS System/"); 
 

PART 7. LOOP THROUGH THE TEMPORARY CHARACTER ARRAY WITH THE DIFF 
RECORDS, WRITE RECORDS TO FILES 
Blocks with CPU/real time differences or page headers are written to the useless file, and everything else 
is written to the useful file. 
       current_rec = 1; /* start from beginning of array */ 
       do while (current_rec lt &num_recs); /* not at end of array */ 
    
         if prxmatch(regex1,all_records(current_rec)) then do; 
           /* Since regex1 matches a record of the form 394c394 
              we know there are 4 records in the current block  
              (the current record + 3 more) */ 
    
             /* Check for blocks with real time or cpu time */ 
           if (prxmatch(regex3,all_records(current_rec+1)) and 
               prxmatch(regex3,all_records(current_rec+3))) or 
              (prxmatch(regex4,all_records(current_rec+1)) and 
               prxmatch(regex4,all_records(current_rec+3))) then do; 
               file useless mod; 
               do i=0 to 3; 
                 put all_records(current_rec+i); 
               end; 
           end; 
    
             /* Check for Page headers with The SAS System */ 
           else if (prxmatch(regex5,all_records(current_rec+1)) and 
               prxmatch(regex5,all_records(current_rec+3))) then do; 
               file useless mod; 
               do i=0 to 3; 
                 put all_records(current_rec+i); 
               end; 
           end; 
    
             /* no more useless blocks w/4 records, must be a useful block */ 
           else do;  



8 

              file useful mod; 
               do i=0 to 3; 
                 put all_records(current_rec+i); 
               end; 
           end; 
            
           current_rec=current_rec+4; /* bypass current block */ 
         end; /* of if prxmatch(regex1,all_records(current_rec)) then do; */ 
          
         else if prxmatch(regex2,all_records(current_rec)) then do; 
           /* Since regex2 matches a record of the form 46,47c46,47 
              the number of records in the current block is 
              ((2nd number - 1st number)+1) + ((4th number - 3rd number)+1)+2 
              Extract the 4 numbers and calculate the number of records. 
              buffer1=1st value, buffer2=2nd value from start of string etc.  
           */ 
            buffer1 = input(trim(prxposn(regex2, 1, all_records(current_rec))),4.); 
            buffer2 = input(trim(prxposn(regex2, 2, all_records(current_rec))),4.); 
            buffer3 = input(trim(prxposn(regex2, 3, all_records(current_rec))),4.); 
            buffer4 = input(trim(prxposn(regex2, 4, all_records(current_rec))),4.); 
        /* Simplify blocksize=buffer2-buffer1+buffer4-buffer3+1+2; a bit */ 
           blocksize=buffer2-buffer1+buffer4-buffer3+4; 
    
             /* real time / cpu time */ 
           if  blocksize=6 and (buffer2-buffer1=buffer4-buffer3) and  
               prxmatch(regex3,all_records(current_rec+1)) and 
               prxmatch(regex3,all_records(current_rec+4)) and 
               prxmatch(regex4,all_records(current_rec+2)) and 
               prxmatch(regex4,all_records(current_rec+5)) then do; 
               file useless mod; 
               do i=0 to 5; 
                 put all_records(current_rec+i); 
               end; 
           end; 
    
           else do; /* useful block */ 
              file useful mod; 
               do i=0 to blocksize-1; 
                 put all_records(current_rec+i); 
               end; 
           end; 
        
           current_rec=current_rec+blocksize; /* bypass current block */ 
         end; /* of if prxmatch(regex1,all_records(current_rec)) then do; */ 
          
         else do; /* a record we are not checking for, just write it out */ 
            file useful mod; 
            put all_records(current_rec); 
            current_rec=current_rec+1; /* bypass current record */ 
         end; 
    
       end; /* of do while (current_rec lt num_recs); */ 
       stop; 
     run; 
   %mend diffsplit; 
 



