SESUG 2022 Paper 177

One Click Excel Cleanup - Generate High Quality SDTM/ADAM
Specification

Suresh Acharya, Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT

The focus of this paper is to generate a high-quality Excel specification document in one click
with the help of a Visual Basic for Applications (VBA) macro. In the pharmaceutical SAS
programming industry, documents such as SDTM and ADaM specifications are required to
create SDTM and ADaM datasets, and most times these are in Excel format. Statisticians and
SAS programmers typically update these documents multiple times in-life as per the study
requirements and analysis needs. These updates are frequently tracked by using various types
of markings such as different colored text, highlighted cells, and overstrikes. These updates
are often not formatted consistently leaving highly inconsistent text formats and fonts in the
document. Removal of formatting is a manual process which is tedious and time consuming.
It takes 20-30 hours per protocol deliverable with increased likelihood of human error and
inconsistencies. As the number of worksheets increases, the time spent to clean up the
markings also increases significantly. The VBA tool presented in this paper generates a high-
quality Excel specification document that is consistently formatted, as per the formatting
standards, and saves 20-30 hours during each delivery cycle. Final output is clean of any
strikeouts, empty rows, empty columns, out of context borders and colors. In addition, it also
updates font style, size and color to a consistent standard format while removing any
additional cell fill color. With an option to clean a single sheet or multiple sheets, this tool
assists in creating high quality Excel SDTM or ADAM specifications.

INTRODUCTION

Visual Basic for Applications (VBA) is an event driven programming language available in
Microsoft products such as Microsoft Office Word, Excel, Access, Power Point, Microsoft
Project, and Outlook. This allows developers to add new features and tools in Excel file to
automate the process and add user defined functions. Such programs are saved within the
user interface of Excel and can be executed anytime when needed. One such example is the
use of VBA macro to remove strikethrough texts in Excel document (Liu, 2020).

In the clinical trial SAS programming domain, specifications are one of the starting points to
develop datasets further used in analysis. Based on the level it could be in the form of SDTM
or ADaM specifications which are used to develop SDTM and ADaM datasets respectively.
These datasets are further used downstream to generate tables, graphs, and listings to be
submitted to regulatory bodies for approval. In addition, the specification document is also
used as an input for define.xml document which is submitted along with datasets.
Therefore, a clean specification document with uniform formatting makes it easy to read
while meeting the quality standards.

During the cycle, the specification goes a through number of edits, both from programmers
and statisticians. As everyone has their own unique way of tracking these changes, the
results lead to inconsistent formatting. This could be anything from strikethroughs, font
color, background color, font size, empty rows/columns, filter, comments, and inconsistent
borders. One such example of inconsistent formatting is displayed in Figure 1. In both SDTM
and ADaM specifications there could be any number of worksheets in one workbook.
Cleaning each one of these worksheets while trying to maintain consistency takes a
significant amount of time. Despite the effort there could always be some human error. Our

objective is to automate the removal of all these formatting mark-ups throughout the
workbook and generate a consistently formatted Excel document using Visual Basic for
Applications (VBA) tool. This paper will explain details on how to create a VBA tool and show
an example which can be used to clean any type of Excel documents.

All core variables will be automatically carried over from ADSL ({no need to list here except for STUDYID and USUBJID)

STUDYID Study Identifier Char 12[ADSL.STUDYID Req

USUBJID Unique Subject Identifier Char 30|ADSL.USUBJID Req

The following variables will be derived in the ADINTDT program

SITENUM Study Site Number Char 10[{ADSL.SITENUM 0O-Req

IRTE Planned Traatmant Char 40|T s pl ARed traats rtarmforthiss rdfthi md-.- r\\-.- h A Vet d. @-R—Gq Abl 14 fraatr Alvarn qnir din
R DESESE ELEsriess

PARAM Parameter Char 125|Refer to codelist Req

PARAMCD Parameter Code Char 8|Mapped per codelist Req

PARAMN Parameter (M} integer 8|Mapped per codelist Perm

PARCAT1 Parameter Category 1 Char 5|Refer to Parameter Value Level Metadata 0-Req

PARCAT2 Parameter Category 2 Char 10|Refer to Parameter Value Level Metadata 0-Req

ADT Analysis Date integer 8|Refer to Parameter Value Level Metadata 0-Req

ADTF Analysis Date Imputation Flag |Char 1|ADTF="D" indicates that the ADT day was imputed. ADTF="M' indicateds that™|
ADT month was imputed. Acharya, Suresh E14
If no imputation was done then Make changes accordingly.
ADTF is null 10/8/2020 11:06 AM

SRCDOM Source Data Char &|Refer to Parameter Value Level Metadata

SRCVAR Source Variable Char 2|Referto Parameter Value Level Metadata | Reply...

