
 

   
 

Paper 179-2022 

 REST API for the Weary Beginner 

Jinson Erinjeri, Onyx Government Services 

ABSTRACT 

API stands for Application Programming Interface which is a mode of  communication between programs in 
order to transfer data. REST is an acronym for REpresentational State Transfer which is nothing but a 
standard that guides the design and development of  p rocesses that enable ef fective communication be-
tween programs. Therefore, in the World Wide Web environment, REST API is used to interact with data 
stored on web servers. The objective of  this paper is to present the basics of  REST API’s for a novice 
learner in simple terms coupled with examples of  publicly available API. In addition, this paper will present 
features available in SAS as well as Python for communicating with REST API web services using the same 
set of  examples. 

REST API BASICS 

An API is a medium for communicating between programs with the primary objective of transferring data. If 

a program has an API, it implies that some parts of its data are exposed for consumption. The consumer in 

this case is called the client and it could be the front end of the same program or an external program. In 

order to get this consumable data, the client sends a structured request to the API and if the request fulfills 

the requirements, a response with relevant data is sent back to the client. This response usually comes in 

the form of JSON or XML data from the API. The API acts as a liaising agent and interacts with the server 

which contains the resources requested by the client without providing direct access to the data.  

 
To explain and remember the concept of API in a simple context, it would be best to imagine a customer 
using a snack vending machine shown in Figure 1.  The customer selects the appropriate snack or drink  
by entering the item number (ex. A5 or C4) in the keypad and then providing the appropriate amount of 
payment in the bill/coin insertor. 

  
Figure 1. Concept of API with an Example of a Vending Machine1 
 

 
1
 All vector images used in Figure 1 are sourced from https://publicdomainvectors.org/. 

 



             

2 

 
Once all the inputs are verified, the vending machine dispenses the product from the tray of goods which 
the customer picks up at the product dispenser door. In this example the customer is the client, the keypad, 
bill/coin insertor and dispenser door together constitute the API with goods of tray being the server. This is 
presented in Figure 1 and it is important to note that the API is residing in the server itself. The API acts as 
the liaising agent between the client and server to complete the transaction right from request to delivery  
of the product. In this set-up, it is important to note that the client does not need to know anything about the 
working of the server nor does the server need to know anything about the client. There can be instances 
where the client does not enter the correct change, keys an incorrect code or products in the goods tray 
are stuck and for all these types of scenarios, an error is displayed on the screen of the vending machine.  
Similar error codes are also displayed when placing requests in real time applications and are called HTTP 
error codes. It is important to note that an API is created by a developer on the server side and that some 
API’s may require some sort of authorization to access the data.  
 

We have described that the API is a liaising agent but how and what this agent should do is determined by 
REST, an acronym for REpresentational State Transfer. REST is nothing but a standard that guides 
developers in the design and development of an API. The goal of REST is to enable effective 
communication between two parties. This is done by enacting rules concerning Client–server architecture,  
Statelessness, Cacheability, Layered system, Code on demand, and an Uniform interface. An API that 
follows some or all of the six guiding constraints of REST is considered to be RESTful.  These set of 
constraints when applied to the system results in desirable properties such as performance, scalability, 
simplicity, modifiability, visibility, portability and reliability. More details about REST c an be found in Roy 
Fielding’s dissertation link provided in the reference section.  
 

Having discussed both API and REST, it is important to note the key elements of the REST API paradigm:  

1. Client or software running at the user’s end. 

2. Server that offers an API as a liaising agent to access its data or features.  

3. Resource is the content the server can provide to the client such as a text or video file.   

 

Resources are data sets on which we want to perform operations.  When this data is requested via unique 

URL, there is a REpresentational State Transfer. The data or record present in database is converted to 

another format which can be JSON, XML or plain text. The client needs the resource and initiates an HTTP 

request which is channeled via the API to the server. The server returns the request with an HTTP response 

with encoded data on the resource. One of the guiding constraints of REST states that one should be able 

to get a slice of data (resource) when you link to a specific URL. In this set -up, the URL is called a request  

while the data sent back to the client is called a response.  

 

The author's experience has been that various terms associated with the REST API have been 

interchangeably used and it might be a bit confusing in the beginning. However, every API comes with 

documentation that details what data is available and how to structure your request in order to get a valid 

response. It is our recommendation to read over the API documentation before consuming the data to avoid 

errors downstream. 

