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ABSTRACT  
A German physicist Wilhelm Konrad Rontgen started to work on medical imaging in 1895. 
Later, in 1978, Hounsfield developed computed tomography (CT) technology to study 
medical images to screen and detect tumors in the fastest way. Because of the importance 
of searching medical images, Lambin 2012 proposed an approach to analyzing medical 
images, which is called radiomics. This approach has involved several steps from the 
beginning to the end: segmentation, feature extraction, feature selection, and statistical 
modeling. Extracted features can be categorized in the description of tumor gray 
histograms, shape, texture features, and the tumor location and surrounding tissue. 
Because of the massive number of features from radiological images, machine learning 
plays an important role in analyzing the big data obtained from tumors. In other words, the 
dimension of extracted features needs to be reduced to describe the tumor better. Many 
linear and nonlinear dimension reduction techniques, including Principal Component Analysis 
(PCA), Linear Discriminant Analysis (LDS), Local Feature Analysis (LFA), and manifold 
learning have been developed. In this paper, a large-scale CT dataset for Lung cancer 
diagnosis (Lung- PET-CT-Dx) which was collected by Huiping Han, Funing Yang, and Rui 
Wang of Harbin from Medical University in Harbin in China is used to illustrate the dimension 
reduction techniques, which is a main part of radiomics process, via SAS. This dataset 
consists of CT DICOM images of lung cancer subjects with XML Annotation files that indicate 
tumor location with bounding boxes. Pyradiomics through 3D Slicer medical software was 
used to extract features for 74 patients out of 130 as the provided annotation file did not 
work for all patients through Python. This study has been shown how to apply the 
dimension reduction methods available in SAS to the lung cancer dataset, including Principal 
Component Analysis (PCA) and Cluster Analysis through PROC FACTOR, PROC PRINCOMP, 
and TEXTMINE Procedure. Both approaches suggested if the data were categorized into six 
subcategories, the reduced data would adhere to the dominant variation in the original data. 
 

Keywords: Radiomics, Segmentation, Dimension Reduction, Features Extraction 
 

 

 

 

 

 

 



2 

INTRODUCTION  
Radiomics is a method that extracts a large number of features from radiographic medical 
images using data-characterization algorithms. Radiomics hypothesizes that the distinctive 
imaging features between disease forms may be useful for predicting prognosis and 
therapeutic response for various conditions, thus providing valuable personalized therapy 
information is main goal behind radiomics (Mohammadi et al., 2019). The use of medical 
imaging technologies is currently entering into the context of individualized medicine 
(Lambin et al., 2012). There are different sources of information, e.g., demographics, 
pathology, toxicity, biomarkers, genomics, and proteomics that can be used for selecting 
the optimal treatment, so it is expected that the image contains more information in 
comparison of other sources (Lambin, et al., 2010). In the workflow of radiomics, on the 
medical images, segmentation is performed to define the tumor region. From this region the 
features are extracted based on tumor intensity, texture, and shape. Finally, these features 
are used for analysis, Figure 1. The most widely used imaging modality in radiomics is 
Computed tomography (CT).  

 
Figure 1. The Radiomics workflow  

 

The CT accesses tissue density, shape and texture of tumor (Aerts et al., 2014). CT has also 
the potential to measure size and change in size during and after therapy in order to early 
access treatment responses. Positron Emission Tomography (PET) is also used for detecting 
and staging cancer, most commonly with the radiotracer 18F-fluorodeoxyglucose (18F-
FDG), a radiolabeled sugar (glucose analog) molecule (Ypsilantis et al., 2015). PET has been 
a hotbed for radiomics application to the functional nature of the images and their direct 
relationship to underlying tumor biology (Naqa, 2014). The calculation of radiomic features 
is typically applied to a specific (Region of Interest) ROI which needs to be segmented from 
the surrounding tissues, such as the gross tumor. In most radiomics studies, the tumor is 
manually delineated by an experienced radiologist or radiation oncologist (Wang et al., 
2016). The goal of radiomics is to develop a function or mathematical model to classify 
patients according to their predicted outcome by means of radiomic features. In the 
language of pattern recognition machine-learning, this task is equivalent to building a 
“classifier”, which is an algorithm analyzing training data and inferring a hypothesis (the 
function), to predict the labels of unseen observations, e.g., patient outcome or tumor 
phenotype (Parmar et al., 2015 and Bannach et al., 2017).  