9 

INVOKE DIFFSPLIT: EXAMPLE 
%diffsplit (file1=/my/directory/path/sastests/alltest.20201107.log, 
            file2=/my/directory/path/sastests/alltest.20201108.log, 
            outfile=/my/directory/path/sastests/testdiff); 
 
Results are written to the following files: 

• /my/directory/path/sastests/testdiff/useless.txt 
• /my/directory/path/sastests/testdiff/useful.txt 

 

PORT DIFFSPLIT TO PLATFORMS OTHER THAN LINUX 
To port macro DIFFSPLIT to another platform, the primary issue is finding a system command that 
generates output comparable to the Linux diff command.  I could not find a standard Windows command 
or utility that generated results identical to diff.  The closest analog I found was the fc command with the 
/L, /N, and /1 options, as in the following command. 
     fc /L /N /1 log1.txt log2.txt > logdifftwindows.txt 
 

• /L compares files as ASCII text. 
• /N displays line numbers during an ASCII comparison. 
• /nnnn specifies the number of consecutive lines that must match after a mismatch.  Default is 2.  

1 is used above. 
• log1.txt and log2.txt are the two log files to compare. 
• logdifftwindows.txt contains the result of the command. 

 
Diff displays just lines that differ, but fc also shows the line before and after each line or block of lines that 
differ.  Some recoding would be required to account for the extra lines. 
 
The code to determine the number of records in the file with differences differs by platform.  On Linux, this 
statement in Part 3 of DIFFSPLIT specifies a pipe that reads into SAS the result of a Linux command to 
determine the number of records in the diff file. 
     filename pipe1 pipe "wc -l < &diffile"; 

The code can easily be generalized to test if it’s running on (for example) Linux or Windows and use an 
appropriate system command with code like the following.  Note that Windows requires two double 
quotes so they are doubled up in the code. 
     %if %substr(&sysscp,1,2) eq WI %then %do; /* Windows */ 
       filename pipe1 pipe "find /c /v """" < &diffile"; 
     %end; 
     %else %do; /* Linux */ 
       filename pipe1 pipe "wc -l < &diffile"; 
     %end; 
 

EXTEND DIFFSPLIT FOR ADDITIONAL USELESS TEXT: A SIMPLE EXAMPLE 
In the code above, only a few types of text were written to the "useless" file.  It is easy to extend this to 
other cases.  In general, the following two steps are required. 

• Define a regular expression that describes the layout of the record(s) in question. 
• Add conditional logic to test for the regular expression and when found, write the compare block 

to the useless file. 
 
Let's illustrate this with a simple example. 
 
My test script had many DATA steps where a FILE statement specified where text was written, as (very 
simply) illustrated in the following code. 



10 

   data one; 
     file '/my/directory/path/file1.txt'; 
     put "hello world"; 
   run; 
 
This generated log results like the following. 
   NOTE: The file '/my/directory/path/file1.txt' is: 
         Filename=/my/directory/path/file1.txt, 
         Owner Name=m1xxx00,Group Name=gg, 
         Access Permission=-rw-rw-r--, 
         Last Modified=23Sep2021:18:06:14 
 
The diff file contained dozens of compare blocks like the following for files that had different date/time 
information. 
   4953c4953 
   <       Last Modified=23Sep2021:18:06:14 
   --- 
   >       Last Modified=24Sep2021:18:06:29 
 
To move these compare blocks to the "useless" file, modify the DIFFSPLIT macro as follows. 
 
1. Add this statement to the end of Part 6 to define an additional regular expression.  The end of the 
regular expression includes ",*" because the record sometimes includes a trailing comma. 
    regex6=prxparse("/^[\<\>]\s+Last Modified=[0-9][0-9][a-zA-Z]{3}?[0-
9]{4}?:[0-9][0-9]:[0-9][0-9]:[0-9][0-9],*\s*$/"); 
 
2. Add the following statements in Part 7 after the 7 records of code that follow this comment: Check for 
Page headers with The SAS System. 
    /* Check for records of form: <       Last Modified=19May2021:11:57:28 */ 
    else if (prxmatch(regex6,all_records(current_rec+1)) and 
      prxmatch(regex6,all_records(current_rec+3))) then do; 
      file useless mod; 
      do i=0 to 3; 
        put all_records(current_rec+i); 
      end; 
    end; 
 

CONCLUSION 
SAS log files from two executions of the same program are frequently compared.  For example, we might 
compare today's results to a baseline run that we know is correct or test if a change to the SAS release, 
operating system, external data, our code, or anything else has altered the results. 