STRUCTURE OF A REQUEST 

An HTTP request consists of four elements: 

1. Endpoint 

2. Method (HTTP Method) 

3. Request Header 

4. Body 
 

Endpoint 
An endpoint contains a Uniform Resource Identifier (URI) which is just a route to find the resource on the 

internet. The most common type of URI is a Unique Resource Location (URL) which consists of root  

endpoint and path. The root endpoint is the starting point of the API you are requesting from whereas the 



             

3 

path is the resource you are requesting. For example, in the end point for rates of exchange data 

https://api.fiscaldata.treasury.gov/services/api/fiscal_service/v1/accounting/od/rates_of_exchange, 

“https://api.fiscaldata.treasury.gov/services/api/fiscal_service” is the root endpoint whereas the path is 

“/v1/accounting/od/rates_of_exchange”. As mentioned before, it is important always to refer to the 

documentation provided by the API provider to obtain how various terms are defined and to determine the 

structure of the requests. It is important to be aware that endpoints can have query parameters and these 

are not part of the REST architecture, however it is widely used by many API’s. Query parameters provides 

the option to modify your request with key-value pairs. They always begin with a question mark (?) and 

each parameter pair is then separated with an ampersand (&). The usage of query parameters will be 

presented later in the paper. 

 

HTTP Method (Method) 
The HTTP Method or method is the action you want to be performed on the resource. There are mainly 

five of them: 

1. GET 

2. POST 

3. PUT 

4. PATCH 

5. DELETE 

These methods provide what the request is supposed to do. They are used to primarily perform four 

possible actions: Create, Read, Update and Delete (CRUD). 

 

Method Action Performed 

GET Request used to get a resource from a server. The server looks for the requested data 
and relays it back to the client. A GET request performs a READ operation and is the 
default request method. 

POST Request used to create a new resource on a server. The server creates a new entry  
in the resource and relays back whether the creation is successful. A POST request  
performs a CREATE operation. 

PUT/PATCH Both these requests are used to update a resource on a server and relay back the 
status of the update. The only difference is that PUT is used to replace the resource 
in entirety whereas PATCH is used for a partial update. PUT and PATCH both 
constitute the UPDATE operation. 

DELETE Request used to delete the resource on a server. The server deletes an entry in the 
resource and relays back whether the deletion is successful. A DELETE request  
performs a DELETE operation. 

 
Table 1. HTTP Methods 
 

HTTP methods on endpoints handle requests between a web browser and web server. When creating a 

new endpoint, one can specify the request methods associated with it. These methods determine how a 

webpage interacts with the web server. 

 

Request Header 
The purpose of the request header is to store information relevant to client and server such as 

authentication (API key, IP address of server, etc.) and content of the body (e.g., response format). The 

headers are property value pairs separated by a colon. The most common request headers are Host, User 

Agent, Accept, Connection and Authorization. 
 

 

Body 
The body (also called data or message) contains information that needs to be sent to a server and this 

option is used in requests other than GET. Since this involves updating or altering a resource, authentication 



             

4 

is often involved and it is recommended to follow the API documentation strictly.  

 

Figure 2 shows the structure of a request “www.fruityvice.com/api/fruit/banana” with method and request  

header explicitly pointed out. Note that we are using the curl (client uniform resource locator) tool and the 

associated command in the Windows Command Prompt. 

 
Figure 2. Example of a Request Structure 

STRUCTURE OF A RESPONSE 

Similar to the HTTP request, the HTTP response has a structure which can be easily understood by the 
client. The HTTP response has three main components: 

1. Status Line 

2. Response Header  

3. Body 

 

Status Line 
The status line indicates the status of the request-response transaction and contains three important  

components: HTTP version, HTTP response code, and a reason phrase. The HTTP version number shows 

the HTTP specification to which the server has tried to make the response message comply. 

The HTTP response code is a three-digit code which shows the final outcome of the request. The codes 
range from 100 to 599 and are displayed with a reason phrase. In general, the response code and reason 
phrase follow the rules shown in Table 2. The specific details of the response code and reason phrase can 
be found at https://developer.mozilla.org/en-US/docs/Web/HTTP/Status. 
 

Status Code Explanation 

1xx Indicates that the request was received and alerts client to wait for a final response.  