SRCSEQ | Source Sequence integer 8|Selectthe sequence number FSRCDOM —-SEQ or SRCOOMASEQ) from the

Number row that relates to the ADT variable.
ASEQ Analysis Sequence integer 8 ASEQ=PARAMN O-Req
Number
SRCDTC ﬂc’f‘r*’fm"'”f eeeime | "\ Source date used to populate ADT in |7
ollection

character format

Figure 1. Heavily formatted Excel worksheet

GUIDELINES ON CREATING AND USING VBA TOOL

Visual Basic for Applications (VBA) macro to clean the Excel document can be invoked by
following the steps below.

Step 1: Evoke VBA Macro Window.

As described above, VBA Macro should be run within Excel application as it provides the
host environment. Thus, you open Excel document first and then evoke VBA Macro window
to initialize VBA Macro built. Follow below to do so:

Select View in Excel Menu bar
Click on Macros, select View Macros, Macro window pops up
Type the Macro name “DeleteAllFormats” in Macro window (Figure 2)

Click on Create, VBA Editor window pops up

Macro
Macro name:
DeleteslIFormats| + Run
Step Into
Edit
Delete
Options...
Macros in: | All Open Workbooks A
Description
Cancel

Figure 2: VBA Macro window

Step 2: Write VBA Macro in VBA Editor.
VBA Editor displayed as Figure 3

VBA Editor always has two pre-written lines
Macro starts with "Sub” followed by Macro Name in the first line

Macro ends with “End Sub” (Figure 3)

E Microsoft Visual Basic for Applications - Bookl - [Modulel (Code]] - O >
% File Edit View |Inset Format Debug BRun Tools Add-lns Window Help - & X
HE-d 49 pon B HEY O :|
IIGeneraIl j IDeIeteAIIFormats j
Sub DeletelhllFormats () i
End Sub
== | _>|J
Figure 3: VBA Editor window

Write Macro in VBA Editor (Figure 4)
¢ Delete the original two lines.

e Develop code inside the text box (Figure 4) as explained in the section below.

% File Edit Miew [nset Format Debug Bun Tools Add-lns Window Help -8 X
HEE-H) P @ kY @ | Ln117, Coll -
|tGeneral] j |De|eteAIIFormats j

'Clean Excel formatting

Sub DeletelBllFormats()
Dim Rng &s Range
Dim ®xCell A= Range
Dim sht Ls Worksheet
Dim I As Long
Dim ®5tr As S5tring
Dim LastRowlIndex &s Integer
Dim RowIndex &s Integer
Dim UsedBng &s Range

1 Dim a As Integer
Dim j &As Long
Dim HL As Hyperlink

Dim =Ry A= Ranges
Dim color As Long
Dim feocolor As Long

Dim HasStrikethrough As Boolean
Cn Error Resume HNext
For Each sht In ActiveWorkbook.Sheets

‘ of

Figure 4: VBA Macro on “DeleteAllFormats”

Step 3: Run VBA Macro.
e Click on Run button (green triangle shape, Figure 5). OR,
e Click on Run in Menu bar, then select Run button (green triangle shape,
Figure 6).
e Message box appears “Clean all Sheets in this Workbook” (Figure 7). If you
want to clean all sheets at one click “Yes”, else, click *No".

e If you click "No”, message box appears that prompts you to provide name of
individual sheet that you want to clean (Figure 8a). Provide sheet name (case
doesn’t matter) as in the example (Figure 8b).

e VBA Macro running completes successfully with notification window pops up
(Figure 9a) for all sheets cleaned at once, or, single sheet cleaned (Figure
9b).

e Click Ok and check Excel document to make sure VBA Macro works as
expected.