Log file comparisons done by eyeballing the results of the Linux diff command can be difficult for 
programs with many steps because the diff output is often cluttered with many useless differences such 
as step summaries with real and/or CPU time differences and page headings with date/time differences. 

The DIFFSPLIT macro runs diff for two SAS log files, parses the diff output with Perl Regular Expressions 
in a DATA Step, and splits the diff output into two files: one with useful file differences, and the other with 
useless differences, allowing us to focus on just the differences of interest. 

The macro in this paper treated a few basic cases (real and/or CPU time differences and page headings 
with date/time differences) on Linux as useless, but as shown in the paper, it can easily be extended to 
run on other platforms or split the text using different criteria. 

 



11 

REFERENCES 
fc command, Microsoft documentation.  Accessed February 9, 2022.  https://docs.microsoft.com/en-
us/windows-server/administration/windows-commands/fc. 

find command, Microsoft documentation.  Accessed February 9, 2022.  https://docs.microsoft.com/en-
us/windows-server/administration/windows-commands/find. 

diff(1) — Linux manual page.  Accessed February 9, 2022.  https://man7.org/linux/man-
pages/man1/diff.1.html. 

 

ACKNOWLEDGMENTS 
Support from the following people is greatly appreciated. Ross Bettinger, Sean Dunn, and Zoriana 
Kurzeja all contributed substantially to the development of this paper. 

 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 

Bruce Gilsen  
Federal Reserve Board, Mail Stop N-122, Washington, DC 20551  
202-452-2494  
bruce.gilsen@frb.gov 

 

APPENDIX: THE DIFFSPLIT MACRO 
%macro diffsplit(file1=,file2=,outfile=); 
    
/* PART 1. Define the macro and do some simple parameter error checking */ 
     %if "&file1" = "" %then %do; 
        %put ERROR: First file to compare not entered, macro terminates; 
        %return; 
     %end; 
     %else %if "&file2" = "" %then %do; 
        %put ERROR: Second file to compare not entered, macro terminates; 
        %return; 
     %end; 
     %else %if "&outfile" = "" %then %do; 
        %put ERROR: Name for output files not entered, macro terminates; 
        %return; 
     %end; 
     %else %if %sysfunc(fileexist("&file1")) ne 1 %then %do; 
        %put ERROR: First file to compare (&file1) does not exist, macro terminates; 
        %return; 
     %end; 
     %else %if %sysfunc(fileexist("&file2")) ne 1 %then %do; 
        %put ERROR: Second file to compare (file2) does not exist, macro terminates; 
        %return; 
     %end; 
 
/*  PART 2. Create "diff" file with differences between the 2 files. 
    The diff file name includes the date and time to ensure a unique name  
    and allow multiple executions of the macro. 

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fc
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fc
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/find
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/find
https://man7.org/linux/man-pages/man1/diff.1.html
https://man7.org/linux/man-pages/man1/diff.1.html
mailto:bruce.gilsen@frb.gov


12 

    General filename format: /tmp/diffsplit_yyyymmdd_hhmmss 
    Example: /tmp/diffsplit_20210810_165308 for a file created on 8/10/2021, 4:53:08pm 
*/ 
       /* Create macro variables: current DATE as yyyymmdd, current time as hhmmss */ 
     data _null_; 
       call symput ('datecurrent',put (date(),yymmddn8.)); 
       call symput ('timecurrent',compress(put(time(),time.),":")); 
     run; 
       /* File with differences */ 
     %let diffile=/tmp/diffsplit_&datecurrent._&timecurrent; 
        
     x "diff &file1 &file2 > &diffile"; 
     %if %sysfunc(fileexist("&diffile")) ne 1 %then %do; 
        %put ERROR: Unable to create "diff" file with difference between 
files, macro terminates; 
        %return; 
     %end; 
 