In general, there are several nonlinear and linear approaches for dimension reduction 
techniques that have been developed. Among them, we can mention Principal component 
analysis (PCA), Clustering, Local fisher’s discriminate analysis (LFDA), Canonical correlation 
analysis (CCA), Non-negative matrix factorization (NMF), and Manifold learning-based 
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algorithm (Ray et al. 2021) contrastive Principal Component Analysis (cPCA), JIVE, Group 
component analysis for multi block data, Joint and Individual Variation Explained (JIVE) for 
Block Data, Common Orthogonal Basis Extraction (COBE). The goal behind these techniques 
is to investigate how we can tackle or extend these approaches in analyzing Images, Tissue 
Slide Images, Clinical Data, Biomedical Data, and Genomics simultaneously.  

Contrastive principal component analysis is a method which identifies low-dimensional 
structures that are enriched in a dataset relative to comparison data (Abid et al., 2018). The 
main advantages of cPCA are its generality and ease of use. Computing a particular cPCA 
takes essentially the same amount of time as computing a regular PCA. The Joint and 
Individual Variation Explained (JIVE) is a method in aim of variation decomposition for the 
integrated analysis of cancer data. The decomposition consists of three terms: a low-rank 
approximation capturing joint variation across data types, low-rank approximations for 
structured variation individual to each data type, and residual noise (Lock et al., 2013). 
Furthermore, the JIVE has been extended to apply for multi-block data in order to capture 
both joint and individual variation within each data block (Feng et al., 2018). An R package, 
R.JIVE, is introduced to perform JIVE and visualize the results (O’Connell and Lock, 2016). 
We figured out that one should load caTools first for installation of this package. This part 
did not mention in the installation process provided by (O’Connell and Lock, 2016). Another 
approach is an efficient algorithm called Common Orthogonal Basis Extraction (COBE) to 
extract the common basis, which is shared by multi-block data, independent on whether the 
number of common components is given or not (Zhou et at., 2015).  

 In SAS settings, it is challenging to apply some of machine learning techniques as this part 
is still under processing and developing. Consequently, we are focus on very common 
dimension reduction techniques as such PCA and Clustering. Both tools are a technique for 
data pre-processing before applying supervised techniques.   

 
	In the following, software tools for extracting features are described to explain how many 
options are available to extract features from tumor in cancer medical images. Then, we 
describe how the extracted features are organized to prepare the matrix data to be 
analyzed through unsupervised techniques mentioned above.  
 

SOFTWARE TOOLS FOR EXTRACTING FEATURES  
The general Radiomics workflow includes image acquisition, segmentation, features 
extraction of high-dimensional datasets. There is various software for extracting the 
features, including PyRadiomcs, 3D Slicer, LIFEx, IBEX, QIFE, and RayPlus. Each tool is 
attached with its limitations and restrictions, and there is no specific reason to determine 
which one is the best. Indeed, it depends on how a researcher wants to tackle medical 
images. After investigation, we found LIFEx and 3D Slicer are more suitable for our needs. 
Concretely, there are a few good reasons why LIFEx and 3D Slicer should use for features 
extraction.		
PyRadiomics was developed by Griethuysen et al., 2017, to address the lack of standardized 
algorithm definitions in image processing. PyRadiomics is a flexible open-source platform 
capable of extracting a large panel of engineered features from medical images. 
PyRadiomics is implemented in Python and can be used standalone or using 3D Slicer.  