E Microsoft Visual Basic for Applications - Beck! - [Modulel (Code)] — O *
% File Edit View Insert Format Debug Run Tools Add-lns Window Help -8 x
HE-A galn P @M N E Y @ | Ln 117, Col 1 B

||Generau j IDeleteAllFormats j

"Clean Excel formatting

Suk DeleteAllFormats ()
Dim REng As Range
Dim xCell &s Range

Figure 5: VBA Macro Run Button

" g Pl
IlGeneraI) i
-]
"Clean Excel formatting
Suk DeleteRllFormats ()

5 Microsoft Visual Basic for Applications - Boekl - [Medulel (Code]] — O *
% Eile Edit View Insert Format Debug | Run iIooIs Add-lns Window Help -0 X

Run Sub/UserFerm F3
Break Ctrl+Break
Reset

Design Mode

Ln 117, Col 1
K

nats

Figure 6: VBA Macro Run Menu

—,

Clean all 5heets in this WorkBook

Yes

|]

Figure 7: Option to Clean all Sheets

Input ?

Please Enter Sheet Mame To Be Cleaned

Cancel

Figure 8a: Clean single sheet

Input ?
Please Enter Sheet Mame To Be Cleaned
aDsl

Figure 8b: Option B example.

Microsoft Excel x

All the formatted text in the current WORKEQOK has been cleared,

Microsoft Excel x

All the formatting in ADSL has been cleared.

Figure 9a: All Sheets cleaned

Figure 9b: Single Sheet cleaned

EXAMPLE CODES FOR THE CLEAN EXCEL VBA MACRO

Cleaning of worksheet begins with removal of all the strikeouts (Figure 10).

For Each xCell In Eng
HasStrikethrough = False
For i = 1 To Len (xCell)
With xCell.Characters(i, 1)
If Not .Font.S5trikethrough Then X5tr = x5tr & .Text
Else
If HasStrikethrough = False Then xS5tr = Trim(xStr)
®5tr = ®x5tr & " "

Else
®5cr = xS5tr & "¢
End If
HasStrikethrough = True
End If
End With

Hext
If HasS5trikethrough = True Then
X5tr = Replace (x5tr, ChrW(sHRO), ™ ™)
xCell.Value = WorksheetFunction.Trim(x5Scr)
End If
®x5tr = "W
HNext xCell

Figure 10

Removal of strikeouts sometimes will result is empty rows and columns. These empty rows

and columns don't serve any purpose and hence, needs to be removed (Figure 11).

If ActiveSheet.Hame <> " " Then
For K = Cells.5SpecialCells (x1CellTypelLastCell) .Row To 1 Step -1

If WorksheetFunction.Counti (Rows (K)) = 0 Then
AeotiveSheet .Rows (KE) .Delete

End If

Hext

For C = ActiveSheet.Cells.SpecialCells (x1lLastCell) .Column To 1 Step -1

If WorksheetFunction.Counth (Columns (C)) = 0 Then
Columns (C) .Delete

End If

Hext

End If
Figure 11

Next is to make texts uniform for font size, color, and type along with removal of unwanted
borders outside the range. During this process all comments associated with cells will be
removed as well (Figure 12).

If ActiveSheet.Name <> "" Then
ThisWorkbook.Sheets (J) .Range (ThisWorkbook.Sheets (J) .Cells(l, 1), ThisWorkbook.Sheets(J).Cells).Font.Name = "Arial"
ThisWorkbook.Sheets (J) .Range (ThisWorkbook.Sheets (J) .Cells(l, 1), ThisWorkbook.Shests(J).Cells).Font.Size ngn

End If
ThisWorkbook.Sheets(J) .Range (ThisWorkbook.Sheets(J) .Cells(l, 1), ThisWorkbook.Sheets(J).Cells).Borders.LineStyle = x1None
ThisWorkbook.Sheets (J) .Range (ThisWorkbook.Sheets(J) .Cells(l, 1), ThisWorkkook.Sheets(J).Cells).Borders.LineStyle = xlContinuous
ThisWorkbook.Sheets (J) .Range (ThisWorkbook.Sheets (J) .Cells (2, 1), ThisWorkbook.Shests(J).Cells).ClearComments

For Each xRy In ActiveSheet.Range (ActiveSheet.Cells(l, 1), ActiveSheet.Cells (350, 50))
color = xRg.Interior.color
If color <> RGB(0O, 204, 255) Then
XRg.Interior.color = RGB(255, 255, 253)
End If
fcolor = xRg.Font.color
If fcolor <> RGB(13, 69, 199) And fcolor <> RGB(251, 253, 254) Then
xRg.Font.color = vbBlack
End If
Hext xRg
For Each HL In ActiveSheet.Hyperlinks
HL.Range.Font.color = vbBlue

Hext

Figure 12

In addition, a single button can be added anywhere in the Excel document to invoke the
VBA code. This creates a one click cleanup tool for future use.

