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ABSTRACT  

In process monitoring applications, a commonly encountered scenario is one in which 
several presumably identical processes are desired to be monitored simultaneously. Such a 
process is referred to as a "Multiple Stream Process (MSP).” Several parametric control 
charts have been developed for monitoring MSPs with the majority being derived from the 
classical Shewhart X-bar chart. These control charts perform best when the assumption of 
normality is met, but their performance can deteriorate substantially when the underlying 
data are non-normal. This deterioration is magnified when the sample size is n=1. While 
some work has been done to address the issue of non-normality through the development 
of a nonparametric MSP chart, a review of the literature shows an apparent gap for 
nonparametric MSP charts where the sample size is one. Thus, this paper introduces a novel 
method to address this gap, which is based on the classical nonparametric test, Cochran's Q 
Test and utilizes the EWMA framework, as well as a SAS macro for implementing the new 
technique. Derivation of the charting statistic and control limits will be given as well as 
recommendations for selection of chart parameters for a desired average run length 
performance in addition to an applied example of usage. 

INTRODUCTION  
Statistical process control charts have historically been shown to be useful graphical tools 
for monitoring various business processes for the purpose of ensuring quality. All control 
charts have the same key characteristics: (1) a plotting statistic, which is calculated using 
sample data taken from the process; (2) a target value to which the plotting statistic ideally 
adheres; and (3) control limits which the plotting statistic is compared to at each sampled 
time point. If the plotting statistic exceeds either an upper or lower control limit (UCL and 
LCL respectively), then we conclude that the process is out-of-control (OOC). This implies 
that the true target value may have shifted away from the desired target value. If the 
opposite occurs, we conclude that the process is in-control (IC). Ideally, if the process has 
shifted away from the desired target value, we would like to know this in as few samples as 
possible to avoid prolonged deteriorations in quality. Similarly, if the process is IC, then we 
would like to avoid receiving false alarms (i.e., plotting statistics incorrectly plotting outside 
of the control limits) too frequently.  

Over the last century, many control charts have been developed to take into consideration 
all of the different processes which can be monitored. For example, there are control charts 
for monitoring the mean of some process, the number of nonconforming units in a sample, 
as well as the proportion of nonconforming units in a sample (Montgomery, 2013). Control 
charts, much like the various statistical tests available to us, should be carefully chosen to 
match the characteristics of the monitored process. For example, a control chart developed 
for monitoring the mean of some process, say the number of minutes spent on hold for 
customers calling into a customer support center, would not be appropriate for monitoring 
the proportion of calls a customer service representative fields which are more than five 
minutes in length. In other words, the control chart chosen should appropriately address all 
aspects of the process or processes including time what characteristic of the process is to be 
monitored and how that characteristic is measured (i.e., is it a quantitative variable or 
categorical variable?).  
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Traditionally, most control charts have been developed to monitor a single or univariate 
process and assume that the plotting statistic follows some known distribution. As is the 
case with statistical tests which depend on distributional assumptions being met, if the 
monitored process does not meet the distributional assumption of the control chart, then 
the chart loses efficiency. Here, “efficiency” refers to the speed by which the chart signals 
OOC when the process really is OOC. Clearly, if we are to use a parametric chart, that is, 
one which relies on a distributional assumption, then we need to ensure that the monitored 
process really does follow said distribution to avoid lags in quality. Additionally, sometimes 
the monitored process is actually several independent and identical processes which we may 
want to monitor simultaneously rather than independently. Such a process is referred to as 
a ”Multiple Stream Process (MSP)” (Montgomery, 2013). For example, we may be a 
manager of a customer service call center, and we want to monitor the hold times for 
customers for each of our 10 customer service representatives. Each representative would 
be considered an individual stream in this case. Control charts which have been developed 
for monitoring MSPs traditionally assume the process follows a Normal distribution (Brown 
and Schaffer, 2020). 