Although, the main advantage of this tool is using SimpleITK, which makes it very helpful 
for a variety of image formats. However, the processing of PyRadiomics should be done 
through Python. It means to use this platform; one needs to have enough knowledge in 
Python and programming.  
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3D Slicer is a free, open-source software application for medical image computing. As a 
clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile 
visualizations and provides advanced functionality such as automated segmentation and 
registration for a variety of application domains. Unlike a typical radiology workstation, 3D 
Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer 
facilitates translation and evaluation of the new quantitative methods by allowing the 
biomedical researcher to focus on implementing the algorithm and providing abstractions for 
the common tasks of data communication, visualization, and user interface development. 
Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open 
source and can be readily extended and redistributed. Besides, 3D Slicer is designed to 
facilitate the development of new functionality in 3D Slicer extensions (Fedorov et al., 
2012). But this software is not intended for clinical use; it just works in a panel of medical 
image informatics, image processing, and three-dimensional visualization, Figure 2.  

 
Figure 2. Loading Lung-CT-PET Images, available on The Cancer Imaging Archive 
(TCIA) Public Access dataset, by 3D Slicer.  

 

DATA PREPARATION FOR UNSUPERSVISED TECHNIQUES 
The data is used in this study was collected by Huiping Han, Funing Yang, and Rui Wang of 
Harbin from Medical University in Harbin in China (Wang et al., 2020). This dataset consists 
of CT and PET-CT DICOM images of 130 patients with lung cancer. The XML annotation files 
which includes the location of tumor was provided by five academic radiologists with high 
expertise in lung cancer. To visualize the annotation boxes on tumor of the DICOM images 
the following Python through terminal was used to pull out the images and put the box on 
top of them, Figure 3.  
(base) mostafa@UM-C02F3165Q05N ~ % cd 
/Users/mostafa/Documents/Mostafa/UM/Papers/Data/TCIA/Lung-PET-CT-
Dx/VisualizationTools      

(base) mostafa@UM-C02F3165Q05N VisualizationTools % conda create -n dcm-vis 
python=3.7 

(dcm-vis) mostafa@UM-C02F3165Q05N VisualizationTools % python 
visualization.py --dicom-mode="CT" --dicom-
path="/Users/mostafa/Documents/Mostafa/UM/Papers/Data/TCIA/Lung-PET-CT-
Dx/VisualizationTools/Data/Images/manifest-1608669183333/Lung-PET-CT-
Dx/Lung_Dx-A0239" --annotation-
path="/Users/mostafa/Documents/Mostafa/UM/Papers/Data/TCIA/Lung-PET-CT-
Dx/VisualizationTools/Data/Annotation/A0239" --
classfile="/Users/mostafa/Documents/Mostafa/UM/Papers/Data/TCIA/Lung-PET-CT-
Dx/VisualizationTools/category.txt"  
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Figure 3. Visualization of the annotation box on the CT-DICOM images.  

 

After implementing the provided annotation files, we realized that it just worked for 74 
patients out 130. So, the number of rows for the target matrix data was 74. After this 
stage, 3D Slicer was used to do the segmentation process and by using PyRadomics 
package available in 3D Slicer, the features were extracted for each patient. The dimension 
of the obtained matrix data was 74 by 110. Each row represented the patient, and each 
column was for the extracted feature. The extracted feature was categorized in three types: 
3D features, Texture features, and Intensity features. For instance, the texture features are 
mainly used to explain the nature of the pixels of Region of Interest (ROI) and its 
surrounding pixels. It can be computed by using the Gray-Level-Co-occurrence Matrix 
(GLCM), Gray-Level Size Zone Matrix (GLSZM), Gray-Level Run Length Matrix (GLRLM), 
Neighborhood Gray-Ton Difference Matrix (NGTDM), and Gray-Level Dependence Matrix 
(GLDM), Figure 4.  

 

 
Figure 4. Texture Features from left to right: GLCM (gray level co-occurrence 
matrix), GLRLM (gray level run length matrix) and NGTDM (neighborhood gray 
tone difference matrix) (Parekh and Jacobs (2016))  

 

Then, the data matrix was normalized according to min-max normalization approach as it is 
robust to any distributions of each feature and, it leads to make unitless measurement for 
each. Now, the matrix data is prepared for applying dimension reduction techniques.  