/*  PART 3. Determine number of records in the diff file. 
    The number of records is used to create a temporary array containing the   
    contents of the diff file in the next section. 
    The Linux command wc -l counts the number of diff file records.  We use a  
    pipe to read the results into SAS.  Comparable code to count the number 
    of records in Windows is as follows: 
         filename pipe1 pipe "find /c /v """" < &diffile"; 
*/ 
     filename pipe1 pipe "wc -l < &diffile"; 
     data _null_; 
       infile pipe1 ;                                     
       input num_recs; 
       call symputx("num_recs",num_recs); 
     run;     
     %put number of records in diff file is: &num_recs; 
     %if &num_recs = 0 %then %do; 
      x "rm &diffile"; 
      %put ERROR: "Diff" file is empty, macro terminates; 
      %return; 
     %end; 
    
/*  PART 4. Determine number of records in the diff file. 
      Read the diff file into a temporary character array. 
      Each temporary array element has a length of 200, which assumes the  
      longest record is 200 characters.  This can be increased if needed. 
      Use TRUNCOVER because the record length varies and the strings have  
      blanks. 
      Delete the diff file after reading it. 
*/  
       data _null_; 
       infile "&diffile" truncover; 
       array all_records (&num_recs) $200 _temporary_; 
       do i=1 to &num_recs; 
         input all_records(i) $200.; 
       end; 
       call system ("rm &diffile"); 
 
/*  PART 5. Create two files for diff results: a "useless" file and a 
       "useful" file. */ 



13 

     filename useless "&outfile..useless.txt"; 
     filename useful "&outfile..useful.txt"; 
 
/*  PART 6. Create regular expressions used to parse the diff file records.*/ 
         /* Complete record: numbers then c then numbers,  
            for example 394c394 */ 
       regex1=prxparse("/^[0-9]+c[0-9]+\s*$/"); 
    
        /* Complete record: numbers then comma then numbers then c then  
           numbers then comma then numbers, for example 414,415c414,415. 
           Capture all 4 numbers.  */ 
        regex2=prxparse("/^([0-9]+),([0-9]+)c([0-9]+),([0-9]+)\s*$/"); 
    
        /* Complete record: < or > then space(s) then real time or cpu time. 
           Example:    for regex3: <       real time           0.02 seconds 
                       for regex4: <       cpu time            0.01 seconds 
        */ 
       regex3=prxparse("/^[\<\>]\s+real time/"); 
       regex4=prxparse("/^[\<\>]\s+cpu time/"); 
    
         /* Complete record: < or > then space(s) then optionally  
            (for pages 2 and beyond) ^L then page-number then space(s)  
            then The SAS System, for example 
            <  ^L7                                The SAS System 10:40 
Saturday, November 7, 2020 
         */ 
       regex5=prxparse("/^[\<\>]\s+\^?L?[0-9]+\s+The SAS System/"); 
 
/*  PART 7. Loop through the temporary character array with the diff records. 
            Blocks with cpu/real time differences or page headers are written  
            to the useless file, and everything else is written to the useful  
            file. 
*/ 
       current_rec = 1; /* start from beginning of array */ 
       do while (current_rec lt &num_recs); /* not at end of array */ 
    
         if prxmatch(regex1,all_records(current_rec)) then do; 
           /* Since regex1 matches a record of the form 394c394 
              we know there are 4 records in the current block  
              (the current record + 3 more) */ 
    
             /* Check for blocks with real time or cpu time */ 
           if (prxmatch(regex3,all_records(current_rec+1)) and 
               prxmatch(regex3,all_records(current_rec+3))) or 
              (prxmatch(regex4,all_records(current_rec+1)) and 
               prxmatch(regex4,all_records(current_rec+3))) then do; 
               file useless mod; 
               do i=0 to 3; 
                 put all_records(current_rec+i); 
               end; 
           end; 
    