To address the issue of possibly not knowing the distribution of a monitored process, control 
charts which do not depend on any distributional assumption have been developed which 
are referred to as “nonparametric” control charts. The reader is directed to Chakraborti 
(2014) for an overview of many historical examples of nonparametric charts, most of which 
use traditional nonparametric test statistics in the construction of their plotting statistics. 
Note, typically the parameter being tested by nonparametric tests is the median rather than 
the mean. Thus, nonparametric control charts are typically used to monitor the process 
median. To fill an apparent gap in the literature, Brown and Schaffer (2020) proposed a 
nonparametric MSP chart called the “Nonparametric Extended Median Test Cumulative 
Summation (NEMT-CUSUM)” chart. One limitation of the NEMT-CUSUM is that the sample 
size taken at each time point for each stream must be at minimum 10. Sometimes, our 
sample size taken at each time point may in fact be a single observation. While control 
charts have been developed for monitoring individual observations (see Montgomery 
(2013)), no control chart has been developed for monitoring an MSP when the sample size 
is one and certainly no nonparametric control chart has been either. Thus, a new 
nonparametric control chart has been proposed which takes into consideration the situation 
in which we are monitoring an MSP where the sample size is one for each stream at each 
time point. This chart was presented at the 2022 Joint Statistical Meetings and is called the 
“Cochran’s Q Exponentially Weighted Moving Average (CQ-EWMA)” control chart (Brown and 
Whitehead, 2022). 

The issue with developing new control charting techniques is that they exist only in theory. 
Most of them do not have SAS procedures specifically designed for their implementation in 
real organizations. The CQ-EWMA is no different. Resultingly, the purpose of this paper is to 
explain in general how the CQ-EWMA works and how a SAS macro called “%rogue_one” can 
be used for implementing the CQ-EWMA in your own organizations. 

FICTICIOUS MONITIONRING SCENARIO 
For illustrative purposes, let’s assume we are the regional manager of a paper supply 
company and that we have 10 salespeople working for us. In order for our branch to meet 
our sales goals, we need our salespeople to be making ample sales daily. At the end of each 
day, we count up the number of sales each salesperson has made (just the quantity, not the 
dollar amounts). Suppose we do this each day for a month (20 total observations for each 
salesperson) and that our target median number of sales per day is 5 for each salesperson. 
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DATA STRUCTURE 
Note, in order for %rogue_one to work properly, the data have to be organized in a specific 
fashion. Specifically, we need the data to be in a wide format, where each row represents 
an individual observation for every sampled time point and each column represents an 
individual salesperson or stream. Note, here a sample number column is not included since 
the row number serves the same purpose. 

 
 

Figure 1: Example of Data Structure Necessary for Macro to Function Properly 

CQ-EWMA CHART CONSTRUCTION 

COMPARING OBSERVED VALUES TO THE MEDIAN 
As previously mentioned, most nonparametric control charts monitor the median of a 
process and the CQ-EWMA is exactly the same in this regard. If the process is in a state of 
statistical control, then we would expect about half of our observed values to be greater the 
median and about half to be less than the process median. In our example, we are 
assuming we know the median number of daily sales is five. In general, the process median 
is denoted by 𝜇"!. The way the CQ-EWMA chart initially works is by comparing the value 
observed at each sampled time point, say 𝑦"#, number of sales made in a day in our 
example, to the target median (Note, 𝑦"# represents an observation for the 𝑖th stream at the 
𝑡th time point). If 𝑦"# > 𝜇"!, then we assign a value of “1” to a new indicator variable called 
𝑥"#. If 𝑦"# ≤ 𝜇"!, then we assign a value of “0” to 𝑥"#. Then, after all 𝑦"#’s have been converted 
to 𝑥"#’s for a given time point, we sum up the 𝑥"#’s into a quantity called 𝐶#. In general, 
assume we have 𝑘 streams, where 𝑘 ≥ 10, and we have taken 𝑡 samples from each of our 𝑘 
streams. Table 1 demonstrates the general procedure for an arbitrary number of time points 
sampled. 
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 Sample Number 