DIMENSION REDUCTION TECHNIQUES FOR THE OBTAINED MATRIX 
DATA 
Supervised learning is a well-known technique, and it is applied when the response variable 
𝑌 is measured along with a set of 𝑝 features 𝑋!, 𝑋", … , 𝑋#. But sometimes in practice, there is 
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only a set of features 𝑋!, 𝑋", … , 𝑋# measured on 𝑛 observations, and the interest is not about 
prediction as there is no an associated response variable 𝑌. The developed technique in this 
scenario is called unsupervised. There are two types of unsupervised learning: Principial 
Components Analysis (PCA) and Clustering. The PCA allows us to explain variation of the 
original set in a smaller set of variables. Assume that in original set we have 𝑋!, 𝑋", … , 𝑋#, in 
the PCA we transform this set to a smaller set 𝑍!, 𝑍", … , 𝑍$ such that 𝑚 < 𝑝 and this new set is 
a linear combination of the original set by having this assumption that there are orthogonal. 
For example, the first principal component of the original set of features 𝑋!, 𝑋", … , 𝑋# is  

𝑍! = 𝑎!!𝑋! + 𝑎"!𝑋" +⋯+ 𝑎#!𝑋#, where 𝑎!!, 𝑎"!, … , 𝑎#! refer to the loadings of the fist principal 
component. It has been proved that these values are eigenvector of the covariance matrix 
of 𝑋!, 𝑋", … , 𝑋#. And the eigenvalues of the matrix are the (sample) variances of the principal 
components. This transformation reshapes the original features and put it in a new direction 
that has dominant variation. Because the eigenvalues are variances of the principal 
components, we can speak of "the proportion of variance explained" by the first k 
components: proportion of variance  %!&%"&⋯&%#

%!&%"&⋯&%$
,  where 𝜆! refers to the varication explains by 

the first component, and so on (Rencher and Christensen, 2012) . We illustrate the use of 
PCA on the features extracted from tumors of CT images of lung cancer. PCA was performed 
after standardizing each variable to have mean zero and standard deviation one. Principal 
components are computed from the correlation matrix, so the total variance is equal to the 
number of variables, 110, Figure 5.  

 

 
 

Figure 5. Number of Observations and Simple Statistics 

 

Figure 6 displays the eigenvalues. The first principal component accounts for about 34.1% 
of the total variance, the second principal component accounts for about 23.9%, and the 
third principal component accounts for about 11.7%. Note that the eigenvalues sum to the 
total variance. 

The eigenvalues indicate that six components provide a good summary of the data: six 
components account for 87% of the total variance. Subsequent components account for less 
than 3% each. 
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Figure 6. Results 1 of Principal Component Analysis  

 

Figure 7 displays the eigenvectors. From the eigenvector’s matrix, we can represent the first 
principal component, Prin1, as a linear combination of the original variables: 

𝑃𝑟𝑖𝑛1 = 0.090742	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠($)*+ . 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙,)-.$ + 0.066591	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠,)/0 . 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙12-+34 +⋯			−
0.003032	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑛𝑔𝑡𝑑𝑚_𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ.	

 

Similarly, the second principal component, Prin2, is  

 

𝑃𝑟𝑖𝑛2 = −.016307	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠($)*+ . 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙,)-.$ + 0.141508	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠,)/0 . 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙12-+34 +⋯			−
.123923	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑛𝑔𝑡𝑑𝑚_𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ	,	

where the variables are standardized. 
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 Figure 7. Results 2 of Principal Component Analysis  

 

The first component is a measure of the overall nature of tumor because the first two 
eigenvector shows approximately equal loadings on all variables. The third eigenvector has 
high positive loadings on the variables diagnsitcs_Msak.original_VoxelN and high negative 
loadings on the variables Original_Shape_Sphericity. This component seems to measure the 
shape of tumor compared to first order statistic. The interpretation of the third component is 
not obvious. 