OUTPUT AFTER INVOKING THE VBA MACRO

Once the macro is invoked, all the formatting is cleared in the worksheet with consistent
font size and type throughout the document (Figure 13). To make it more readable, colors
of certain rows can be retained based on the need. A clean workbook is easy to read and
creates less issues when used as an input document by other programming tools.

L4 - - - - - 4

All core variables will be automatically carried over from ADSL (no need to list here except for STUDYID and USUBJID)

STUDYID [Study Identifier [Char | 12[ADSLSTUDYID [Req |
USUBJID |Unique Subjectidentifier [Char | 30[ADSLUSUBJID Req |
The following variables will be derived in the ADINTDT program

SITENUM |Study Site Number Char 10{ADSL.SITENUM O-Reqg
PARAM Parameter Char 125|Refer to codelist Req
PARAMCD |Parameter Code Char 3|Mapped per codelist Req
PARAMN Parameter (N} integer 8[Mapped per codelist Perm
PARCAT1 Parameter Category 1 Char 5|Refer to Parameter Value Level Metadata 0O-Reg
PARCATZ |Parameter Categaory 2 Char 10|Refer to Parameter Value Level Metadata O-Reqg
ADT Analysis Date integer 8|Referto Parameter Value Level Metadata O-Req
ADTF Analysis Date Imputation Flag |Char 1|ADTF="D" indicates that the ADT day was imputed. ADTF="\"indicate s that |Cond |Required if ADT is derived

ADT month was imputed.
[f no imputation was done then

ADTF is null.
SRCDOM Source Data Char 8|Refer fo Parameter Value Level Metadata Perm
SRCVAR Source Variable Char 8|Refer fo Parameter Value Level Metadata O-Reqg
SRCSEQ Source Sequence Number |integer 8|Selectthe sequence number (SRCDOM.—-SEQ or SRCDOM.ASEQ) from the {O-Req

row that relates to the ADT variable.

[==)

ASEQ Analysis Sequence Number |integer
SRCOTC Date/Time of Collection Datetime

ASEQ=PARAMN 0O-Reg
Source date used to populate ADT in character format 0-Req

—
=

Figure 13. Clean Excel worksheet

CONCLUSION

Manual cleaning of Excel files with several worksheets is a tedious and time-consuming
process. Every time new updates are made, we need to scan through all worksheets to find
any updates and determine whether those have been properly formatted. Changes on the
document also demand proper communication and time therein adding more resources.
Automating the formatting process significantly reduces the resources with little to no
chance of error. In our experience, this tool saved 20-30 hours in one protocol deliverable.
When utilized across number of studies the resources saved are significant.

Another major advantage is we can create a uniformly formatted specification document
throughout all studies. With a click of a button, we can generate a clean specification
document with:

1. No Strikeouts.

No Empty Rows.

Uniform Font Color (Exclusions apply).
Clean Background.

No Extra Border.

No Fill Outside Range.

Border in Range All Filled.

Uniform Background color (Exclusions apply).

© ® N O A WD

Intact Hyperlink/s Color.
10. Filters removed to show all texts.

11. No Comments.

REFERENCES

Liu, Li. PharmaSug 2020. Remove Strikethrough Texts from Excel Documents by VBA Macro
Available at
https://www.lexjansen.com/pharmasug/2020/QT/PharmaSUG-2020-QT-127.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Suresh Acharya
suresh.acharya@merck.com

https://www.lexjansen.com/pharmasug/2020/QT/PharmaSUG-2020-QT-127.pdf

	Abstract
	Introduction
	guidelines on creating and using vba tool
	Example codes for the Clean excel VBA macro
	Output after invoking the VBA macro
	Conclusion
	References
	Contact Information