Stream 1 2 … t 

1 𝑥$$ 𝑥$% 

… 

𝑥$# 

2 𝑥%$ 𝑥%% 𝑥%# 

⋮ ⋮ ⋮ ⋮ 

k 𝑥&$ 𝑥&% 𝑥&# 

Column Totals 𝐶$ 𝐶% … 𝐶# 

 

Table 1. Comparing Individual Observations to the Median 

What may become clear here is that, if we can assume each of our streams are independent 
of each other (and this seems reasonable in our sales example), that the 𝐶# values all follow 
a Binomial Distribution, which suggests: 
 

 𝐸[𝐶#] = 𝑘(0.50)	
𝑉𝑎𝑟[𝐶#] = 𝑘(0.50)%. 

 

(1) 

To convert the sales data we observed in Figure 1 into 𝑥"# values we need in Table 2, we can 
do so by making use of an array within the DATA step: 

 
/* Tabulate Xt Values Using an Array */ 

data xt(drop=i sales1-sales10); 
set paper; 
array sales[10] sales1-sales10; 
array xt[10]; 
do i=1 to 10; 
 if sales[i] > &mu0 then xt[i] = 1; 
 else xt[i] = 0; 
end; 
run; 
 

The resulting data table, xt, is shown in Figure 2. 
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Figure 2: Indicator Variable Recoding 

CALCULATING COLUMN TOTALS, STANDARDIZED VALUES & CUMULATIVE 
SUMS 
Next, we need to sum the columns to create our 𝐶# values. But to more be more efficient in 
the amount of code necessary for the macro to work as intended, multiple steps can be 
combined into one DATA step. In the CQ-EWMA framework, the 𝐶#’s, being binomial random 
variables, are standardized into values called 𝑍#’s: 
 

 𝑍# =
𝐶# − 𝑘(0.50)
0.50√𝑘

. 

 

(2) 

From here, the 𝑍#’s are cumulatively summed into values denoted 𝑄#, which is the value to 
be used in the traditional EWMA framework: 
 

 
𝑄# =@𝑍#

#

"'$

. 

 

(3) 

We can perform all three tasks in one step. However, we need the names of the columns of 
the xt data table to do so. To achieve this task, we can make use of another macro function 
called %get_cols_delim: 
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/* Create Macro to Get Column Names */ 

%macro get_cols_delim(lib,mem,mvar,type,delim=" "); 
%global &mvar; 
   proc sql noprint; 
      select 
         name 
      into 
         :&mvar separated by '&delim' 
      from 
         dictionary.columns 
      where 
             libname eq upcase("&lib") 
         and memname eq upcase("&mem") 
 %if %upcase(&type) ne ALL %then 
        and upcase(type) eq upcase("&type"); 
 ; 
   quit; 
%put &mvar = &&&mvar; 
%mend get_cols_delim; 

In this macro, “lib” is the library where the data table, xt, is stored, “mem” is the name of 
the data table itself, “mvar” is what you decide to name the macro variable containing the 
column names, “type” refers to the type of variable you want the name of (e.g., numeric, 
character, or all), and “delim” is the delimiter separating the column names in the macro 
variable. For the given data table, we can see that this macro executes properly by 
executing the following code:  
%get_cols_delim(WORK,xt,col_names,all,delim=","); 

Now, we can use the macro variable &col_names in the DATA step described before: 

/* Calculate Ct, Zt, Qt values using Data Step */ 

data cts(KEEP=Ct Zt Qt); 
set xt; 
Ct = sum(&col_names); 
Zt = (Ct - %sysevalf(&k*0.50))/(%sysevalf(&k*0.25)**0.50); 
if _N_ = 1 then Qt=Zt; 
else if _N_ > 1 then Qt+Zt; 
run; 

The data contained in the cts can be used to actually calculate the plotting statistic and 
control limits. 