Also, we can illustrate the pairwise component score plots for the first three components, 
with a 95% prediction ellipse overlaid on each scatter plot. Figure 8 shows the plot of the 
first three components. In the left and right panels, you can identify regional trends in the 
plot of the first two components. Assuming that the first two components are from a 
bivariate normal distribution, the ellipse identifies extracted features for patients 20, 37, 
and 72 as a possible outlier.  

 

 
Figure 8. Plot of the First Three Component Scores 
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In every application, a decision must be made on how many principal components should be 
retained in order to effectively summarize the data. Scree plot is one of techniques that 
people often use to determine how many principal components is needed to keep. This is a 
plot of 𝝀𝒊 versus 𝒊, and look for a natural break between the “large” eigenvalues and the 
“small” eigenvalues. Figure 9 shows that the first six eigenvalues form a steep curve, 
followed by a bend and then a straight-line trend with shallow slope. The recommendation is 
to retain those eigenvalues in the steep curve before the first one on the straight line. Thus, 
in Figure 9 (Left panel), six components would be retained. Additionally, the right panel of 
Figure 9 confirms that six components explain enough number of variations from original 
data which is about 87% in total.  

 
 

Figure 9. Scree graph for eigenvalues of lung cancer data (Left panel), Plot of      
variance explained by principal components (Right panel) 

 

The second techniques of dimension reduction that we would explain in this paper is 
clustering. In clustering the goal is to find homogeneous subgroups among the 
observations. There are two well-known clustering techniques: K-means and hierarchical. In 
K-means we do clustering by having a pre-specified number of clusters. However, in 
hierarchical, we do not know how many clusters we want. The K-means clustering results 
from a fundamental mathematical idea. Assume that 𝐶!, 𝐶", … , 𝐶6 represents sets including 
the observations clustered into K subgroups of the original data. These sets meet two 
properties (James et al., 2013):  

1. 𝐶! 	∪ 	𝐶" ∪ …∪	𝐶6 = {1,… , 𝑛}. It means the union of all clusters lead to the whole 
observations.  

2. 𝐶0 	∩ 	𝐶0% = ∅ for all 𝑘 ≠ 𝑘′. It means clusters are pairwise mutually exclusive.  

Now, we would like to state the algorithm behind K-means clustering techniques.  

1. Randomly assign a number to each observation from 1 to K. This calls an initial 
clustering for the observations.  

2. Repeat the following process till the cluster assignments stop changing.  

a. For each of the K clusters, calculate the kth cluster centroid which is the vector of 
the p feature means for the observations in the kth cluster.  
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b. Use Euclidean distance for assigning each observation to the nearest centroid.   

 

On the other hand, in hierarchical clustering there is not a requirement of knowing a 
particular choice of K. One of the advantages of this approach is that the obtained clusters 
can be visualized through a plot called dendrogram, which is a tree-based representation of 
the observations. The algorithm of hierarchical is as follows (James et al., 2013):  

1. Start with n observations and compute Euclidean distance of all 7(79!)
"

 for all pairwise 
dissimilarities. Consider each observation as an independent cluster.  

2. Repeat the following process for 𝑖 = 𝑛, 𝑛 − 1,… , 2: 

a. Test all pairwise of each dissimilar cluster and determine the pair of clusters that 
are most similar. Connect these two clusters.  

b. Compute the new pairwise dissimilarities for the rest of 𝑖 − 1 clusters.  

In this algorithm, the concept of dissimilarity between a pair of observations is extended to 
a pair of groups of observations, which defined as a linkage. There are four common types 
of linkage: complete, average, single (Ward’s), and centroid. The summary of these 
linkages as follows (James et al., 2013):  

1. Complete: In this approach, all pairwise dissimilarities between the observations in 
the clusters are computed and the maximum one will be recorded.  

2. Single (Ward’s): In this method, all pairwise dissimilarities between the clusters are 
computed and the minimum one will be recorded. 

3. Average: In this approach, all pairwise dissimilarities between the clusters are 
computed and the average of dissimilarities will be recorded. 