2xx Indicates that the request was successful. 

3xx Indicates that the request was redirected to another URL. 

4xx Indicates an error originating from the client side. 

5xx Indicates an error originated from the server side. 

 

Table 2. General HTTP Status Codes  
 

Response Header 
The response header contains information about the content that is being returned along with the data 

about the server. Response headers are property value pairs separated by a colon. The most common 

response headers are Server, Date, Content-Length, Connection and Location. 

 

Body 

The body of the response contains the requested information in case of a successful transaction. The body 



             

5 

carries the data and can be in any format (JSON, HTML, etc.) as specified in the header. In unsuccessful 

transactions, the body can provide further details to complete the transaction. Note that body is optional but 

is sent most of the time. 

 
An example of the response structure for the request www.fruityvice.com/api/fruit/banana is shown in Figure 

3 with all its components. Note that the output is actually from the command used in Figure 2. 

 

 
Figure 3. Example of a Response Structure 

API REQUESTS  

In order to work with API’s, we need tools to make requests for consuming data and this can be achieved 
using methods or procedures available in Python, JavaScript, Ruby, SAS, R, POSTMAN, cURL (Client  
Uniform Resource Locator), etc. In this article, we will present the details of API requests using Python and 
SAS for accessing data from two publicly available API’s.  
 

API Requests Using Python 
A simple example of a REST API will make the above description of API transactions clearer and let us 
review a publicly available REST API at the web service https://www.fruityvice.com/.  This example web 
service provides educational and interesting information about most fruits. As a professional, it is always 
recommended to go through the documentation of the API of interest to get a fair idea of its usage. The 
screenshots of the API documentation for the GET request for this example are presented in Figure 4. 
 
 



             

6 

 

 
Figure 4. Screenshots of the API Documentation at https://www.fruityvice.com/doc/index.html 
 
This particular web service already produces an interface where you can try out the requests and is perfect 

to discern about API for the weary beginners.  Figure 5 shows the GET request output for /api/fruit/banana 

entered in the interface. 

 

 
Figure 5.  Output of GET request “api/fruit/banana” in Interface 
 

The same GET request entered in the user interface can be passed as a HTTP request in the URL as 

https://www.fruityvice.com/api/fruit/banana and the corresponding response output in browser is shown in 

Figure 6. The output is in JSON format which may need to be parsed to extract specific information such 



             

7 

as amount of sugar. 

Figure 6. Output of GET request https://www.fruityvice.com/api/fruit/banana in Browser 

 

We can use the above example and extract the data using the Python programming language. The 
advantage of using a programming language is the flexibility to process the data further and also aids in 
automating processes.  The code snippet to extract using Python is provided in Figures 7 and 8. The 
REQUESTS package in Python is most widely used for obtaining web information. Figure 7 shows the 
output using Python for the GET request https://www.fruityvice.com/api/fruit/banana and the output is 
exactly what was shown in Figures 5 and 6. Figure 8 shows a few examples of how one can extract data 
depending upon the needs of the user and the comments describe the purpose of each code snippet.  

 
Figure 7. Output of GET request https://www.fruityvice.com/api/fruit/banana using Python  
 

 
Figure 8. Few Examples of Extracting Data Per Users Needs 
 



             

8 

API Requests Using SAS 

An example of a second API is widely accessed in the financial world and the associated documentation is 
found at https://fiscaldata.treasury.gov/api-documentation/. This documentation is detailed and starts with 
the basics of API and the concepts of request-response with all the necessary code to tap the consumable 
data.  
Figure 9 is a snapshot of the API Endpoint structure and details of some of the parameters described in the 
documentation. It is worthwhile to reiterate that review of API documentation and following it strictly will 
ensure a successful request-response transaction. 
 
 

 
 
Figure 9. Screenshots of API Documentation at https://fiscaldata.treasury.gov/api-documentation 
 
For this example, we will use SAS®9.4M5 to access the data and the associated code snippet is presented 
in Figure 10. The FILENAME statement in the code refers to an external file and stores the response 
output(out.txt) as well as the header information (headers.txt). PROC HTTP uses the METHOD option to 
input the HTTP method and URL option to enter the endpoint as depicted in Figure 10. Figure 11 shows 
the snapshot of the content of header and response text files. 