CALCULATING CQ-EWMA PLOTTING STATISTIC AND CONTROL LIMITS 
In the EWMA framework, the plotting statistic is a function of the quantitative variable being 
monitored. In our case, the quantitative variable being monitored is 𝑄#. The plotting 
statistic, denoted as 𝑟#, is defined as: 
 

 𝑟# = 𝜆𝑄# + (1 − 𝜆)𝑟#($, 

 

(4) 

where 0 < 𝜆 < 1 and 𝑟! = 0. To determine the control limits, we need to have knowledge of 
the variance of 𝑟#. Here, it is a little different from the traditional EWMA charting technique 
in that the 𝑄#’s are clearly dependent upon each other. It can be shown that the variance for 
𝑟# is: 
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𝑉𝑎𝑟[𝑟#] = 𝜆% E@(1 − 𝜆)%)(%𝑗

#

)'$

+ 2@(1 − 𝜆)%()($)𝑗 H
1 − (1 − 𝜆)#()

𝜆 I
#

)'$

J	

= 𝜎,%. 

(5) 

 
Thus, we can define an upper and lower control limit as: 
 

 𝑈𝐶𝐿 = 𝐿𝜎,	
𝐿𝐶𝐿 = −𝐿𝜎, , 

(6) 

 
where 𝐿 denotes the half-widths of the control limits. To first calculate the values of 𝑟#, the 
𝑄# values were isolated in their own data table. 
data qt; 
set cts; 
keep Qt; 
run; 

From there, the 𝑄# values were transposed using TRANSPOSE procedure in order to later 
make use of ARRAY processing: 

/* Transpose */ 

proc transpose data=qt out=rt1(DROP=_NAME_); 
var Qt; 
run; 

We once again make use of the %get_cols_delim macro function in order to extract the 
names of the columns in the rt1 data table outputted from PROC TRANSPOSE in order to 
assign them to an ARRAY in the DATA step. Here, we are also making use of DO LOOPS to 
calculate the 𝑟# values in a new data table called rt: 

/* Get Column Names of Transposed Data Table */ 

%get_cols_delim(WORK,rt1,col_names1,all,delim=" "); 

/* Calculate Rt */ 

data rt(DROP=&col_names1 i); 
set rt1; 
array ewma[&n] &col_names1; 
array rtz[&n]; 
do i=1 to &n; 
 if i=1 then rtz[i] = ewma[i]*&lambda; 
 else rtz[i] = ewma[i]*&lambda + &oml*rtz[i-1]; 
end; 
run; 

We can then transpose the rt data table back to long format to be rejoined with the cts 
data table notably making use of the %get_cols_delim macro function again. 

 
/* Transpose to Long */ 

%get_cols_delim(WORK,rt,col_names2,all,delim=" "); 

proc transpose data=rt out=rt2(DROP=_NAME_ _LABEL_ 
                               RENAME=COL1=rt); 
var &col_names2; 
run; 
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/* Append to cts */ 

data cts1; 
merge cts rt2; 
run; 

Now, we are nearly ready to calculate the control limits. First, we need to calculate the 
variance as given by (5). To do so, the variance and covariance pieces of (5) were 
calculated separately using a sample number variable created with the MONOTONIC function. 
In a single DATA step, the resulting variance terms were used to calculate the control limits 
given by (6), and then remerged with cts. Notably here, IF-THEN-DO logic was utilized in 
order to ensure computations are taking place correctly. 
/* Calculate Control Limits & Merge with cts1 */ 

data var(drop=i); 
do i=1 to &n; 
 sample=i; 
output;end; 
run; 

data var1(drop=v1 v2 v3 v4); 
set var; 
v1 = &oml**(2*sample-2)*sample; 
v2 = 2*&oml**(2*sample-2)*sample*((1-&oml**(&n-sample))/&lambda); 
if _N_ = 1 then do; 
 var=&lambda**2*(v1+v2); 
 v3 = v1; 
 v4 = v2; 
 end; 
else if _N_ > 1 then do; 
 v3+v1; 
 v4+v2; 
 var = &lambda**2*(v3+v4); 
 end; 
UCL = &L*sqrt(var); 
LCL = (-1)*&L*sqrt(var); 
merge cts1; 
run; 

From here, we can compare the values of 𝑟# to the control limits in order to determine if the 
process is in a state of statistical control or not. We do this in two ways: with a data table 
similar to the output generated by the SHEWHART procedure and with a chart generated by 
the SGPLOT procedure. 