4. Centroid: In this technique, the dissimilarities between the mean vector of for cluster 
A (centroid) and the mean vector of for cluster B (centroid) are computed.  

Now, we examine the hierarchical approach on the extracted features from lung cancer 
data. First, we specify that approximately 3% of the pairs are included in the estimation 
within-cluster covariance matrix, and also, Ward’s minimum-variance clustering method is 
used. The results of cluster history are summarized in Figure 10. This displays the last 15 
generations of the cluster history.  

 

 
Figure 10. Cluster History  
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First listed are the number of clusters and the names of the clusters joined. The 
observations are identified either by the ID value or by CLn, where n is the number of the 
cluster. Next, Figure 10 displays the number of observations in the new cluster and the 
semi-partial R square. The latter value represents the decrease in the proportion of variance 
accounted by joining the two clusters. Next listed is the squared multiple correlation, R 
square, which is the proportion of variance accounted for by the clusters. Figure 10 shows 
that, when the data are grouped into six clusters, the proportion of variance accounted for 
by clusters (R square) is about 75%. The approximate expected value of R square is given 
in the ERSq column. This expectation is approximated under null hypothesis that the data 
have a uniform distribution instead of forming distinct clusters. The next three columns 
display the values of the cubic clustering criterion (CCC), pseudo F (PSF), and 𝑡" (PST2) 
statistics. These statistics are useful for estimating the number of clusters in the data. The 
final column in Figure 10 lists ties for minimum distance; a blank value indicates the 
absence of a tie. A tie means that the clusters are indeterminate and that changing the 
order of the observations might change the clusters.  

Figure 11 plots the tree statistics for estimating the number of clusters. Peaks in the plot of 
cubic clustering criterion with values greater than 2 or 3 indicate good clusters; peaks with 
values between 0 and 5 indicate possible clusters. Large negative values of the CCC can 
indicate outliers. In Figure 11, there is a local peak of the CCC when the number of clusters 
is three. The CCC drops at four clusters and then steadily increases.  

 

 
Figure 11. Plot of Statistics for Estimating the Number of Clusters  

Another method of judging the number of clusters in a data set is to look at the pseudo F 
statistic (PFS). Relatively large values indicate good number of clusters. In Figure 11, the 
pseudo F statistic suggests five or more up to thirteen.  

To interpret the values of the pseudo 𝑡" statistic, look down the column or look at the plot 
from right to left until you find the first value that is markedly larger than the previous 
value, then move back up the column or to the right in the plot by one step in the cluster 
history. In Figure 11, we can see possibly good clustering levels at six clusters, eight 
clusters, ten clusters, and eleven clusters.  
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Considered together these statistics suggest that the data can be clustered into six clusters.  

 

Figure 12 displays the dendrogram. The figure provides a graphical view of the information  

 
 

Figure 12. Dendrogram of Clusters versus R-Square Values  

-in Figure 12. As the number of branches grow to the left from the root, the R square 
approaches 1; the first six clusters (branches of the tree) account for over half of the 
variation (about 75%, from Figure 12). In other words, only six clusters are enough to 
explain over three-fourths of the variation.  

 

CONCLUSION 
In this paper, we have shown how PCA and Clustering in the area of healthcare especially in 
cancer medical images. Dealing with dimensional of big data is very challenging because the 
data contain a large set of variables and features.  Therefore, dimension reduction 
techniques are very important task that a data scientist needs to do before conducting any 
statistical analysis. Several computational techniques have been developed in order to do 
dimension reductions, but the ones that we discussed were PCA and Clustering. PCA 
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suggested that about six components would explain enough number of variations from 
original data which is about 87% in total. On the other hand, Clustering discovered about 
six similar subgroups in data. In other words, the first six clusters account for over half of 
the variation about 75%. We can conclude that both approaches suggested we can 
categorize the data into six subcategories to adhere with the dominate variation in the data. 
Consequently, if a researcher wants to implement predicting models and supervised 
techniques, he or she can process the analysis using the six discovered components.  