             /* Check for Page headers with The SAS System */ 
           else if (prxmatch(regex5,all_records(current_rec+1)) and 
               prxmatch(regex5,all_records(current_rec+3))) then do; 
               file useless mod; 
               do i=0 to 3; 



14 

                 put all_records(current_rec+i); 
               end; 
           end; 
    
             /* no more useless blocks w/4 records, must be a useful block */ 
           else do; 
              file useful mod; 
               do i=0 to 3; 
                 put all_records(current_rec+i); 
               end; 
           end; 
            
           current_rec=current_rec+4; /* bypass current block */ 
         end; /* of if prxmatch(regex1,all_records(current_rec)) then do; */ 
          
         else if prxmatch(regex2,all_records(current_rec)) then do; 
           /* Since regex2 matches a record of the form 46,47c46,47 
              the number of records in the current block is 
              ((2nd number - 1st number)+1) + ((4th number - 3rd number)+1)+2 
              Extract the 4 numbers and calculate the number of records. 
              buffer1=1st value, buffer2=2nd value from start of string etc.  
           */ 
            buffer1 = input(trim(prxposn(regex2, 1, all_records(current_rec))),4.); 
            buffer2 = input(trim(prxposn(regex2, 2, all_records(current_rec))),4.); 
            buffer3 = input(trim(prxposn(regex2, 3, all_records(current_rec))),4.); 
            buffer4 = input(trim(prxposn(regex2, 4, all_records(current_rec))),4.); 
        /* Simplify blocksize=buffer2-buffer1+1+buffer4-buffer3+1+2; a bit */ 
           blocksize=buffer2-buffer1+buffer4-buffer3+4; 
    
             /* real time / cpu time */ 
           if  blocksize=6 and (buffer2-buffer1=buffer4-buffer3) and  
               prxmatch(regex3,all_records(current_rec+1)) and 
               prxmatch(regex3,all_records(current_rec+4)) and 
               prxmatch(regex4,all_records(current_rec+2)) and 
               prxmatch(regex4,all_records(current_rec+5)) then do; 
               file useless mod; 
               do i=0 to 5; 
                 put all_records(current_rec+i); 
               end; 
           end; 
    
           else do; /* useful block */ 
              file useful mod; 
               do i=0 to blocksize-1; 
                 put all_records(current_rec+i); 
               end; 
           end; 
        
           current_rec=current_rec+blocksize; /* bypass current block */ 
         end; /* of if prxmatch(regex1,all_records(current_rec)) then do; */ 
          
         else do; /* a record we are not checking for, just write it out */ 
            file useful mod; 
            put all_records(current_rec); 
            current_rec=current_rec+1; /* bypass current record */ 
         end; 
    



15 

       end; /* of do while (current_rec lt num_recs); */ 
       stop; 
     run; 
   %mend diffsplit; 


	Abstract
	INTRODUCTION
	A SMALL EXAMPLE TO ILLUSTRATE THE DIFF COMMAND
	MACRo DIFFSPLIT: SYNTAX
	MACRO DIFFSPLIT: NOTES
	MACRo DIFFSPLIT: CODE
	PART 1. Define the macro and do some simple parameter error checking
	PART 2. Create "diff" file with differences between the 2 files
	PART 3. Determine number of records in the diff file
	PART 4. Read the diff file into a temporary character array
	PART 5. Create two files for diff results: a "useless" file and a "useful" file
	PART 6. Create regular expressions used to parse the diff file records
	PART 7. Loop through the temporary character array with the diff records, Write recorDS to files

	INVOKE DIFFSPLIT: EXAMPLE
	Port DIFFSPLIT TO Platforms other than linux
	EXTEND DIFFSPLIT FOR additional USELESS TEXT: A SIMPLE EXAMPLE
	Conclusion
	References
	Acknowledgments
	APPENDIX: THE DIFFSPLIT macro