/* Determine if any points are outside of the control limits */ 

data cqewma; 
set var1; 
if rt > UCL | rt < LCL then Violation = "Yes"; 
else Violation = "No"; 
run; 

data violations; 
set cqewma; 
where Violation = "Yes"; 
run; 
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/* Generate Plot */ 

proc sgplot data=cqewma; 
series x=Sample y=UCL/lineattrs=(color=blue); 
series x=Sample y=LCL/lineattrs=(color=blue); 
series x=Sample y=rt/markers lineattrs=(color=red) 
         markerattrs=(color=red); 
xaxis label="Time Point"; 
yaxis label="Plotting Statistic Value"; 
title "CQ-EWMA"; 
run; 
title; 

The generated chart is given by Figure 3. 

 
Figure 3: CQ-EWMA Control Chart for Regional Paper Supplier 

Here, we can see that the chart is signaling an out-of-control point around point 13. We can 
confirm this by also making use of the violations data table, shown in Figure 4. 

 
Figure 4: Violations Data Table 

 

After removing the extraneous data tables from the WORK library using the DATASETS 
procedure, the %rogue_one macro is complete and has the following form: 

%rogue_one(dt,mu0,L,lambda,lib); 
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Here, “dt” is the name of the initial data table to be analyzed, “mu0” is the target median 
value, “L” is the half-width (recommended to be 2.75 by Brown and Whitehead (2022)), 
“lambda” is the weighting parameter (recommended to be 0.05 by Brown and Whitehead 
(2022)), and “lib” is the name of the library where “dt” is saved. In our regional paper 
supplier example, the code we would use is: 
%rogue_one(paper,5,2.75,0.05,work); 

ADDRESSING AN OUT-OF-CONTROL POINT 
We can see in the previous example that we have evidence of an out-of-control process. We 
can also see from the chart that the sequence of points is moving in the negative direction. 
Contextually, this would mean that at least one of our salespeople is not meeting the daily 
sales goals necessary for our branch to meet our quota. In this case, it would be 
recommended to use the xt table to determine which of our salespeople may need 
assistance in achieving their sales goals. To do this, I would recommend using a procedure 
similar to that proposed by Brown and Schaffer (2020). That is, starting from the 
“inflection-point,” that is the point in the 𝑟# series where the points start moving toward the 
control limit they will ultimately surpass, sum up the columns from that point to the end of 
the series. In our case, it looks like the series immediately starts moving toward the lower 
control limit. So we would sum up all of the columns in the xt table using the PRINT 
procedure. 
/* Summing up Columns of xt */ 

proc print data=xt; 
sum xt1-xt10; 
run; 

We can see the results in Figure 5. 

 
Figure 5: Column Totals from xt Data Table 

 

Here, since our plotting statistic went below the lower control limit, we would be interested 
in determining which of our salespeople met their daily sales goals the least frequent 
number of days. From Figure 5, it would seem that salespeople 5, 7, 8, and 9 likely 
contributed to the out-of-control point. 
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CONCLUSIONS 
Statistical process control charts can be useful and effective tools in process monitoring. 
Because processes can take many forms, we need to be careful in selecting a charting 
technique most appropriate for the process being monitored. If we are monitoring a MSP 
where our sample size at each time point is 𝑛 = 1 and we don’t know or can’t confirm that 
our data come from a Normal distribution, the CQ-EWMA chart is a nice option. In this 
paper, we saw how the %rogue_one macro is constructed and saw how it provides the end 
user with graphical and tabular output similar to that of PROC SHEWHART. This output helps 
the end user make decisions about the state of their monitored process. 
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