  

DISCUSION 
The PCA is a linear combination of features in original data. So, if the structure in the 
original data doesn’t follow linearity, PCA is not a good representative of original data and 
cannot capture the amount number of variations. Therefore, non-linear techniques such as 
manifold learning should apply as it can be adjustable with the non-linearity nature of the 
data. On the other hands, there are some practical issues with clustering techniques. In the 
case of hierarchical clustering what kind of dissimilarity measurements should be used is 
questionable. There is the same issue about choosing the linkage. Also, what initial value 
should be considered to put a cut point in the dendrogram to get clusters is still under 
developing. In case of K-means clustering, the determination of optimal cluster is 
challenging. Consequently, in the future research we could use other methods in machine 
learning such as Local fisher’s discriminate analysis (LFDA), Canonical correlation analysis 
(CCA), Non-negative matrix factorization (NMF), and Manifold learning-based algorithm for 
addressing our scientific hypothesis from another point of view.  
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APPEDIX 
<SAS CODE> 
 

/* Generated Code (IMPORT) */ 

/* Source File: MatrixData_Lung_CT_1_74_Modify.xlsx */ 

/* Source Path: /home/mostafazahed0/SESUG */ 

/* Code generated on: 7/17/22, 6:51 PM */ 

 

%web_drop_table(WORK.IMPORT); 
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FILENAME REFFILE '/home/mostafazahed0/SESUG/Lung_Cancer_CT.xlsx'; 

 

PROC IMPORT DATAFILE=REFFILE 

 DBMS=XLSX 

 OUT=Lung; 

 GETNAMES=YES; 

RUN; 

 

PROC CONTENTS DATA=Lung;  

 

RUN; 

 

%web_open_table(WORK.IMPORT); 

 

 

/*view mean and standard deviation of dataset*/ 

proc means data=Lung Mean StdDev ndec=3;  

run; 

 

/*normalize the dataset*/ 

proc stdize data=Lung out=normalized_Lung; 

   *var values; 

run; 

 

/*print normalized dataset*/ 

proc print data=normalized_Lung; 

  

/*view mean and standard deviation of normalized dataset*/ 

proc means data=normalized_Lung Mean StdDev ndec=2;  

   *var values; 

run; 

 

 

proc factor data=normalized_Lung simple corr score scree; 

run; 
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proc princomp out=normalized_Lung plots= score(ellipse ncomp=6); 

run; 

 

 

 

/* Perfoming Cluster Analysis */ 

ods graphics on; 

proc cluster data=normalized_Lung method = centroid ccc print=15 
outtree=Tree; 

*var diagnostics_Image.original_Maxim--original_ngtdm_Strength_CT; 

run; 

ods graphics off; 

 

/* Retaining 9 clusters */ 

proc tree data=Tree noprint ncl=8 out=out; 

*copy diagnostics_Image.original_Maxim--original_ngtdm_Strength_CT; 

run; 

 

proc print data=out; 

run;  

 

/* To create a Scatterplot */ 

proc candisc out=; 

class cluster; 

var diagnostics_Image.original_Maxim original_ngtdm_Strength_CT; 

*var ALL; 

run; 

 

proc sgplot data =Tree; 

title "Cluster Analysis for Lung datasets"; 

scatter y = can2 x = can1 / group = cluster; 

run; 

 

 

/*Run the fastclus multiple times*/ 

%macro kmean(K); 

 

proc fastclus data=normalized_Lung out=outdata&K. maxclusters= &K. 
maxiter=100 converge=0; 
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var v1-v4; 

run; 

 

* Canonical Discriminant Analysis; 

proc candisc data=outdata4 out=egclustcan; 

class cluster; 

var v1-v4; 

run; 

 

/*Plots the two canonical variables generated from PROC CANDISC, can1 and 
can2*/ 

 

proc sgplot data=egclustcan; 

scatter y=can2 x=can1 / group=cluster; 

run;  

 

proc print data=Lung; 

run;  

 

/********************************/ 

OPTIONS NONUMBER NODATE LS=95; 

ODS pdf FILE="/home/mostafazahed0/SESUG/ClusteringSASoutput.pdf" notoc ; ** 
Sets the output to print to pdf ; 