             

9 

 
Figure 10. SAS Code Using the GET Method 
 

 
Figure 11. Snapshot of Header and Response Text Files 
 
We used PROC HTTP to output the data in text files but SAS has options to read in the JSON responses  

directly into SAS data sets (JSON option in LIBNAME statement) as shown in Figure 12. 

 

 
 

 
 
Figure 12. Code Snippet and Output Using PROC HTTP and JSON LIBNAME 
 

POST Method 

So far, we have presented all about the GET method which is the most commonly used. Methods other 

than GET typically need authorizations and for the treasury API example this is not possible at our end. For 



             

10 

demonstrating the POST method, we will use the web service http://httpbin.org/post used in the SAS 

documentation on PROC HTTP. Figure 13 shows the code and the response output using SAS PROC 

HTTP method and it is important to note the usage of POST as the METHOD option. Also, the data to be 

posted is a JSON file(user.json) and is referred to using the IN option (users) in PROC HTTP.  

 

 
 
Figure 13. SAS Code and Output using PROC HTTP for the POST Method 
 

Figure 14 shows the POST method using REQUESTS package in Python. Note that we are using variables  

url, headers and data as parameters in the POST function. 

 

 
Figure 14. Python Code and Output using Requests Package for the POST Method 

 

Other API Related Topics 
The API examples provided so far did not require authorization and authentication but it is an important  

aspect of API’s and one will stumble on it sooner or later. Most API’s use the OAuth (Open Authorization) 

protocol for authorization where an access token is requested by using the POST method and the access 

is granted based on this token. For a simple introduction to working with OAuth in SAS please refer to the 

article https://blogs.sas.com/content/sgf/2020/07/30/curl-to-proc-http/. For trouble shooting purposes, it is 

recommended to use the DEBUG option in PROC HTTP and details of this can be found at 

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0i2ek87s12e7mn1h2q3h0mywkl1.ht

m. For authorization related information in Python, please refer to www.realpythonproject.com/how -to-

authenticate-using-keys-basicauth-oauth-in-python/. 

CONCLUSION 

It is essential to know the basics of working of API’s and this was presented in this paper. The working of 

API’s was supported with couple of publicly available API’s using both Python and SAS. To delve further 

into API authorizations, references were provided in relation to both Python and SAS. 



             

11 

 

ACKNOWLEDGMENT 
The author would like to appreciate Betsy Churchill for reviewing as well providing valuable thoughts in 

developing this paper. 

REFERENCES 

Fielding, Roy Thomas (2000). "Chapter 5: Representational State Transfer (REST)". Architectural Styles 
and the Design of Network-based Software Architectures (Ph.D.). University of California, Irvine. Most 
recently accessed on August 14, 2022. 

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm 

 

Mozilla, HTTP Response Status Codes. Most recently accessed on August 14, 2022. 
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status 

 

Real Python, Pythons Request’s Library. Most recently accessed on August 14, 2022. 

https://realpython.com/python-requests/ 

 
SAS Institute, Inc. Data Management and Utility Procedures. HTTP Procedure. Most recently accessed on 
August 14, 2022. 

https://documentation.sas.com/doc/en/vdmmlcdc/8.1/proc/n0bdg5vmrpyi7jn1pbgbje2atoov.htm 

 

SAS Institute, Inc. Bari Lawhorn. How to translate your cURL command into SAS code. Most recently 
accessed on August 29, 2022. 

https://blogs.sas.com/content/sgf/2020/07/30/curl-to-proc-http/ 

 
SAS Institute, Inc. Base SAS Procedures Guide. HTTP Procedure. DEBUG Statement. Most recently 
accessed on August 29, 2022. 

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n0i2ek87s12e7mn1h2q3h0mywkl1.ht
m 

 
How to Authenticate using Keys, BasicAuth, OAuth2 in Python. Most recently accessed on August 29, 2022.  
 www.realpythonproject.com/how-to-authenticate-using-keys-basicauth-oauth-in-python/ 

CONTACT INFORMATION 

Your comments/questions/criticisms are valued and encouraged.  Please contact the author at: 

 

Jinson Erinjeri                                               

Onyx Government Services LLC 

5870 Trinity Pkwy Suite 330 

Centreville, VA 20120 

E-mail: jerinjeri@onyxgs.com 
     

       

     

 

 

 

 

 

   