 

ODS NOPTITLE; ** Don't print "The REG Procedure"-type titles; 

 

proc aceclus data=Lung out=Ace p=.03 noprint; 

run; 

 

proc print data=Ace;  

run;  

 

ods graphics on; 

proc cluster data=Ace method=ward ccc pseudo print=15 out=tree 

plots=den(height=rsq); 

var can1-can110; 

*id Obs; 

run; 

ods graphics off; 
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ODS pdf CLOSE; 

 

proc tree data=Tree out=New nclusters=3 noprint; 

height _rsq_; 

copy can1-can2; 

*id country; 

run; 

 

proc sgplot data=New; 

scatter y=can2 x=can1 / group=cluster; 

run; 

 

/**************************/ 

ods graphics on; 

title 'Using METHOD=AVERAGE'; 

proc cluster data=Ace method=average pseudo ccc pseudo print=15 out=tree 

plots=den(height=rsq); 

var can1-can110; 

*id Obs; 

run; 

ods graphics off; 

 

proc tree data=Tree out=New nclusters=5 noprint; 

height _rsq_; 

copy can1-can2; 

*id country; 

run; 

 

proc sgplot data=New; 

scatter y=can2 x=can1 / group=cluster; 

run; 

 

/**************************/ 

ods graphics on; 

title 'Using METHOD=CENTROID'; 

proc cluster data=Ace method=centroid pseudo ccc pseudo print=15 out=tree 

plots=den(height=rsq); 
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var can1-can110; 

*id Obs; 

run; 

ods graphics off; 

 

proc tree data=Tree out=New nclusters=5 noprint; 

height _rsq_; 

copy can1-can2; 

*id country; 

run; 

 

proc sgplot data=New; 

scatter y=can2 x=can1 / group=cluster; 

run; 

 

/**************************/ 

ods graphics on; 

title 'Using METHOD=DENSITY K=3'; 

proc cluster data=Ace method=density k=3 pseudo ccc pseudo print=15 out=tree; 

*plots=den(height=rsq); 

var can1-can110; 

*id Obs; 

run; 

ods graphics off; 

 

proc tree data=Tree out=New nclusters=5 noprint; 

height _rsq_; 

copy can1-can2; 

*id country; 

run; 

 

proc sgplot data=New; 

scatter y=can2 x=can1 / group=cluster; 

run; 

 

/**************************/ 

ods graphics on; 

title 'Using METHOD=SINGLE'; 
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proc cluster data=Ace method=single pseudo ccc pseudo print=15 out=tree; 

*plots=den(height=rsq); 

var can1-can110; 

*id Obs; 

run; 

ods graphics off; 

 

proc tree data=Tree out=New nclusters=5 noprint; 

height _rsq_; 

copy can1-can2; 

*id country; 

run; 

 

proc sgplot data=New; 

scatter y=can2 x=can1 / group=cluster; 

run; 

 

/**************************/ 

ods graphics on; 

title 'Using METHOD=TWOSTAGE K=3'; 

proc cluster data=Ace method=twostage k=3 pseudo ccc pseudo out=tree 

plots=den(height=rsq); 

var can1-can110; 

*id Obs; 

run; 

ods graphics off; 

 

proc tree data=Tree out=New nclusters=5 noprint; 

height _rsq_; 

copy can1-can2; 

*id country; 

run; 

 

proc sgplot data=New; 

scatter y=can2 x=can1 / group=cluster; 

run; 

 

/**************************/ 
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ods graphics on; 

title 'Using METHOD=Ward'; 

proc cluster data=Ace method=ward pseudo ccc pseudo out=tree 

plots=den(height=rsq); 

var can1-can110; 

*id Obs; 

run; 

ods graphics off; 

 

proc tree data=Tree out=New nclusters=5 noprint; 

height _rsq_; 

copy can1-can2; 

*id country; 

run; 

 

proc sgplot data=New; 

scatter y=can2 x=can1 / group=cluster; 

run; 


